Social Networks to Teach Graph Theory
Lessons from the Classroom

Todd Abel
University of Central Arkansas

Christina Pennington
Ashe County (NC) High School
How the Math Teacher Network Facilitates Collaboration
(i.e., how Dan Meyer brought us here)

130
Social Networks for Teaching Graph Theory
10–12 Session

Graph theory is an important topic in discrete mathematics and an excellent low-threshold topic for mathematical reasoning and problem-solving. In this presentation, we discuss the use of social networks for introducing and teaching graph theory. Social network theory is relatable and rich in context. Key ideas and activities will be discussed.

Todd A. Abel
Appalachian State University, Boone, North Carolina
Mary E. Searcy
Appalachian State University, Boone, North Carolina

2005 (MOSCONE WEST)
How the Math Teacher Network Facilitates Collaboration
(i.e, how Dan Meyer brought us here)

Every Handout & Presentation From NCSM & NCTM 2016

By Dan Meyer • April 17, 2016 • 15 Comments

It will probably take more than one post to present a script through the conference program:

- NCSM Annual Meeting
- NCTM Research Preconference
- NCTM Annual Meeting

After skimming through every file, I'll note that if you're looking for those resources, you're in luck.

In case your interests follow my own, here are some other reading:

- *Abel & Searcy*. Using Social Networks to Teach Graph Theory.
- *Carroll*. Learning from Research: Using Worked Examples in Math Class.
- *Creagar & Daiga*. Providing Students with the Power to Prove.
- *DenBesten & Oswald*. Functions for ALL: Toward a Rigorous and Thorough Understanding.
- *Gree*. Building Proficiency in Mathematical Modeling.
One Possible Trajectory

Bridges of Konigsberg - Can you cross every bridge exactly once?
One Possible Trajectory

Define terms: vertex; edge; graph; incident; adjacent; connected; degree; subgraph; paths and circuits; adjacency matrix.

Now consider: “What additional information can be captured in the graph?”
One Possible Trajectory

Graph Coloring

How many colors do we need to color a map if no two adjacent regions share a color?
One Possible Trajectory

Edge Weights

What’s the shortest path from B to L?

Now we can also motivate things like:

- Shortest path algorithm
- Minimum spanning trees
- Traveling Salesman Problem
- Discussions about efficiency of algorithms
One Possible Trajectory

Directed Edges

What if information only flows in one direction?

We can ask some of the same questions we did with undirected graphs, and also consider
- Do our previous algorithms still work, or can they be altered?
- Maximum Flow
- Matching Problems
How Mathematical Modeling Is Often Taught

“Learn” (or be told about) a new concept

Practice with it on a bunch of simple problems

Now apply it to something that may or may not be interesting

Student: why should I care about this?
Teacher: You can do really cool stuff with it, trust me!

Student: why should I do this?
Teacher: You can do really cool stuff with it, trust me!

Teacher: Isn’t this cool?
Student 1: why don’t we always do this?
Student 2: ...
An Improvement

Start with a “real world” problem that may or may not be of any interest or relevance to your students

Use it to define or introduce some relevant concepts

Now apply it to something else

Student: why should I care about this?
Teacher: Engineers do it!

Student: why didn’t you just tell me this?
Teacher: Now you know why it’s important

Teacher: Isn’t this cool?
Student 1: I see the pattern you want me to see
Student 2: ...
How Mathematical Modeling Could Work

Based on CCSSM diagram of the modeling process.

See GAIMME report for lots of information and insights on teaching mathematical modeling.
We need rich and compelling situations that motivate useful, interesting, and accessible mathematics.

Our previous approaches motivated interesting and accessible mathematics, but weren’t very compelling or often very useful.
What We’ll Do From Here ...

1) An example of one particular approach to using social network analysis to teach graph theory

2) Other interesting things we can do with social networks and graph theory in the classroom
Topics in Ashe County High School’s Discrete Math Class

Day 1: How can I go “viral?”; define adjacency matrix and vertex-edge graph

Day 2: Basic vocabulary: adjacent, subgraph, connected, complete, degree, clique

Day 3: Hamiltonian circuits, paths, tournaments

Day 4: Euler circuits and paths

Days 5-6: Critical paths

Days 7-8: Conflict graphs and graph coloring

Day 9: Traveling Salesman Problem

Day 10: Shortest path

Day 11: Minimum spanning trees

Day 12-13: Binary trees and traversals
How do you go viral? - we used to use this:

Katheryn Deprill was abandoned as a newborn in a Burger King in 1986. She posted this picture to Facebook on March 7, 2014.
How do you go viral? - we used to use this:

It was shared over 30,000 times.

She met her birth mother on March 24

About

I am Katheryn (Hollis) Deprill, also known as The Burger King Baby. I have started the search for my biological mother in hope of reuniting with her!

Biography

My birthday is September 15th, 1986 and I was left by my birth mother in the bathroom of an Allentown Burger King. Today I have launched a campaign to find my biological mother. I would love to be able to meet her, and hug her. I want her to know that I am not mad at her for what she did, however I have so many questions to ask her and also to start a relationship with my biological mother. If she comes forward please tell her to not be afraid and contact me as soon as possible.
Viral posts come almost exclusively from internet content providers. There is significant money tied up in “going viral”.

Source: Buzzsum.com
And then there’s this ...

Up to 87 million Facebook users’ data were harvested and sold to the firm Cambridge Analytica.

- NY Times initially reported 50 million
- Cambridge Analytica claimed only 30 million

A personality quiz app called *This is Your Digital Life* gathered personal data from approximately 270,000 users (“for academic use”).

How can I tell if my info was shared with Cambridge Analytica?

Recently, we shared information about the potential misuse of your Facebook data by apps and websites. We also shared plans for how we’re taking action to prevent this from happening in the future.

Check below to see if your information may have been shared with Cambridge Analytica by the app “This Is Your Digital Life.”

Was My Information Shared?

Based on our investigation, you don’t appear to have logged into “This Is Your Digital Life” with Facebook before we removed it from our platform in 2015.

However, a friend of yours did log in.

As a result, the following information was likely shared with “This Is Your Digital Life”:

- Your public profile, Page likes, birthday and current city

A small number of people who logged into “This Is Your Digital Life” also shared their own News Feed, timeline, posts and messages which may have included posts and messages from you. They may also have shared your hometown.

Review and update the information you share with apps and websites by checking your settings.
How does a post go viral? Who in our class should be targeted?
Creating a class social network

Have students list their Facebook friends.

- As a class, discuss how to record this information
- Used a collaborative Google sheet to record information

Simulate a friendship network

- Each pair of students roll one die each. If the sum is odd, they are friends (can let the sum be the edge weight if you want to use this later)
- Can tweak the probability of a friend to increase the likelihood of a useful graph
Once the friendship connections are established, determine how to represent the relationships.

Ask students to look at networks in small groups and make observations.
How might something go viral in this class?

Who is most important?

Who is least important?
How might something go viral in this class?

The graph is not connected - Sabrina, Eben, Sybol, and Cristal are not adjacent to any other students.

The rest of the graph comprises a connected subgraph.
How might something go viral in this class?

Montana and Alex K have the most connections - they both have the highest degree (8)
How might something go viral in this class?

The connected subgraph is pretty well-connected, with an average degree of \(\sim 5.6 \).

The average path length is just 1.455.
How might something go viral in this class?

The *eccentricity* of a node is its maximum distance from another node. The *diameter* of a network is the maximum eccentricity - only 3 here.
How might something go viral in this class?

A **clique** is a complete (every pair of vertices shares an edge) subgraph.

Here's one of order 4 (there are others)
Once the friendship connections are established, determine how to represent the relationships.

Ask students to look at networks in small groups and make observations.

Now - wouldn’t it be helpful to have some common language to discuss the things we’re noticing?
How might something go viral in this class?

Hamiltonian circuits were modeled as direct Snapchats - in this case passing around test solutions (something that actually happened)

Eulerian circuits were modeled with Konigsberg
Graph coloring

Class Conflicts

I have enjoyed this class struggling and learning together, but it is time for a new seating chart. We have had our conflicts - whether it be not so friendly presidential candidate debates or who is “hogging” the tape. Below is a matrix that shows our class conflicts that I have observed:
Student solutions to the Class Conflicts problem
Student solutions to the Class Conflicts problem
What have we been assuming here?

- All links are equally strong
- All individuals are equally influential
This ignores that not all friendships are created equally. How could we measure the strength of a connection?
Modeling connection strength

This network adds edge weights measuring how many times they interact, on average, per week.
Modeling connection strength

Maximizing path lengths is difficult, but shortest paths are easier, so we can alter our edge weights so strong relationships have smaller weights (take the reciprocal)

Who’s most important now? Can we quantify it?
Modeling connection strength

This is a simulated network. Edge weights were given by the sum of two dice, and we used different size dice.

Students were asked to come up with meaning for the edge weights - they decided the average number of hours between interactions.
Modeling connection strength

Now we can ask - how will information spread most quickly between a pair of students?

How will it spread most quickly to everyone?
Modeling connection strength

The *minimum spanning tree* is the cheapest set of edges that contains every vertex.

Can look at Kruskal and Prim algorithms
Shortest Path Algorithm (Dijkstra)

Shortest path from one vertex to another - (Does NOT have to pass through every vertex, or get back to starting vertex)

1. Label the starting vertex S and circle it. Examine all edges that have S as an endpoint. Darken the edge with the shortest length and circle the vertex at the other endpoint of the darkened edge.
2. Examine all uncircled vertices that are adjacent to the circled vertices in the graph.
3. Using only circled vertices and darkened edges between the vertices that are circled, find the lengths of all paths from S to each vertex being examined. Choose the vertex and the edge yielding the shortest path. Circle this vertex and darken this edge. Ties are broken arbitrarily.
4. Repeat steps 2 and 3 until all vertices are circled.

Find the shortest path from Joseph to Garrett.

Student work for shortest path algorithm (Dijkstra’s)
Follow the Nearest Neighbor and Cheapest Link algorithms to find a Hamiltonian Circuit with minimal weight starting with Alex K., visiting each of the following classmates, and returning back to Alex K.

Nearest Neighbor:
Alex, Bailey, Montana, Morgan, Garrett, Joseph

Alex
9 + 1 + 2 + 1 + 16 + 9 = 33

Cheapest link:
1 - 5 - 2 - 16

1
2
3
4
9
Student work for Nearest Neighbor and Cheapest Link algorithms for Traveling Salesman problem
Some Lessons Learned

- Initial engagement was much stronger when graph theory was motivated by social networks.
 - It motivated a *need* for the terminology at the beginning
 - Students immediately saw a relevant application for the material

- Some later topics felt a bit forced for social network theory, but since students were comfortable operating in that context, they were willing to work with it.
 - They also saw connections relatively easily. When looking at other types of networks, they transferred the same language.

- Overall, this approach increased student interest and, anecdotally, understanding of the topic
Other Cool Stuff We Can Do ...
An Undirected Graph

What group of individuals could post something so that everyone saw it?

In this case, just Alex K and Montana would be enough to reach everyone
An Undirected Graph

What group of individuals could post something so that everyone saw it?

So could Alex K and Morgan
An Undirected Graph

What group of individuals could post something so that everyone saw it?

So would Alex K and Morgan

All nodes are included in the *neighborhoods* of these nodes.
An Undirected Graph

What group of students in the connected component could make it so every student either liked a post or at least half of the student’s friends like a particular post? This is the illusion of majority.

I can do it with 4. Can we do better?
An Undirected Graph

The *clustering coefficient* of an individual node is the probability that two contacts of a randomly chosen person have contact with each other.

If A is the set of nodes adjacent to v,

$$C(v) = \frac{\text{number of edges in subgraph made up of } A}{\text{number of edges in a complete subgraph with } n(A) \text{ nodes}}$$
For example:

Chance has 5 neighbors, $A=\{\text{Garrett, Alex R, Alex K, Bailey, Morgan}\}$. That subgraph has 8 edges.

A complete subgraph with 5 vertices would have 8 edges.

$$C(v) = \frac{8}{10} = 0.8$$

$$C(v) = \frac{\text{number of edges in subgraph made up of } A}{\text{number of edges in a complete subgraph with } n(A) \text{ nodes}}$$
For example:

A large clustering coefficient would that reposting by a small number of friends would quickly give the illusion of a majority

\[C(v) = \frac{\text{number of edges in subgraph made up of } A}{\text{number of edges in a complete subgraph with } n(A) \text{ nodes}} \]
Measures of Centrality

The *farness* of a vertex is the sum of all the shortest paths to other vertices. The *closeness centrality* is the reciprocal of the farness.
Measures of Centrality

<table>
<thead>
<tr>
<th>Name</th>
<th>Closeness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nathan</td>
<td>1.545</td>
</tr>
<tr>
<td>Stacey</td>
<td>1.818</td>
</tr>
<tr>
<td>Chris</td>
<td>1.818</td>
</tr>
<tr>
<td>Brett</td>
<td>1.909</td>
</tr>
<tr>
<td>Jay</td>
<td>2</td>
</tr>
</tbody>
</table>
Measures of Centrality

The *betweenness centrality* is a measure of how many shortest paths pass through the vertex.

For each pair of vertices, find the shortest paths, and then compute the fraction that pass through the vertex in question.
Measures of Centrality

The *betweenness centrality* is a measure of how many shortest paths pass through the vertex.

For a given vertex, add those fractions up for every pair.
Measures of Centrality

<table>
<thead>
<tr>
<th></th>
<th>betweenness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nathan</td>
<td>30.333</td>
</tr>
<tr>
<td>Chris</td>
<td>24.5</td>
</tr>
<tr>
<td>Stacey</td>
<td>12.833</td>
</tr>
</tbody>
</table>
Other Cool Stuff To Do..

Degrees of Separation

- On Twitter, almost everyone is within 5 degrees of separation.
- On Facebook, the average a couple years ago was 4.74. 99.6% of users are separated by 5 degrees.
- Wikipedia links are another good network.

Weight vertices instead of edges

- Eigenvector Centrality
- Page Rank
Other Cool Stuff To Do ..

On average, your friends will have more friends than you - why?

Disease spread

- Who should be vaccinated in order to limit the spread most effectively (degree distribution)
- What networks are vulnerable (mean shortest path)
- Check out Angela & George Shiflet, “Getting the ‘edge’ on the next flu pandemic: We should’a ‘node’ better”. Published on shodor.org (http://shodor.org/petascale/materials/UPModules/socialNetworks/)
Other Cool Stuff To Do..

Directed Edges

- Twitter provides an excellent model for directed edges
- What will change when edges are directed? Will our algorithms still work?
- Who is most influential now?
Social Networks and Graph Theory

Rich mathematical modeling in action..

Resources for analyzing graphs:
- Gephi (free)
- NodeXL (Excel plugin, Windows only)

Formulate
What tools do we need to answer this compelling question?

Real World Situation
How can we deal with this question? What do we need?

Validate
What else can we figure out? Can we do better?

Mathematical Entity
Compute
What do the tools tell us? How useful are they?

Interpret
Thank you!

Todd Abel
University of Central Arkansas
tabel1@uca.edu

Christina Pennington
Ashe County (NC) High School
christina.pennington@ashe.k12.nc.us