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Cathy Seeley

• “Some mathematics is now more important than in 
the past because it plays a role in the design and 
use of technology… At the same time, technology 
makes some mathematics less important…The 
third and most important way in which technology 
affects the mathematics curriculum is that it makes 
some mathematics possible for the first time.” 

(March 2006)
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Calculators, computers, and a growing array of technological
innovations are important tools for doing mathematics, joining

the ranks of the compass, straightedge, pencil, slide rule, and trig
tables. Technology is neither a panacea for improving the teaching
and learning of mathematics nor the source of all the challenges
facing teachers and students. It is a tool, and how teachers use that
tool greatly affects how well students learn mathematics.

Computers and calculators were invented to save humans time
and to allow us to solve more challenging problems more easily than
we could otherwise do. Yet, some observers have noted that some
school mathematics curricula seem designed to make technology
obsolete. Rather than discussing whether technology is good or bad,
we might discuss instead how we can capitalize on this powerful tool
to help every student learn more mathematics, not less.

The Influence of Technology on Curriculum
Technology is here to stay, and it generates at least three

important effects on the school mathematics curriculum. First,
some mathematics is now more important than in the past
because it plays a role in the design and use of technology. For
instance, discrete mathematics topics such as matrices take on
new importance in light of their use in optimization problems
and the organization of data in rows and columns. The ability to
translate data from one form of representation to another, such
as from numbers and symbols to graphs and tables, or from
graphs to tables, is more important now than ever, as well.

At the same time, technology makes some mathematics less
important. This idea can be controversial because some fear that
we will omit from the school curriculum all the computations
that calculators can perform. It remains important for students
to know how to add, subtract, multiply, and divide mentally and
with a pencil and paper. But we must determine how much valu-
able instructional time we should devote to helping students
become proficient with lengthy or tedious calculations. How
long a divisor is long enough in the study of long division, for
example, is now an important educational decision. In the typi-
cal American mathematics curriculum, often described as a mile
wide and an inch deep, deciding what to leave out to make room
for other topics is crucial.

The third and most important way in which technology affects
the mathematics curriculum is that it makes some mathematics 
possible for the first time. Using technology, students at all levels can
tackle real problems that might arise from planning a field trip or
from a news story, even if the numbers involved might make the
problem unwieldy with only a pencil and paper. Middle school stu-
dents can analyze data using a wide range of statistical tools, devel-
oping quantitative reasoning abilities far beyond what was once
possible. Graphing calculators allow students to see the connec-
tions between visual representations and symbolic ones, and we are

only beginning to scratch the sur-
face of the potential of computer
algebra systems. These are just a
few examples of how technology
can help us raise the level of math-
ematical knowledge and thinking that we can expect of all students.

Teaching with Technology
The teacher is a key decision maker in using technology in the

classroom. The most important decision is when to use it and
when not to. Students need to learn when to use technology,
when to reach for a pencil, and when to do something in their
heads. Using technology well, like making other instructional
decisions about mathematics, calls for teachers to have a solid
knowledge of mathematics and a working knowledge of the tech-
nologies available. There is nothing wrong with students knowing
more than their teacher about how to use some features of a cal-
culator or a piece of software. What is not acceptable is for a
teacher to limit the use of technology because of the teacher’s
own discomfort or for a teacher to allow unlimited use of technol-
ogy without first helping students master essential mental tools. 

Providing appropriate access to technology should be the
responsibility of the school and should not be left to students
and their families. If we expect students to buy calculators that
cost more than their shoes, society will surely face a digital
divide greater and more dangerous than any economic gap we
have yet seen in schools. The same can be said if some students
have access to computers outside of school while others do not.
This kind of economic imposition, and the disastrous inequity
that would result, are unconscionable. Unfortunately, this means
that math can no longer be the cheapest subject in the school
budget. What was once done with little more than chalk or over-
head pens now calls for a significant and ongoing investment in
technology. In times of tight budgets, this is a real challenge, but
one that must be faced head-on.

The question, then, is not whether to use technology, but how
to use it in ways that support the mathematics learning of every
student. If students do not learn appropriate ways to use tech-
nology in school, they will surely find inappropriate ways to use
it outside of school.

What are the challenges that you face in using technology to
support student learning? How have you addressed the financial
challenge of providing students with technology or handled
related management issues, like keeping equipment in working
order and accounted for? What successes have you experienced in
using technology to raise the level of mathematics your students
learn? Join me for my next President’s chat about these and
related issues on March 21 at 4:00 p.m. EST or submit your com-
ments beforehand by visiting www.nctm.org/news/chat.htm. Ω

President’s Message

Technology Is a Tool
Cathy L. Seeley
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NCTM Position (Oct 2011)
• “It is essential that teachers and students have 

regular access to technologies that support and 
advance mathematical sense making, reasoning, 
problem solving, and communication. Effective 
teachers optimize the potential of technology to 
develop students' understanding, stimulate their 
interest, and increase their proficiency in 
mathematics. When teachers use technology 
strategically, they can provide greater access to 
mathematics for all students.”



Teachers and Curriculum

• Research has shown that teachers largely 
mediate the benefits and constraints of 
written curriculum (Eisenmann & Even, 
2009; Herbel-Eisenmann et al., 2009).



Activity Sort

• Examine the different versions of the “same” 
technology activities in the handouts.

• What similarities and differences do you notice 
among the ways that these textbooks structure the 
mathematics and the technology of these activities?

• How would using each of these texts be different for 
students? For teachers?

• Try find different ways of sorting the activities along 
different dimensions.



Similarities/Differences
• Starting with fixed parallel & move transversal vs. starting 

with non-parallel lines.

• Variation in the detail of the instructions.

• By the end of all the tasks, students will see how changing 
one angle affects all the angles.

• Technology based activity vs. analogue based activity (or 
accuracy or ease of construction)

• Vocabulary was sometimes integrated and for others it 
was prerequsite.

• Some are telling (“this will add up to 180º”) vs 
investigating.



Texts
Title Publisher Text

Focus on Geometry: An Integrated Approach Addison Wesley Longman A

CME Project: Geometry Pearson B

Connected Geometry Everyday Learning Corp. C

Holt Geometry Holt, Rinehart and Wilson E

Discovering Geometry: An Investigative Approach Key Curriculum Press D

Geometry McDougall-Littell F

Prentice Hall Mathematics: Geometry Pearson G

Prentice Hall Geometry: Tools for a Changing 
World

Prentice Hall H

UCSMP Geometry Scott, Foresman & Co. I



Text A



Text B



Text C



Text D



Text E



Text F



Text G



Text H



Text I



Embedded/ 
Supplemental

• Embedded - Activity occurs within the 
lesson of a textbook.

• Supplemental - Activity occurs outside of 
the lesson of a textbook.



Embedded/Supplemental

Text H

Text D



Essential/Not Essential

• Essential - The mathematical content of 
the activity is only described within the 
particular activity

• Not Essential - The mathematical content 
of the activity is described again outside 
of the activity



Embedded/Essential

Embedded Supplemental

Essential

Not Essential



Technology Required/
Technology Not Required

• Technology Required - According to the 
directions of the activity, the activity is to 
be completed with interactive geometry 
software.

• Technology Not Required - According to 
the directions of the activity, the activity 
may be completed with or without 
interactive geometry software.



Technology Required

Text B

Text A



Focused/Open

• Focused - Students are expected to  
notice specific patterns to complete the 
activity.

• Open - Students are expected to make 
observations about any patterns to 
complete the activity.



Ends Specified/
Ends Not 
Specified

Text G

Text E



Details of 
Construction

Text G

Text E



A Stated 
Purpose of 
the Activity

Text E



Evaluating and 
Writing Dynamic 
Geometry Tasks
• The Mathematics 

Teacher, Vol. 107, No. 9 
(May 2014), pp. 701-705 

• Frameworks for 
evaluating the 
mathematical depth and 
technological action of 
dynamic geometry tasks
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CONNECTING RESEARCHto teaching
Aaron Trocki

Evaluating and Writing  
Dynamic Geometry Tasks

dynamic geometry tasks, to promote 
mathematical reasoning. The Common 
Core State Standards for Mathematics 
(CCSSM) high school geometry stan-
dards require students to “make formal 
geometric constructions with a variety 
of tools and methods” (p. 76), and 
dynamic geometry software is among the 
tools listed. Further, Hollebrands (2003) 
has noted that within such dynamic 
environments students have opportuni-
ties to consider invariant relationships 
through dragging as well as make corre-
sponding conjectures and conclusions. 

However, little guidance is provided 
to teachers for evaluating the quality of 
dynamic geometry tasks, much less for 
writing their own. The purpose of this 
article is to introduce a framework for ana-
lyzing and writing dynamic geometry tasks 
that are designed to engage students in 
mathematical reasoning. We begin by ask-
ing readers to compare two sample tasks, 
each of which is designed to engage stu-
dents in developing and testing conjectures 
about parallelograms. We then introduce 
the framework and illustrate how it can be 
used to evaluate the potential of each task 
in accomplishing the desired result.

TWO TASKS TO COMPARE
Consider parallelogram tasks 1 and 2 
(see figs. 1 and 2), where students 
are provided with a prepared sketch in 
the dynamic geometry environment. 
Quadrilateral ABCD is constructed to 
be a parallelogram—that is, no matter 
what students do by dragging edges or 
vertices, ABCD will always be a paral-
lelogram. Each task therefore possesses 
mathematical fidelity, a guarantee that 
the objects in the sketch are what they 
are claimed to be. Without mathematical 
fidelity, the remainder of the task may 
become meaningless.

Read each task and consider this 
question: Which task contains prompts 
that encourage students to experiment 
and build their mathematical under-
standing? Which task would you con-
sider using in the classroom?

A PROFESSIONAL  
DEVELOPMENT PROJECT 
The impetus for this work originated in 
a professional development project in 
which the following research question 
was addressed: How do the design and 
use of tasks that incorporate dynamic 

Connecting Research to Teaching appears 
in alternate issues of Mathematics Teacher 
and brings research insights and findings 
to the journal’s readers. Manuscripts for 
the department should be submitted via 
http://mt.msubmit.net. For more informa-
tion on the department and guidelines 
for submitting a manuscript, please visit 
http://www.nctm.org/publications/content 
.aspx?id=10440#connecting.

Edited by Margaret Kinzel, mkinzel@boise 
state.edu
Boise State University, Boise, ID

Laurie Cavey, lauriecavey@boisestate.edu
Boise State University, Boise, ID

The advent of dynamic geometry 
software has changed the way 
students draw, construct, and 

measure by using virtual tools instead of 
or along with physical tools. Use of tech-
nology in general and of dynamic geom-
etry in particular has gained traction in 
mathematics education, as evidenced in 
the Common Core State Standards for 
Mathematics (CCSSI 2010).

Research has shown the potential 
benefit of using technology, particularly 

Copyright © 2014 The National Council of Teachers of Mathematics, Inc.  www.nctm.org. All rights reserved.
This material may not be copied or distributed electronically or in any other format without written permission from NCTM.

This content downloaded from 155.41.78.152 on Thu, 03 Sep 2015 20:38:41 UTC
All use subject to JSTOR Terms and Conditions



Vol. 107, No. 9 • May 2014 | MATHEMATICS TEACHER  703

The framework for analyzing 
dynamic geometry tasks (see fig. 3) is 
designed to identify qualities of dynamic 
geometry tasks that are best suited to 
support mathematical learning goals  
outlined in the CCSSM. The framework 
is divided into two components:  
allowance for mathematical depth and 
types of technological actions. These 
two divisions emerged after analyzing 
the teacher-written tasks. The levels of 
allowance for mathematical depth are 
based on the work of Smith and Stein 
(1998), whereas Sinclair’s work (2003) 
provided a basis for the types of techno-
logical actions. 

We defined a mathematical prompt as 
a written question or direction related to 
a sketch that requires a verbal or written 
response. Similarly, we defined a techno-
logical prompt as a question or direction 
that requires a drawing, construction, or 
measurement within or manipulation of 
a sketch. We coded levels of allowance 
for mathematical depth as numbers and 
types of technological actions as letters. 

For example, prompt 7 from the first 
task in figure 1 is both mathematical 
and technological and so was coded as 
(1, 2, 3, D). 

The research team used the frame-
work to code particular prompts of each 
parallelogram task from figure 1.  
Task 1 was written by a teacher begin-
ning to use dynamic geometry soft-
ware, and task 2 was written by the 
researcher developing the framework. 
Before reading further, we suggest that 
you take some time to consider how 
you would use the framework to code 
these prompts. Then think about what 
the coding implies about the potential of 
each task to engage students in develop-
ing mathematical understanding. 

The first prompt, “Describe what a 
parallelogram looks like,” requires the 
student to report information from the 
sketch with no need to perform a tech-
nological action and so was coded as  
(2, N/A). Prompt 4 for task 1, “Try 
dragging the vertices. Do your assump-
tions hold true?” received a code of 

mathematics (p. 348). The first two 
categories include tasks that require a 
low level of cognitive demand; the third 
and fourth categories include tasks 
that require a higher level of cognitive 
demand. Note that the level of cognitive 
demand depends heavily on students’ 
prior experiences, not just on how the 
task is phrased. What might be a rou-
tine task for one student could lead to 
an in-depth mathematical exploration 
for another. 

A FRAMEWORK FOR  
TASK ANALYSIS
As we found in our analysis, tasks in 
which the technological actions were 
coordinated with the mathematical 
prompts seemed to have higher potential 
for engaging students in mathematical 
reasoning. Teachers and researchers 
need to evaluate such dynamic geom-
etry tasks. To this end, we developed a 
framework that identifies characteristics 
of prompts associated with how the 
tasks are written. 

Fig. 3  The framework for analysis includes two components: allowance for mathematical depth and types of technological action. 

Allowance for Mathematical Depth

Hierarchical 
Levels Descriptions

N/A Prompt requires a technology task with no 
focus on mathematics.

0 Sketch does not have mathematical fidelity 
required to respond to prompt.

1 Prompt requires student to recall a math-
ematics fact, rule, formula, or definition.

2 Prompt requires student to report informa-
tion from the construction. The student is 
not expected to provide an explanation.

3 Prompt requires student to consider the 
mathematical concepts, processes, or rela-
tionships in the current sketch. 

4 Prompt requires student to explain the 
mathematical concepts, processes, or rela-
tionships in the current sketch.

5 Prompt requires student to go beyond 
the current construction and general-
ize mathematical concepts, processes, or 
relationships. 

Types of Technological Action

Affordances Descriptions

N/A Prompt requires no drawing, construction, mea-
surement, or manipulation of current sketch.

A Prompt requires drawing within current sketch.

B Prompt requires measurement within current 
sketch.

C Prompt requires construction within current 
sketch.

D Prompt requires dragging or use of other 
dynamic aspects of the sketch.

E Prompt requires the creation or consider-
ation of multiple examples from which one 
can generalize.

F Prompt requires a manipulation of the sketch 
that allows for recognition of emergent 
invariant relationship(s) or pattern(s) among 
or within geometrical object(s).

G Prompt requires manipulation of the sketch 
that may surprise one exploring the rela-
tionships represented or cause one to refine 
thinking based on themes within the surprise. 
(Adapted from Sinclair [2003, p. 312])

This content downloaded from 155.41.78.152 on Thu, 03 Sep 2015 20:38:41 UTC
All use subject to JSTOR Terms and Conditions

Mathematical Depth
•N/A - Prompt requires a technology task with no focus on 
mathematics. 

•0 - Sketch does not have mathematical fidelity required to respond 
to prompt. 

•1 - Prompt requires student to recall a mathematics fact, rule, 
formula, or definition.

•2 - Prompt requires student to report information from the 
construction. The student is not expected to provide an explanation.

•3 - Prompt requires student to consider the mathematical 
concepts, processes, or relationships in the current sketch. 

•4 - Prompt requires student to explain the mathematical concepts, 
processes, or relationships in the current sketch. 

•5 - Prompt requires student to go beyond the current construction 
and generalize mathematical concepts, processes, or relationships. 
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Technological Action
•N/A - Prompt requires no drawing, construction, measurement, or 
manipulation of current sketch.  
•A - Prompt requires drawing within current sketch. 
•B - Prompt requires measurement within current sketch. 
•C - Prompt requires construction within current sketch. 
•D - Prompt requires dragging or use of other dynamic aspects of 
the sketch. 
•E - Prompt requires the creation or consideration of multiple 
examples from which one can generalize.  
•F - Prompt requires a manipulation of the sketch that allows for 
recognition of emergent invariant relationship(s) or pattern(s) 
among or within geometrical object(s).  
•G - Prompt requires manipulation of the sketch that may surprise 
one exploring the relationships represented or cause one to refine 
thinking based on themes within the surprise. (Adapted from 
Sinclair [2003, p. 312])  
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TASK ANALYSIS
As we found in our analysis, tasks in 
which the technological actions were 
coordinated with the mathematical 
prompts seemed to have higher potential 
for engaging students in mathematical 
reasoning. Teachers and researchers 
need to evaluate such dynamic geom-
etry tasks. To this end, we developed a 
framework that identifies characteristics 
of prompts associated with how the 
tasks are written. 
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Hierarchical 
Levels Descriptions

N/A Prompt requires a technology task with no 
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0 Sketch does not have mathematical fidelity 
required to respond to prompt.

1 Prompt requires student to recall a math-
ematics fact, rule, formula, or definition.

2 Prompt requires student to report informa-
tion from the construction. The student is 
not expected to provide an explanation.

3 Prompt requires student to consider the 
mathematical concepts, processes, or rela-
tionships in the current sketch. 

4 Prompt requires student to explain the 
mathematical concepts, processes, or rela-
tionships in the current sketch.

5 Prompt requires student to go beyond 
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ize mathematical concepts, processes, or 
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Types of Technological Action
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that allows for recognition of emergent 
invariant relationship(s) or pattern(s) among 
or within geometrical object(s).

G Prompt requires manipulation of the sketch 
that may surprise one exploring the rela-
tionships represented or cause one to refine 
thinking based on themes within the surprise. 
(Adapted from Sinclair [2003, p. 312])
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Replacing, Amplifying, Transforming (RAT) 
Framework

• Focuses on whether the technology….

• replaces a similar presentation without the 
technology

• amplifies the learning process that was present in 
the non-technology version

• transforms the learning experiences to provide 
possibilities that were otherwise not possible 
without the technology

• From Hughes, Thomas, & Scharber (2006)
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the thousands—physical spaces for new types of STEM  
learning, such as robotics labs, makerspaces, and FabLabs. 
The emergence of these hybrid spaces is blurring the 
boundaries between what we today term “formal” and 
“informal” education and creating new opportunities 
for mathematics learning. Consequently, we should not 
restrict our view of technologies for learning mathemat-
ics to only those technologies that have their home in 
mathematics classrooms or workplaces.

Within each of these categories, we analyze two dimen-
sions of design: one focused on productivity and another 
focused on transformation. The productivity dimension 
emphasizes the role of technology in making mathemat-
ics learning more efficient or fruitful. The transforma-
tion dimension emphasizes how technology can allow 
reconceptualization of mathematics teaching and learn-
ing and calls into question what mathematics is at stake. 
Whereas the productivity dimension tends to vary the 
means to address given ends, the transformative dimen-
sion often aims to change the game by explicitly analyzing 
the nature of mathematics knowledge. We will see that 
discourses about productivity and transformation occur 
in each of the purposes of technology, but in somewhat 
different ways.

Where possible, we seek parallelism across our dis-
cussion of the four purposes. For example, we discuss 
history, key research, learning theories, policy perspec-
tives, and opportunities for the future with respect to 
each purpose.

Technology for Doing Mathematics

Technology plays an increasing role in doing mathematics, 
both in the workplace (Hoyles, Wolf, Molyneux-Hodgson, 
& Kent, 2002) and for mathematicians. Technologies 
that are commonly used in the workplace can also have  

cational settings. In contrast, the two categories within 
“learn mathematics” involve technology designed specif-
ically for use in educational situations. Within “practice 
skills,” we consider tools aimed at better organizing stu-
dent practice, such as tools that support students online 
as they do homework. Within “develop concepts,” we con-
sider approaches focused on student sense making and 
understanding, such as dynamic representations.

Please note that Drijvers’s use of “do mathematics” is 
not the same as the QUASAR (Quantitative Understand-
ing: Amplifying Student Achievement and Reasoning) 
project’s concept of “doing mathematics” (Henningsen & 
Stein, 1997). The QUASAR concept of “doing mathemat-
ics” refers to an aspirational level of engagement in which 
students emulate the reasoning of professional math-
ematicians. This aspiration can apply across all aspects 
of Drijvers’s framework, because the highest levels of 
mathematical practices are possible in mathematical 
experiences with varied purposes.

In this chapter, we also go beyond Drijvers’s frame-
work in recognizing a fourth purpose for the use of tech-
nology in the classroom. Mathematics education can 
now extend across both didactically organized (formal) 
and interest-driven (informal) learning contexts. In the 
fourth purpose, we consider technology as a context for 
engaging with mathematics. For example, robotics, fab-
rication tools, programming, and other contexts, are 
now common in the lives of many youth, and important 
opportunities for mathematical reasoning can emerge in 
these contexts, often through the mediation of technol-
ogy. When learning activities are considered from a sci-
ence, technology, engineering, and mathematics (STEM) 
perspective, the activities may emphasize other disci-
plines yet provide ample and important opportunities to 
learn mathematics. This is an important dimension now  
because schools and other institutions are building—by 

Didactical functions
of technology
in math education

Do mathematics (1)

Practice skills (2)

Develop concepts (3)

Learn mathematics

figure 31.1. Three purposes for technology in mathematics education. From Digital Technology in Mathematics Educa-
tion: Why It Works (or Doesn’t) by Paul Drijvers, July 2012, a paper presented at the 12th International Congress on Math-
ematics Education, Seoul, Korea. Retrieved from http://www.icme12.0rg/upload/submission/2017_F.pdf. Used with permission 
of Paul Drijvers.

Three purposes for technology in mathematics education. 
(Drijvers, 2012)



Questions to Consider

• As teachers, what impacts your decisions as to whether to use 
technology in your classroom?

• What do you look for in a “good” technology task/activity?

• How do you think about designing and evaluating technology 
tasks for your students?

• How could textbooks/curriculum better support teachers and to 
use technological tools?

• How do you help students recognize the affordances and 
limitations of technology?



Research on Technology in 
Mathematics Education

Zbiek, Heid, Blume, & Dick (2006)

• “major limitations of computer use in the 
coming decades are likely to be less a result 
of technology limitations than a result of 
limited human imagination and the 
constraints of old habits and social 
structures” (Kaput, 1992)
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