Making Sense of Fraction Division

Ha Nguyen, Ph.D. Georgia Southern University

hnguyen@georgiasouthern.edu

Heidi Eisenreich, Ph.D. Georgia Southern University

heisenreich@georgiasouthern.edu

Try this...

Use the fraction circles provided to solve the following problem:

- Heidi and Ha have 2 5/6 large pizzas leftover from a party.
 They want to put them in serving size packages that hold 2/3 of a large pizza each. How many servings can they package up?
 - Heidi says they will end up with 4 1/6 servings.
 - Ha disagrees and says that they will end up with 4 1/4 servings.
- Who is correct? Why? What mistake did the other person make?
- How could we use drawings to help make sense of the problem?

Try this... (Picture)

Use the fraction circles provided to solve the following problem:

Heidi and Ha have 2 5/6 large pizzas leftover from a party.
 They want to put them in serving size packages that hold 2/3 of a large pizza each. How many servings can they package up?

Goals for this session

- Discuss the progression of fraction operations
- Engage in fraction division tasks
- Identify the difference between sharing (partitive) and measurement (quotative) problem types
- Watch a video and discuss how this task might be implemented in a classroom

Progression of Fraction Operations

4th grade

- Add/subtract with like denominators (with and without context)
- Multiplication (whole number × fraction as repeated addition)

5th grade

- Add/subtract with unlike denominators (move from visuals to the standard algorithm)
- Multiply
- Divide
 - Whole number divided by a unit fraction (i.e., 6 divided by 1/3)
 - Unit fraction divided by a whole number (i.e., 1/3 divided by 6)

6th grade

Divide a fraction by a fraction

Discuss the differences (but do not solve...yet)

 Julio bought 1/2 of a pound of sliced turkey. He made 4 sandwiches with the same amount of turkey on each sandwich. How much of a pound of turkey was on each sandwich?

• Amanda has 3 1/2 yards of fabric. If she uses 2/3 of a yard of fabric for each project, how many projects can she make?

**These tasks were taken from the "Making Sense of Mathematics For Teaching: 6-8" book (Nolan, Dixon, Roy, & Andreasen)

Partitive vs. Quotative

- When we know the number of groups: (sharing/partitive)
 - Julio bought 1/2 of a pound of sliced turkey. He made 4 sandwiches with the same amount of turkey on each sandwich.
 How much of a pound of turkey was on each sandwich?

- When we know the amount IN each group: (measurement/quotitive)
 - Amanda has 3 1/2 yards of fabric. If she uses 2/3 of a yard of fabric for each project, how many projects can she make?

Use drawings and solve...

 Julio bought 1/2 of a pound of sliced turkey. He made 4 sandwiches with the same amount of turkey on each sandwich. How much of a pound of turkey was on each sandwich?

• Amanda has 3 1/2 yards of fabric. If she uses 2/3 of a yard of fabric for each project, how many projects can she make?

**These tasks were taken from the "Making Sense of Mathematics For Teaching: 6-8" book (Nolan, Dixon, Roy, & Andreasen) page 24

Use drawings and solve...

• Julio bought 1/2 of a pound of sliced turkey. He made 4 sandwiches with the same amount of turkey on each sandwich. How much of a pound of turkey was on each sandwich?

Amanda has 3 1/2 yards of fabric. If she uses 2/3 of a yard of fabric for each project, how many projects can she make?

Solve this

• Douglas ordered 5 small pizzas during the great pizza sale. He ate 1/6 of one pizza and wants to freeze the remaining 4 5/6 pizzas. Douglas decides to freeze the remaining pizza in serving-sized bags. A serving of pizza is 2/3 of a pizza. How many servings can he make if he uses up all the pizza?

 Taken from the "Making Sense of Mathematics For Teaching: 6-8" book (Nolan, Dixon, Roy, & Andreasen)

Watch this

- A video from the "Making Sense of Mathematics For Teaching: 6-8" book (Nolan, Dixon, Roy, & Andreasen)
- Discuss what you noticed with a neighbor.
- How could you implement this task in your classroom?
- What was your biggest take away from this session?

Connecting to Standard Algorithm

- Why does it make sense to multiply by the reciprocal?
- For example: **4** ÷ **1/3**.
- A student said this, "There are 3 groups of 1/3 in 1 whole. There are 4 wholes, so in total there are $4 \times 3 = 12$ groups of 1/3 in 4 wholes."
- How about 4/6 ÷ 1/3?

• How about **5/6 ÷ 1/3**?

Goals for this session

- Discuss the progression of fraction operations
- Engage in fraction division tasks
- Identify the difference between sharing (partitive) and measurement (quotative) problem types
- Watch a video and discuss how this might be implemented in a classroom

Making Sense of Mathematics for Teaching Grades 6-8

Nolan, Dixon, Roy, Andreasen. 2016. Making sense of mathematics for teaching: 6-8.

Making Sense of Fraction Division

- Ha Nguyen
 - hnguyen@georgiasouthern.edu

- Heidi Eisenreich
 - heisenreich@georgiasouthern.edu