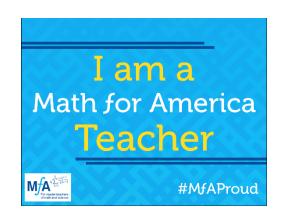
MASTER PROOFS through GAMES

NCTM Annual Conference 2018 - Washington D.C.


Peter and Quinn

Paul and KenKen inventor Tetsuya Miyamoto

KENMKEN

KEN

DIGITS (Mastermind with Numbers)

Presented by Peter Sell

Math for America, Master Teacher

HS for Health Professions and Human Services

New York City Department of Education

psell@schools.nyc.gov

DIGITS

- D = Digits: This means that a digit in the guess is in the number
- P = Place: This means one of the digits is in the correct place in the number.

If the secret number was 290, this is how we would score it.

GUESS	D (Digits)	P (Place)
349	1	0
564	0	0
892	2	1
710	1	1

Copy the table and score 815

Guesses	D (Digits)	P (Place)
253		
897		
730		
451		

Copy the table and score 815

Guesses	D (Digits)	P (Place)
253	1	0
897	1	1
730	0	0
451	2	0

From each individual guess, what can we conclude?

Guess	D	Р
249	0	0

Guess	D	Р
123	3	0

Guess	D	Р
123	3	1

Guess	D	Р
123	0	0
709	0	0
465	0	0

Guess	D	Р
123	1	0
709	1	0
465	1	0

Guess	D	Р
213	2	0
790	1	0

Guess	D	Р
249	0	0
194	1	1

And now?

Guess	D	Р
249	0	0
194	1	0

Class Challenge

The class will try to determine the number that I have selected. See how many guesses it would take.

Line	GUESS	DIGITS	PLACE
1			
2			
3			
4			
5			
6			
7			
8			

Sample Puzzle:

Can you determine the number?

GUESS#	GUESS	D	Р
1	178	0	0
2	295	1	0
3	414	0	0
4	663	0	0
5	304	1	1
6	489	1	0
7	816	0	0
8	452	0	0

Sample Proof

	Statement	Reason
Line 1	No 1's, 7's or 8's	Guess #1
Line 2	No 4's or 1's	Guess #3
Line 3	No 6's or 3's	Guess #4
Line 4	No 5's or 2's	Guess #8
Line 5	Only digits are 9 and/or 0	Lines 1, 2, 3, 4
Line 6	There is a 9	Line 5 and guess 2
Line 7	9 can only be in the hundreds place	Line 6, guess #2, and guess #6
Line 8	The other two digits are 0's	Line 5 and line 7
Line 9	The # is 900	Line 7 and line 8

Determine the numbers on your puzzle. Justify your answer to your partner.

Extensions

Given a set of clues with a mistake. Can students locate the contradiction?

Can students devise a set of guesses that can guarantee them the right answer on the 9th guess? 8th guess? 7 guesses? (for 3, 4 digit numbers)

Have the students work out the number of possibilities remaining after a certain number of guesses.

Is there an optimal strategy? Try it out.

Combinatorics & Probability.

Design a program (for CS students) for the game.

Digits as an introduction to Proofs

Guess	D	D	P	Statement Reason
guessi	1234	1	0	No 5,6,7,8 guess 2 No 3,4,5,6 guess 4
quess 2	5678	0	0	There is no guess 1,3,6,4
quess 3	9012	3		There are quess 3,5,6, numbers 9,0,27,8
guess 4	3456	0	0	2 is the 1st oness
guess 5	7890	2	0	the 2nd and 3rd 7,8,3
guess 6	6198	1	0	digit
guess 7	4207	2	1	Solution:
guess 8	2045	2	2	2009
guess 9	4085	1	1	

quest 1 guess 2 guess 3 guess 4 guess 5 guess 6 guess 7 guess 8 Solution	C 123 456 789 861 452 297 304 678	D 1 1 1 0 0 0 1 1 1 1	73 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Starking Starking	
State No 7			Rea	son ss 3	
No 3, 0,4 6 is in the number (hundreds place)		Guess 7 Guess 8 + Line 1			
2 is in the #		Guess 6 + Line 1			
NO 5		Guess 2 + Line 3			
a is in the number (ones place)		Guess 5 + Line 5			
NO 1		Guess 1+4			
2 is in	n the	tons place.	Gues	s 1 + Line	8
Number	is 6	22	All	of the above	ie


Ken Ken Proofs--background

In New York State, we used to teach logic proofs in the first two weeks of Geometry in order to get students thinking logically, and understanding the form of a Euclidean two-column proof. There were only 6 laws of logic used, in addition to "Givens." Logic proofs are no longer part of the curriculum.

Ken Ken, is a square number puzzle. In an n x n Ken Ken, the numbers 1 through n appear once each in every column and row. "Cages" separate some cells from others, and require the mathematical operation indicated. When no operation is indicated, the cage value is given.

Ken Ken proofs--utility

 With a small number of valid "reasons," Ken Ken proofs offer the student a chance to think logically, explain their process, and to facilitate much more challenging Euclidean proofs (i.e. low entry, high ceiling, easy to differentiate.) An easy 3 x 3 with addition only; ideal for 1st proof.

Solutions to our first puzzle.

numbers in each row? In each column?

7+

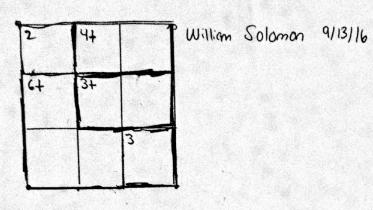
4+

1

3

A 5 x 5?

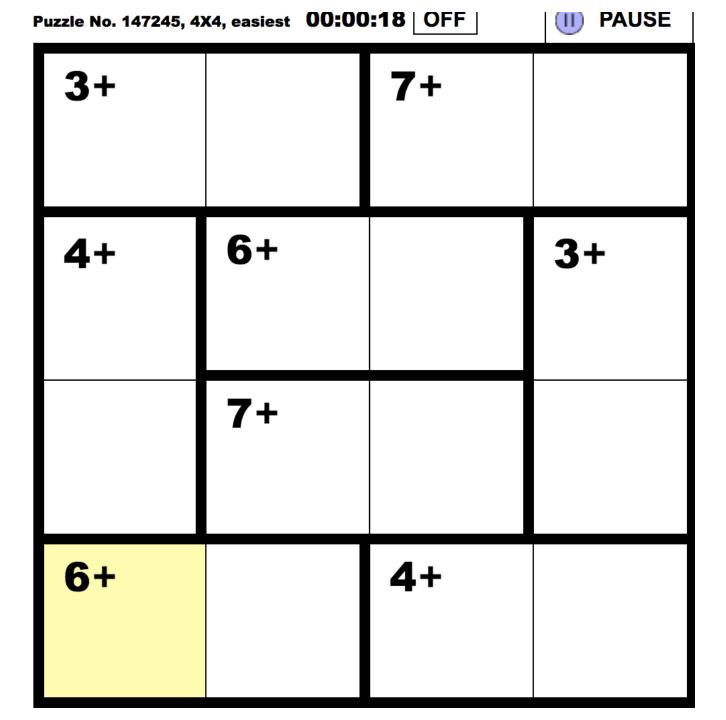
In this puzzle, what is the sum of the

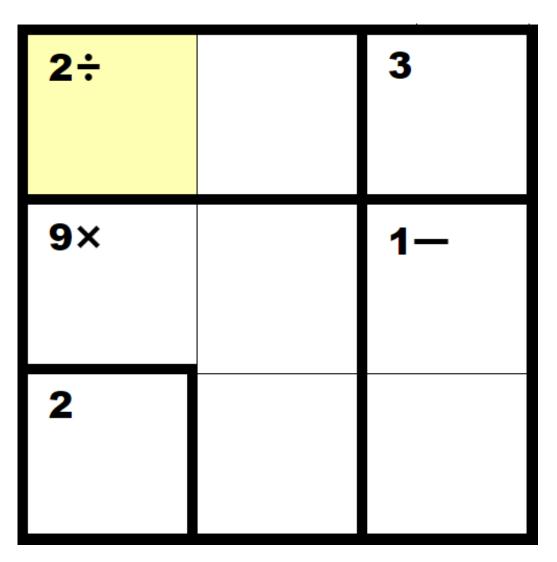

This is puzzle 3 from KenKenPuzzle.com Reprinted with permission.

A first proof

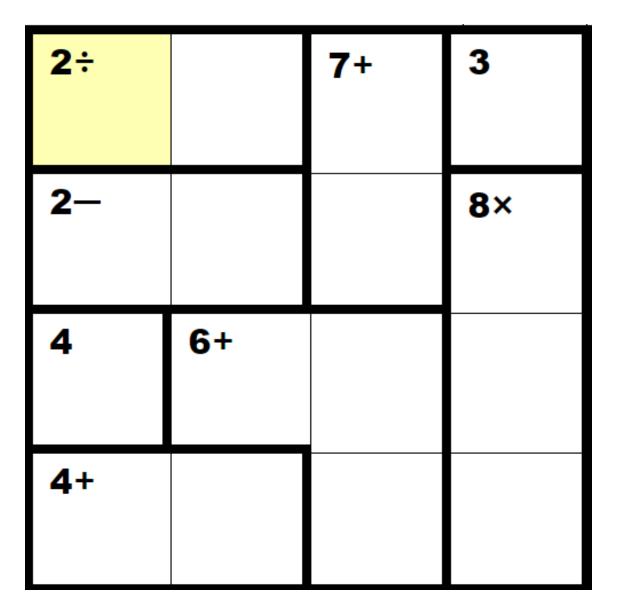
Statement	Reason
1) B3 =1	1) Given
2) C1 =1	2) Given
3) $A2 + A3 = 4$	3) Given
4) A2 and A3 = 1,3 or 3,1	4) No other way (to make 4) with our numbers (NOW WON.)
5) A3 = 3	5) 1 is already used in Column C
6) A2 = 1	6) Steps #4 and 5 (If A2 is not 3, it must be = 1.)
7) $A1 = 2$	7) Last Cell in Row (LCIR)
8) $B1 = 3$	8) Last Cell in Column (LCIC)
9) B2 =2	9) LCIR
10) C2 = 3	10) LCIC
11) C3 = 2	11) LCIC or LCIR

Alternate proof


Statement	Reason
1) B3 =1	1) Given
2) C1 =1	2) Given
3) A2 + A3 = 4	3) Given
4) $A1 + A2 + A3 = 6$	4) The sum of the numbers of any row of a 3 by 3 is 6.
5) A1 = 2	5) Subtracting (St #4 - St #3)
6) $B1 = 3$	6) LCIC
7) B2 = 2	7) LCIR
8) C2 = 3	8) 1, 2 already used in column, row.
9) A2 = 1	9) LCIC
10) $A3 = 3$	10) LCIR
11) C3 = 2	11) LCIR or LCIC



		Statement	Reason
	り	A1=2	1) Given
	2)	(3=3	2) Given
	3)	B2+B3=3	3) Given (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)
	n')	B1+B2+B3=6	4) The on of the #3 of any row is 6 ma 3543,
	5)	B1=3	5) Subtraction (Steps 4 and 5)
	(P)	(1=1)	6) Last cell in column
	7)	(2=2	Polar (ellin can)
(125)		B2=1	8) 3 and 2 are used in row and column
(21)		B3= 2	9) Lay Cellin cas
		A2=3	10) Last (ell in Column
	11)	A3=4	1) Last (ell in Row
1	n	Y	
(20)		, , ,	ad 17
70	upho	Man'ince	use of on'.) botraction'.)
· · Au	W	m (Miss	Mices


Extensions

- Grid size: 3 x 3, 4 x 4, 5 x 5, etc
- Operations: addition only, addition/subtraction, 4 basic operations, no operations specified.
- Number Systems: Counting Numbers, Negative Numbers.
- Fill in the blank: Statements provided & reasons required, vice-versa
- Challenge your students to create a KenKen puzzle with a unique solution.
- Competitions: Class, School, or National

From KenKenPuzzle.com Reprinted with permission.

From KenKenPuzzle.com Reprinted with permission.

Puzzles That Make You Smarter. Play How to Play Education About Products I Home

SELECT PUZZLE TYPE & DIFFICULTY Go! Step 1: Select Puzzle Size 5x5 6x6 8x8 9x9 Step 2: Select Operation(s) Step 3: Select Difficulty **Expert** Easy Medium Hard Easiest

PLAY NOW

Thank you!

Peter Sell psell@schools.nyc.gov

Paul Winston pwinsto2@schools.nyc.gov