1. You are working in a lab that studies mold growth on bread. You are interested in how the size of a region of mold grows over time. For a certain specimen, you begin with a roughly circular moldy region with a diameter of 1.5 cm. The diameter of the moldy region appears to be growing by about 0.5 cm each day.

a) Construct a table of data for the diameter of the moldy region for the first 6 days (starting at $x = 0$ days). Make a plot of your data on the grid provided. Let x represent time (in days) and y represent the diameter of the moldy region. Be sure to label each axis.

\[
\begin{array}{c|c}
 x & y \\
 0 & 1.5 \\
 1 & 2.0 \\
 2 & 2.5 \\
 3 & 3.0 \\
 4 & 3.5 \\
 5 & 4.0 \\
 6 & 4.5 \\
\end{array}
\]

b) Write an equation that describes the mold diameter at any time.

\[y = 1.5 + 0.5x \]

c) Identify the slope for your equation in part (b). Explain that the slope means in this context (situation).

\[(1, 0.5) \]

d) Another moldy region begins with a diameter of 0.5 cm and appears to double in diameter each day. Construct a table of data for the diameter of this moldy region for the first 4 days (starting at $x = 0$ days). Plot the data on the same graph, using a different symbol (like a triangle) or color for the points.

\[
\begin{array}{c|c}
 x & y \\
 0 & 0.5 \\
 1 & 1.0 \\
 2 & 2.0 \\
 3 & 4.0 \\
\end{array}
\]
1.) You are working in a lab that studies mold growth on bread. You are interested in how the size of a region of mold grows over time. For a certain specimen, you begin with a roughly circular moldy region with a diameter of 1.5 cm. The diameter of the moldy region appears to be growing by about 0.5 cm each day.

a) Construct a table of data for the diameter of the moldy region for the first 6 days (starting at $x = 0$ days). Make a plot of your data on the grid provided. Let x represent time (in days) and y represent the diameter of the moldy region. Be sure to label each axis.

```
0 1 2 3 4 5 6
1.5 2.25 3.375 4.5
```

b) Write an equation that describes the mold diameter at any time.

$$y = x \times 1.5$$

c) Identify the slope for your equation in part (b). Explain that the slope means in this context (situation).

$$\frac{\text{rise}}{\text{run}} = \frac{1}{1.5}$$

d) Another moldy region begins with a diameter of 0.5 cm and appears to double in diameter each day. Construct a table of data for the diameter of this moldy region for the first 4 days (starting at $x = 0$ days). Plot the data on the same graph, using a different symbol (like a triangle) or color for the points.
1. You are working in a lab that studies mold growth on bread. You are interested in how the size of a region of mold grows over time. For a certain specimen, you begin with a roughly circular moldy region with a diameter of 1.5 cm. The diameter of the moldy region appears to be growing by about 0.5 cm each day.

a) Construct a table of data for the diameter of the moldy region for the first 6 days (starting at \(x = 0 \) days). Make a plot of your data on the grid provided. Let \(x \) represent time (in days) and \(y \) represent the diameter of the moldy region. Be sure to label each axis.

<table>
<thead>
<tr>
<th>(x)</th>
<th>(y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.5</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>2.5</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>3.5</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
</tr>
</tbody>
</table>

b) Write an equation that describes the mold diameter at any time.

\[
y = 0.5x + 1.5
\]

c) Identify the slope for your equation in part (b). Explain that the slope means in this context (situation).

\(y \) is a linear line. It means that the mold is growing at a constant steady rate.

d) Another moldy region begins with a diameter of 0.5 cm and appears to double in diameter each day. Construct a table of data for the diameter of this moldy region for the first 4 days (starting at \(x = 0 \) days). Plot the data on the same graph, using a different symbol (like a triangle) or color for the points.

<table>
<thead>
<tr>
<th>(x)</th>
<th>(y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.5</td>
</tr>
<tr>
<td>1</td>
<td>1.5</td>
</tr>
<tr>
<td>2</td>
<td>4.5</td>
</tr>
<tr>
<td>3</td>
<td>9.5</td>
</tr>
<tr>
<td>4</td>
<td>18.5</td>
</tr>
<tr>
<td>5</td>
<td>25.5</td>
</tr>
</tbody>
</table>