Calculus: Critical Points and Extrema

Introduction: Consider the following function on the interval [-3, 2].

Using the picture below, define what is a local maximum or minimum. It is also called **relative** maximum or minimum.

Before moving forward, make sure your definition is correct.

Note: endpoints are not considered local extrema. Make sure that your definition excludes endpoints.

A maximum or minimum of a function is called extremum.

Problem 1: Consider the function pictured below.

On the graph, find and label all points of local extremum.

Find (approximately) all values of x where f'(x)=0.

Find all values of x where f'(x) does not exist.

Find all intervals where f' is positive.

Find all intervals where f' is negative.

N.	CTN		201	0 1	10.		C+	1	00t.		~~~	1 C+~~	Tool	.hina	Tations	٧۵		4	400	a h a			٠d.
N	CIP	VI.	2U1	81	⊣ov	v ta	STC	ın L	ести	ırına	and	ı Starı	· read	nına:	Tatiana	Yua	ovina	ı tvu	aot	ω na	ıwke	en.€	ea

NCTM 2018 How to Stop Lecturing and Start Teaching Tatlana Yudovina tyudo@nawken.edu
At a point of maximum, the graph goes up and then down. What must be true about f'(x) at a point of local minimum?
What must be true about f'(x) at a point of local minimum?
What must be true about f'(x) at a point of local extremum?
Is it possible that $f'(x) = 0$, but $f(x)$ is not an extremum? Use the example above to explain.
Is it possible that $f(x)$ is an extremum, but $f'(x) \neq 0$? Use the example above to explain.
Problem 2: Given a function $f(x) = x^3 + 2x^2 + x$ find all local extrema analytically (i.e. without graphing). Specify which ones are minima and which ones are maxima.
(Hint: what must be true about f'(x) at a point of extremum?)

If the graph does not match your answer, do not move on until you understand why.

Outline a step-by step process for finding local extrema and determining which ones are minima and which ones are maxima. Use the term **critical number**.

This process is called <u>The First Derivative Test</u> Make sure you got it right before moving on.

Problem 3: Find all local minima and maxima for $f(x) = x(x-2)^3$

Use the first derivative test to find and classify all local extrema. Follow the step-by-step process you outlined earlier. It is ok to use technology to simplify, factor, or solve an equation, but do not graph the function until you are done.