Number Talks: A Routine Empowering ALL Students

Ann Kim
@annkim1013
annkim07@gmail.com
California School of the Arts
San Gabriel Valley

Jane Noh
@missnohmath
janenoh11@gmail.com
California School of the Arts
San Gabriel Valley

Vanessa Cerrahoglu
@mymathsoul
vcerrahoglu@ocde.us
Orange County Department of Education
Why Do Number Talks?
Consider...

\[
\begin{array}{c}
17 \\
- 9 \\
\hline
8
\end{array}
\]

Source: Making Number Talks Matter by Cathy Humphreys & Ruth Parker
Many who have taught middle school or high school mathematics have bemoaned their students’ lack of facility with arithmetic. This is nothing new. Decades of research have shown that the traditional curriculum and instructional methods in the United States have left our students with fragile skills and shallow understanding (Hiebert 1999). And every teacher routinely sees students dependent on rote procedures that they apply mindlessly. Unfortunately, examples like this are common:

\[
\begin{array}{c}
7
\
- \quad 9
\

\quad 8
\end{array}
\]

The work here isn’t wrong; the algorithm is done correctly, and the answer is right. Yet, it is a bit disturbing that this student went immediately to the algorithm without first thinking
“Computational fluency is strongly related to number sense and involves so much more than the conventional view of it encompasses.

Developing students’ computational fluency extends far beyond having students memorize facts or a series of steps unconnected to understanding” (Baroody 2006; Griffin 2005)

Source: Principles to Actions: Ensuring Mathematical Success for ALL by NCTM pg. 42
Consider...

\[
276 \div 12 = 23
\]

\[
(2x^2 + 7x + 6) \div (x + 2) = 2x + 3
\]
“Arithmetic algorithms are remarkable tools; they are reliable and efficient and they work with all numbers. The trouble is that their very compactness hides the meaning and complexity of the steps involved” (Hyman Bass 2003, 323)

Source: *Making Number Talks Matter* by Cathy Humphreys & Ruth Parker
Our Story
Agenda

- Our Story
- Number Talk
- Challenges
- Outcomes
- Action Steps
- Resources
Problems We Observed

- 80% of our 6th graders lacked basic fact fluency
- Lacking basic operation skills (addition, subtraction, multiplication, division)
- No strategies for calculations
- All known facts based on memory or counting.
Number Talk Rules

1. No pencils or paper
2. Silent thinking time
3. Place a fist on chest when thinking
4. Use your fingers to show how many strategies you have
5. We will not start until everyone has at least 1 strategy
6. No raising hands until after the first strategy is shared
7. Hold comments until the end of the Number Talk
Number Talk
How might this activity give access to all students to participate?
What did we do?

- Began in October
- Started with the addition strategy of Friendly 10’s
- 10-15 mins daily *(almost)*
Friendly 10s

- Katie: 9 + 5
 - 9 + 1 = 10
 - 10 + 4 = 14

- Rebecca: 19 + 8
 - 19 + 1 = 20
 - 20 + 8 = 28
 - 28 + 1 = 27

- Shane: 19 + 8
 - 19 + 1 = 20
 - 20 + 7 = 27

- Slater: 28 + 39
 - 28 + 8 = 36
 - 36 + 30 = 66
 - 66 + 9 = 75

- Dylan: 28 + 39
 - 28 + 7 = 35
 - 35 + 30 = 65
 - 65 + 8 = 73

- Kaydence: 28 + 39
 - 28 + 1 = 29
 - 29 + 30 = 59
 - 59 + 8 = 67

- Conner: 9 + 5
 - 9 + 5 = 14

- Simone: 28 + 8
 - 28 + 1 = 29
 - 29 + 7 = 36

- Brooklyn: 10 + 5 = 15
 - 15 - 1 = 14
By mid-October...

- **Dynan**: 99 + 38 = 137
 - 99 + 1 = 100
 - 100 + 37 = 137

- **Colin**: 98 + 47
 - 98 + 2 = 100
 - 100 + 45 = 145

- **Julien**: 99 + 98
 - 99 + 1 = 100
 - 100 + 97 = 197

- **Alyssa**: 99 + 99 + 5
 - 100 + 100 = 200
 - 200 + 5 = 205
 - 205 - 2 = 203

- **Eva**: 197 + 6 = 203

- **Valentina**: 98 + 47
 - 90 + 8 = 98
 - 40 + 4 = 48
 - 98 + 47 = 145

- **Aria**: 99 + 98
 - 99 + 9 = 108
 - 90 + 9 = 99
 - 90 + 90 = 180
 - 9 + 8 = 17
 - 180 + 17 = 197

- **Aliya**: 99 + 47
 - 90 + 9 = 99
 - 40 + 4 = 48
 - 99 + 47 = 145

- **Catie**: 96 + 90
 - 90 + 90 = 180
 - 8 + 9 = 17
 - 180 + 17 = 197

- **Ian**: 99 + 99 + 5
 - 100 + 100 = 200
 - 200 + 5 = 205
 - 205 + 3 = 203

- **Decomposing**
- **Making Friendly 10s**
- **Compensating**
- **Standard Algorithm**
By February...
In April, Fractions

\[
\frac{2}{3} \cdot 54 \quad \frac{1}{3} \cdot 54 = \frac{54}{3} \\
\frac{2}{3} \cdot 54 = 36 \\
\frac{1}{3} \cdot 54 = 18 \\
\frac{1}{3} \text{ is half of } \frac{2}{3} \\
54 \div 3 = 18 \\
\frac{1}{6} \cdot 54 = 9 \\
\frac{1}{6} \text{ is half of } \frac{1}{3} \\
18 \div 2 = 9 \\
\frac{4}{6} \cdot 54 = \frac{216}{6} = 36 \\
\frac{4}{6} \cdot \frac{2}{3} = \frac{2}{3} \\
\frac{108}{2} = 54 \\
18 \div 2 = 9 \\
18 \text{ is } \frac{1}{3} \text{ of } 54 \\
18 \div 2 = 9 \\
\frac{1}{6} \cdot 54 = 9 \\
\frac{1}{6} \text{ is half of } \frac{1}{3} \\
18 \div 2 = 9 \\
\frac{4}{6} \cdot \frac{216}{6} = 36 \\
\frac{4}{6} \cdot \frac{2}{3} = \frac{2}{3} \\
\frac{108}{2} = 54 \\
18 \div 2 = 9 \\
18 \text{ is } \frac{1}{3} \text{ of } 54 \\
18 \div 2 = 9
Where do YOU see gaps?

- Addition
- Multiplication
 - Single-digit
 - Multi-digit
- Subtraction
- Division
- Fractions
- Decimals
Observations & Outcomes
What was our Number Talk targeting?

Jay

4 \times (120) = 480

\begin{align*}
4 (100) &= 400 \\
4 (20) &= 80 \\
\therefore 4 (120) &= 480
\end{align*}

Zachary

8 (60)

\begin{align*}
120 \div 2 &= 60 \\
4 + 4 &= 8 \\
60 (8) &= 480
\end{align*}

Anna

16 (30)

\begin{align*}
60 \div 2 &= 30 \\
8 (2) &= 16 \\
\therefore 16 (30) &= 480
\end{align*}

Aiden

32 (15)

\begin{align*}
32 \div 2 &= 16 \\
15 (2) &= 30 \\
16 (30) &= 480
\end{align*}

Catie

\begin{align*}
4 (10) &= 40 \\
4 (20) &= 80 \\
4 (100) &= 400 \\
\therefore 4 (120) &= 480
\end{align*}

\begin{align*}
60 &< \frac{30}{30} \\
+ 8 (30) &= 240 \\
8 (30) &= 240 \\
8 (60) &= 480
\end{align*}

Tara

\begin{align*}
8 \div 4 &= 2 \\
60 (4) &= 240 \\
2 (240) &= 480
\end{align*}

\begin{align*}
16 \div 2 &= 8 \\
30 (2) &= 60 \\
8 (60) &= 480
\end{align*}
Outcomes

- Strategies for approaching problems
- Number sense
- Use of academic language
 - Place value
 - Making one vs. canceling out
- Understanding of standard algorithms
- Access to grade level math
- Addresses misconceptions
- Confidence
75% of our students were FLUENT in their facts by the end of the year!
Notating Student Strategies
Notating Student Strategies

\[67(8) \]
\[67 < 60 \]
\[60(8) = 480 \]
\[+ 7(8) = 56 \]
\[\frac{67(8) = 536}{67(8) = 536} \]

\[60(8) + 7(8) \]
\[= 480 + 56 \]
\[= 536 \]
Number Talks - Tips

● Commit the time **daily** for at least 2 weeks.
● **Pose** a problem in written form.
● Provide appropriate **wait time** for students to access the problem.
● **Accept**, **respect** and **consider** all answers.
● Encourage student **communication** throughout the talk.

Source: *Number Talks* by Sherry Parrish
How can you start?

1. Look for gaps
 a. Formative assessments
 b. Classwork
 c. “Show your work”

2. Consider which topic or operation to start with

3. Consider what strategies students may come up with

4. Commit 10-15 mins of your class time DAILY!
Let’s put it into action NOW!

NUMBER TALK COMMITMENT

I, ______________________, commit to doing Number Talks for 5-10 minutes on __________ for my __________ classes.

X________________________ Date: 4/26/2018 NCTM
Resources

http://a.co/hrycaqv
http://a.co/2XQszuW
http://a.co/2V5cXSL

FactsWise
by Val Henry

factswise.blogspot.com

Music by our students! Search Mt. Pool on Spotify!
Connection to the Standards
Common Core Math Practice Standards

1. Make sense of problems and persevere in solving them.
2. Reason abstractly and quantitatively.
3. Construct viable arguments and critique the reasoning of others.
4. Model with mathematics.
5. Use appropriate tools strategically.
6. Attend to precision.
7. **Look for and make use of structure.**
8. Look for and express regularity in repeated reasoning.
Number Talks: A Routine Empowering ALL Students

Ann Kim
@annkim1013
annkim07@gmail.com
California School of the Arts
San Gabriel Valley

Jane Noh
@missnohmath
janenoh11@gmail.com
California School of the Arts
San Gabriel Valley

Vanessa Cerrahoglu
@mymathsoul
vcerrahoglu@ocde.us
Orange County Department of Education