Melanie Rainbow-Harel

Assessment Designer - Mathematics

Chakadee Waiyavutti
Research Assistant

Math Anxiety:
An eye-tracking
study

What is Math Anxiety?

- Feelings of tension or worry that interfere with mathematical performance in daily life and school settings (Richardson & Suinn, 1972).
- Distinct from both general and test anxiety.
- Not related to general intelligence.
- A cause of math performance deficits (Ashcraft et al., 2007; Hembree, 1990).
- Mathematically anxious students enjoy mathematics less, have lower perceptions of their mathematic abilities, and do not see value of mathematics in everyday life.

What has existing research found about math anxiety?

- Inverse relationship between MA and mathematical performance (r = -.27 to -.34) across middle and high school.
- Starting in 5th grade, MA steadily increases each year before hitting a peak in 9th-10th grade, then remains steady in high school and college.
- MA has been conceptualized in two ways:
 - Learning and evaluation subscale (MARS; Richardson & Suinn, 1972)
 - General anxiety and negative reactions (MAQ; Wigfield & Meece, 1988)
- Several MA measures are excessively age restricted.

Our study

• Develop a MA self-report instrument appropriate for 5th-12th graders.

 Validation of the measures using eye-tracking data: fixation duration, saccadic amplitude, pupil size.

- Negative relationships between math anxiety and math performance (r = -.46*)
- Positive relationships between math anxiety and eye-movement data:
 - Fixation duration (r = .39, B = .47*)
 - Time to first fixation (r = .77*)
 - Saccadic amplitude (r = -.02)
 - Pupil Left size (r = -.52*)
 - Pupil Right size (r = -.33)
- Positive relationships between math scores and eye-movement data:
 - Fixation duration (r = .49*)
 - Time to first fixation (r = .11)
 - Saccade amplitude (r = .23)
 - Pupil left size (r = .50*)
 - Pupil right size (r = .38)

Math anxiety group -- low -- high

Recommendations for Teaching

Students with high MA interact visually with items differently (e.g., they spend more time on items)

Increase length of testing session

Decrease length of test

Test more frequently but with shorter assessments

Math anxiety affects working memory, and students with less working memory tend to perform worse

Allow students to use tools to reduce load on working memory

Demonstrate various strategies for recording work/steps

Reduce requirements to perform mental math

