Hands-On Geometry

Using Origami & Compass Constructions for Advanced Explorations

Brent Ferguson
The Lawrenceville School, NJ
BFerguson@Lawrenceville.org

Daniel Fishman

Montgomery High School, NJ

DFishman@mtsd.us

Motivated, Resourceful, Self-Regulated Learners are...

- self-appraising (who am I?)
- self-directed (who do I want to become?)
- self-assessing (how am I doing?)
- self-advocating (what is my voice?)

There is no better way to empower your students and enliven their learning journey than to nudge them to be <u>ACTIVE</u>

— in the classroom and out.

Are you a traditionalist? Are you a progressive teacher? ...might you be both?

A New Conversation: from either-or to both-and

Credit: Andy Crouch, in *Strong and Weak* (2016)

...your students' learning will know no limits!

The back-story to this talk...

- · A colleagueship, then a friendship & bday gift
- A whimsical course proposal...
- A lot of learning (quickly!) and a super-fun course with amazing kids
- A realization that these can be a-la-carte tasks

Robert Lang, an inspiration...

Thomas Hull, a generous genius!

An ongoing consideration of the best mix of content, method, enjoyment...

Don't let Standards Get in the Way

- The Common Core Standards include CCSS.MATH.PRACTICE.MP1 through 8
- Students frequently have the wrong idea about what math class is, and may find *Project*Origami confounding
- Address the needs of both failing and thriving math students: Do your students need to witness how math can be engaging, or how math can be authentic?

Quick Participant Poll

- Geometry/Precalculus/Other...?
- Origami/Compass/(other?)

We can tailor this a bit; also know that the entire set of slide images will be posted on the NCTM website or we could send you the actual PPT if you email us.

Our 'short list' of constructive origami tasks

- Equilateral Triangle: addtl challenge: max size?
- Double-Angle Formulas, Helix
- Trisection, Multi-section, Fujimoto's method
- Modular Star Ring, Molly's Hex, Butterfly Bomb
- Parabola, Solving Cubics (& Angle Trisection!)
- TUPs, 4-corners-to-a-point
- Haga's Thm, Mother & Baby Lines
- Unit Polyhedra: sonobe units & PHIZZ units

And some recommended compass tasks

- The Basics:
 - Copying segments & angles, bisections
 - Perpendiculars & parallels
- Regular Polygons
 - Tri, Quad, Hex, Dodec, Penta*, Deca*
- Number Line project (Rosenthal 2013 online, and in appendix)
- Mosaic tilings, tesselations, etc.

Other recommended practices:

- Math histories: students write 2-4 pages about their relationship with math over the years...a trove of information (and a message to them that you ask)!
- Formative feedback, decoupled from delivery of [summative] grades.
- Required revisitation of all incorrect work on assessments, and modeling/practice in class: homework revision and tutoring help.
- Keen attention in the first weeks to the form of students' written homework, and commentary on how and why to use the notation effectively.
- Strong exhortation to use study groups and TALK mathematics... again, this is modeled and practiced in class as a way to equip students.
- Use of τ (tau), the better circle constant, instead of π (pi). (See <u>The Tau Manifesto</u> for a compelling argument in favor of this choice!)
- Book and movie recommendations for my students.
- Music, videos, and bad jokes distributed liberally.

Resources/authors for further study and reflection:

- Hull, Thomas, Project Origami
- Fold-School, a site with ready designs for three projects
- Brown, Roedinger, and McDaniel, Make It Stick: The Science of Successful Learning
- Daniel Willingham, Why Don't Students Like School? A Cognitive Scientist Answers Questions About How the Mind Works and What It Means
- Carol Dweck, Mindset: The New Psychology of Success
- Dan Pink, Drive: The Surprising Truth About What Motivates Us
- Angela Duckworth, Grit

Thank you for your interest and for participating in this NCTM 2018 session.

Please send us a note by email to give feedback that you think would be helpful if we were to give this workshop again.

Brent Ferguson
The Lawrenceville School (NJ)
BFerguson@Lawrenceville.org

Daniel Fishman

Montgomery High School (NJ)

DFishman@mtsd.us

Helping Double-Angle Formulas Stick

• Set up the triangles (geometric)

- Use the definitions (verbal & symbolic)
 - In $\triangle ABO$, write $\cos(\theta)$ and $\sin(\theta)$...and consider the fold
 - In $\triangle COD$, write $cos(2\theta)$ and $sin(2\theta)$...and consider CO
 - In $\triangle ACD$, write $\cos(\theta)$ and $\sin(\theta)$
- Algebra moves (symbolic & procedural)

Turned-Up Parts (TUPs)

• Fix a location for the square; mark the corners.

- Turn up point *P* to another position within the square. What do you see? What shape is the TUP? We might ask, "How can we tell how many sides a TUP will have?"
- Now turn up *P* to a position outside the square. Now what are the possibilities? (Can you justify why the regions are shaped this way?)
- Explore/Experiment...Conjecture...Prove

Fujimoto Approximation

- Can students figure out how this trick works?
- Connect with counting in binary (see, for example, https://youtu.be/aAPrkb3hpDg)
- Connect with modular arithmetic

Fujimoto Approximation

```
12
                            12
6
3
8
4
2
1
12
```


Butterfly Bomb

- Sparse Directions
- The weave
- Guided by symmetry

Appendix: Number Line Project

- Introduction/revisitation of number types
- Integer construction
 - Can we count 'all of' (\aleph_o) them?
- Rational number construction
 - Further extension: can we count 'all of' these (are there \aleph_o as well)?
- Irrational number construction
 - How about these we're constructing? How about *all* irrationals?

First, the integers

• Ruler Postulate

Segment Addition

Then, the rationals take 1: bisection

- First...a notion of rationals as related to division
- Next, cutting into two equals: let's construct a segment with length $\frac{5}{2}$.

0

5

Rationals take 2: trisection (and multisection)

• Now, let's leverage similarity and parallel lines to trisect a segment of length 5...thus creating a length of $\frac{5}{3}$ of a cubit.

Rationals take 2: trisection by copying triangles

• Now, let's utilize parallels and copy a triangle to form a parallelogram...still in the service of trisection.

Rationals take 2 – trisection by another method

• Now, let's leverage similarity, but differently (a recent student-generated solution)!

On to the irrationals

Let's try to construct segments of length $\sqrt{2}$, $\sqrt{13}$, $\sqrt{7}$, and $\sqrt{41}$.

Since considering square roots are tricky, let's consider squares. W.W.P.D.? (What would Pythagoras do?)

$$l_1^2 + l_2^2 = h^2$$

$$1+1=2...$$
 so $\sqrt{1}^2 + \sqrt{1}^2 = \sqrt{2}^2$, or $1^2 + 1^2 = \sqrt{2}^2$.

In other words, if we have legs of length 1, our hypotenuse would have length $\sqrt{2}$.

Are there leg lengths that would help you construct $\sqrt{13}$?

4+9=13

What number sentence would help you construct $\sqrt{41}$?

16+25=41

Hmmm...how about $\sqrt{7}$?

16-9=7.....so 9+7=16

Constructing irrationals

• $\sqrt{41}$ construction.

What squares add to 41?

•
$$16 + 25 = 41 \dots \text{ so } 4^2 + 5^2 = \sqrt{41}^2$$

Constructing irrationals

- $\sqrt{7}$ construction.
- What squares add to 7?
- Hmmm...what to do?
- Make a list of squares and try to find 7 by combining them!
- 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225, 256, ...
- 9 + 7 = 16; that is: $3^2 + \sqrt{7}^2 = 4^2$...but how to construct it?

Further resources/authors for study:

• On developing mathematical understanding (a classic):

Courant and Robbins: What is Mathematics?

• Four books that Brent thinks every math teacher should consider having on the shelf:

Richard Philips: *Numbers – Facts, Figures, and Fiction*

Steven Strogatz: *The Joy of X*

David Wells: The Penguin Dictionary of Curious and Interesting Numbers

David Wells: The Penguin Dictionary of Curious and Interesting Geometry

Thank you for your interest and for participating in this NCTM 2018 session.

Please give feedback that you think helpful. Send us a note by email!

Brent Ferguson
The Lawrenceville School (NJ)
BFerguson@Lawrenceville.org

Daniel Fishman
Montgomery High School (NJ)
DFishman@mtsd.us