Building meaning into algebra equations using multiple representations and progressive formalization

Raymond Johnson
University of Colorado Boulder
raymond.johnson@colorado.edu

Frederick Peck
University of Montana
frederick.peck@umontana.edu

David Webb
University of Colorado Boulder
dcwebb@colorado.edu

INTERNATIONAL CONSORTIUM FOR REALISTIC MATHEMATICS EDUCATION

Download materials: www.RMEintheclassroom.com

3x + 2 = 8

- How can we help students see structure and meaning in these symbols?
- How can we help students develop meaningful strategies to manipulate these symbols?

Session outline

- 1. The balance sequence
- 2. Using models and progressive formalization to help students *learn* and *do* math meaningfully.
- 3. The arrow chain sequence
- 4. In the classroom

The balance sequence

The see-saw

What can you say about the elephant and the mouse?

What happened when the butterfly landed? What does that tell you?

The balance model

What does the balance model do for students?

$$2x + 9 = 5x + 2$$

- What kinds of **structure** and **meaning** does the balance model help students see in these symbols?
- What kinds of **meaningful strategies** for symbol manipulation does it help students develop?

The balance model

$$2x + 9 = 5x + 2$$

- Structure and meaning?
 - The equation describes a relationship between *objects*
 - The equals sign means "balanced"
- Strategies for symbol manipulation
 - Manipulate the objects
 - Do the same manipulation to both sides to maintain balance

Perspectives on Modeling

What the Common Core says about modeling

"Modeling links classroom mathematics and statistics to everyday life, work, and decision-making. Modeling is the process of choosing and using appropriate mathematics and statistics to analyze empirical situations, to understand them better, and to improve decisions." (CCSSI, p. 72)

Modeling as a form of translation

RME: Modeling as a form of organizing

"The idea is that informal ways of modelling emerge when the students are organizing contextual problems. Later, these ways of modelling serve as a basis for developing formal mathematical knowledge. To be more precise, at first a model is constituted as a context-specific model of acting in a situation, then the model is generalized over situations. Thus, the model changes character, it becomes an entity of its own, and in this new shape it can function as a model for more formal mathematical reasoning." (Gravemeijer, 1997, p. 394)

Progressive formalization & iceberg metaphor

https://tinyurl.com/PhETEquality

The arrow chain sequence

The arrow chain model

What does the arrow chain model do for students?

$$\frac{3}{4}x - 9 = -3$$

- What kinds of **structure** and **meaning** does the arrow chain model help students see in these symbols?
- What kinds of **meaningful strategies** for symbol manipulation does it help students develop?

The arrow chain model

$$\frac{3}{4}x - 9 = -3$$

- Structure and meaning?
 - The equation describes a *process*: There is an unknown number and something happens to it
 - The equals sign means "the result"
- Strategies for symbol manipulation
 - Backtracking: Undo by doing the opposite operation in the opposite order

Progressive formalization for the arrow chain

In the classroom

Models help students *learn* math

Models are tools that students can use to *do* math

Models help students *learn* math

Models are tools that students can use to *do* math

Instructional sequences

Focus on the middle layer

Reflection questions to guide design

- 1. What is the **key mathematical structure** or idea?
- 2. What is a pre-formal **model** that can reveal this structure, and be used as a tool to do mathematics?
- 3. What **context** is (a) "begging to be organized" and (b) is such that a model *of* activity that can become a model *for* activity?
- 4. Sketch an **iceberg** that captures the experiential activity in context (lower level), the model(s) (middle level), and the formal mathematics (upper level).

Extensions

Which equation can you solve using an arrow chain?

$$16x^2 - 8x + 11 = 9$$

$$(4x - 2)^2 + 7 = 9$$

Arrow chains as representation of a function

- 3. Consider the function, g(x) = 3x + 7
 - a. Write a real-world situation for this

b. Make an arrow chain for this function.

c. Complete the table below

Input x	Output g(x)
-3	-2
-1	4
2	13
5	22

Balance model for substitution

Learn more about progressive formalization

Webb, D. C., Boswinkel, N., & Dekker, T. (2008). Beneath the tip of the iceberg: Using representations to support student understanding. *Mathematics Teaching in the Middle School*, *14*(2), 110–113.

Webb, D.C. (2017). The Iceberg Model: Rethinking Mathematics Instruction from a Student Perspective. In L. West & M. Boston (Eds.), Annual Perspectives in Mathematics Education: Reflective and Collaborative Processes to Improve Mathematics Teaching (pp. 201-209). Reston, VA: NCTM.

http://www.RMEintheclassroom.com

http://www.staff.science.uu.nl/~heuve108/download-rme/vdHeuvel-2000_rme-guided-tour.pdf

https://www.uu.nl/en/research/freudenthal-institute

https://www.icrme.net

Presentation: Making Sense of Algebra with Realistic Mathematics Education

Contact

Raymond Johnson

raymond.johnson@colorado.edu @MathEdnet http://mathed.net

Frederick Peck

frederick.peck@umontana.edu
http://RMEintheclassroom.com

David Webb

dcwebb@colorado.edu

Download slides, problems, and activity sequences:

http://www.RMEintheclassroom.com