Multiplication Masters, Fraction Fanatics and Vocabulary Victors

Games and hands-on activities to master multiplication and fraction concepts while building fluency, vocabulary, and problem-solving skills.

Sandra White, Educational Consultant
Lone Star Learning Booth #568

info@lonestarlearning.com sandra@lonestarlearning.com

www.lonestarlearning.com
Multiplication & More

A. Concepts: Marilyn Burns is the Queen! The Math Solution
 1. Chopstick Problem
 2. Children’s Line-up
 3. Circles & Stars
 4. Visual Multiplication with Rectangles
 5. Area Models and Base Ten Blocks
 6. Things That Come in Groups
 7. Generate Problems – Concepts to Applications

B. Master Multiplication Facts in 10 & 10! - 10 min. & 10 days!
 1. 0’s, 1’s, 2’s, 5’s, 10’s, & 9’s
 2. Hard 15 Made Easy!
 3. 11’s & 12’s
 4. Short Consistent Review – Square Scramble
 5. Missing Factor Bingo (Introduction to Division)

C. Mathematical Patterns That Work
 1. 6-10 Hand Jive
 2. Check with a Big X.
 3. Legal Cheat Sheet

D. Going Beyond Lessons
 1. Individual Multiplication Projects
 2. Multiplication Number Sense Tricks

www.lonestarlearning.com
Mastering Multiplication Facts in 10 and 10

Student Name _____________________

Any # \(\times 0 = 0\)
Any # \(\times 1 = \) The other number.
Any # \(\times 2 = \) I can count by 2's.
Any # \(\times 5 = \) I can count by 5's.
Any # \(\times 10 = \) I can count by 10's.
Any # \(\times 9 = \) I'll use my Trick of 9's.

<table>
<thead>
<tr>
<th>0's</th>
<th>1's</th>
<th>2's</th>
<th>3's</th>
<th>4's</th>
<th>5's</th>
<th>6's</th>
<th>7's</th>
<th>8's</th>
<th>9's</th>
<th>10's</th>
</tr>
</thead>
<tbody>
<tr>
<td>0(\times 0=0)</td>
<td>1(\times 0=0)</td>
<td>2(\times 0=0)</td>
<td>3(\times 0=0)</td>
<td>4(\times 0=0)</td>
<td>5(\times 0=0)</td>
<td>6(\times 0=0)</td>
<td>7(\times 0=0)</td>
<td>8(\times 0=0)</td>
<td>9(\times 0=0)</td>
<td>10(\times 0=0)</td>
</tr>
<tr>
<td>0(\times 1=1)</td>
<td>1(\times 1=1)</td>
<td>2(\times 1=1)</td>
<td>3(\times 1=1)</td>
<td>4(\times 1=1)</td>
<td>5(\times 1=1)</td>
<td>6(\times 1=1)</td>
<td>7(\times 1=1)</td>
<td>8(\times 1=1)</td>
<td>9(\times 1=1)</td>
<td>10(\times 1=1)</td>
</tr>
<tr>
<td>0(\times 2=0)</td>
<td>1(\times 2=0)</td>
<td>2(\times 2=0)</td>
<td>3(\times 2=0)</td>
<td>4(\times 2=0)</td>
<td>5(\times 2=0)</td>
<td>6(\times 2=0)</td>
<td>7(\times 2=0)</td>
<td>8(\times 2=0)</td>
<td>9(\times 2=0)</td>
<td>10(\times 2=0)</td>
</tr>
<tr>
<td>0(\times 3=0)</td>
<td>1(\times 3=0)</td>
<td>2(\times 3=0)</td>
<td>3(\times 3=0)</td>
<td>4(\times 3=0)</td>
<td>5(\times 3=0)</td>
<td>6(\times 3=0)</td>
<td>7(\times 3=0)</td>
<td>8(\times 3=0)</td>
<td>9(\times 3=0)</td>
<td>10(\times 3=0)</td>
</tr>
<tr>
<td>0(\times 4=0)</td>
<td>1(\times 4=0)</td>
<td>2(\times 4=0)</td>
<td>3(\times 4=0)</td>
<td>4(\times 4=0)</td>
<td>5(\times 4=0)</td>
<td>6(\times 4=0)</td>
<td>7(\times 4=0)</td>
<td>8(\times 4=0)</td>
<td>9(\times 4=0)</td>
<td>10(\times 4=0)</td>
</tr>
<tr>
<td>0(\times 5=0)</td>
<td>1(\times 5=0)</td>
<td>2(\times 5=0)</td>
<td>3(\times 5=0)</td>
<td>4(\times 5=0)</td>
<td>5(\times 5=0)</td>
<td>6(\times 5=0)</td>
<td>7(\times 5=0)</td>
<td>8(\times 5=0)</td>
<td>9(\times 5=0)</td>
<td>10(\times 5=0)</td>
</tr>
<tr>
<td>0(\times 6=0)</td>
<td>1(\times 6=0)</td>
<td>2(\times 6=0)</td>
<td>3(\times 6=0)</td>
<td>4(\times 6=0)</td>
<td>5(\times 6=0)</td>
<td>6(\times 6=0)</td>
<td>7(\times 6=0)</td>
<td>8(\times 6=0)</td>
<td>9(\times 6=0)</td>
<td>10(\times 6=0)</td>
</tr>
<tr>
<td>0(\times 7=0)</td>
<td>1(\times 7=0)</td>
<td>2(\times 7=0)</td>
<td>3(\times 7=0)</td>
<td>4(\times 7=0)</td>
<td>5(\times 7=0)</td>
<td>6(\times 7=0)</td>
<td>7(\times 7=0)</td>
<td>8(\times 7=0)</td>
<td>9(\times 7=0)</td>
<td>10(\times 7=0)</td>
</tr>
<tr>
<td>0(\times 8=0)</td>
<td>1(\times 8=0)</td>
<td>2(\times 8=0)</td>
<td>3(\times 8=0)</td>
<td>4(\times 8=0)</td>
<td>5(\times 8=0)</td>
<td>6(\times 8=0)</td>
<td>7(\times 8=0)</td>
<td>8(\times 8=0)</td>
<td>9(\times 8=0)</td>
<td>10(\times 8=0)</td>
</tr>
<tr>
<td>0(\times 9=0)</td>
<td>1(\times 9=0)</td>
<td>2(\times 9=0)</td>
<td>3(\times 9=0)</td>
<td>4(\times 9=0)</td>
<td>5(\times 9=0)</td>
<td>6(\times 9=0)</td>
<td>7(\times 9=0)</td>
<td>8(\times 9=0)</td>
<td>9(\times 9=0)</td>
<td>10(\times 9=0)</td>
</tr>
<tr>
<td>0(\times 10=0)</td>
<td>1(\times 10=0)</td>
<td>2(\times 10=0)</td>
<td>3(\times 10=0)</td>
<td>4(\times 10=0)</td>
<td>5(\times 10=0)</td>
<td>6(\times 10=0)</td>
<td>7(\times 10=0)</td>
<td>8(\times 10=0)</td>
<td>9(\times 10=0)</td>
<td>10(\times 10=0)</td>
</tr>
</tbody>
</table>
Congratulations! I'm proud of YOU!

Check out these cool tricks for your 11's and 12's.
Find more Number Sense Tricks at www.lonestarlearning.com

Trick of 11 × one digit
Write 11's partner down twice.
11 × 1 = 11
11 × 2 = 22
11 × 3 = 33
11 × 4 = 44
11 × 5 = 55
11 × 6 = 66
11 × 7 = 77
11 × 8 = 88
11 × 9 = 99

Trick of 12 × one digit
Step 1: Double 12's partner.
Step 2: Write 12's partner.
Step 3: Regroup when needed.
Example:
12 × 1 = Double 1 → 2
Write 1 → 12
12 × 2 = Double 2 → 4
Write 2 → 24
12 × 3 = Double 3 → 6
Write 3 → 36
12 × 4 = Double 4 → 8
Write 4 → 48
12 × 5 = Double 5 → 10
Write 0 Regroup 1
Write 5 + 1 → 60
12 × 6 = Double 6 → 12
Write 2 Regroup 1
Write 6 + 1 → 72
12 × 7 = Double 7 → 14
Write 4 Regroup 1
Write 7 + 1 → 84
12 × 8 = Double 8 → 16
Write 6 Regroup 1
Write 8 + 1 → 96
12 × 9 = Double 9 → 18
Write 8 Regroup 1
Write 9 + 1 → 108

Trick of 11 × two digits
1. Write ones digit of 11's partner.
2. Add two digits.
3. Write tens digit of 11's partner.
*Remember HTAM! That's MATH spelled backwards.
(Say like SHAZAMI!)

We read from left to right, but we add, subtract, multiply and place commas working backwards from right to left.

Example: 11 × 11 = 1 2 1
Step 1: Write ones digit of 11's partner. 1
Step 2: Add two digits. 1 + 1 = 2
Step 3: Write tens digit. 1

Example: 11 × 12 = 1 3 2
Step 1: Write ones digit of 11's partner. 2
Step 2: Add two digits. 1 + 2 = 3
Step 3: Write tens digit. 1
Multiplication with Rectangles

Task Card 1
1. Use color tiles to make ALL the possible rectangles for the numbers 1, 6, 11, 16, and 21.
2. Cut rectangles out of grid paper.
3. As you finish, have one person at a time tape each rectangle on the chart.
4. Raise your hands when completely finished for extensions.
5. Be a super group member.

Task Card 2
1. Use color tiles to make ALL the possible rectangles for the numbers 2, 9, 17, 20, and 22.
2. Cut rectangles out of grid paper.
3. As you finish, have one person at a time tape each rectangle on the chart.
4. Raise your hands when completely finished for extensions.
5. Be a super group member.

Task Card 3
1. Use color tiles to make ALL the possible rectangles for the numbers 3, 8, 13, 18, and 25.
2. Cut rectangles out of grid paper.
3. As you finish, have one person at a time tape each rectangle on the chart.
4. Raise your hands when completely finished for extensions.
5. Be a super group member.

Task Card 4
1. Use color tiles to make ALL the possible rectangles for the numbers 4, 14, 19, and 24.
2. Cut rectangles out of grid paper.
3. As you finish, have one person at a time tape each rectangle on the chart.
4. Raise your hands when completely finished for extensions.
5. Be a super group member.

Task Card 5
1. Use color tiles to make ALL the possible rectangles for the numbers 5, 7, 10, 15, and 23.
2. Cut rectangles out of grid paper.
3. As you finish, have one person at a time tape each rectangle on the chart.
4. Raise your hands when completely finished for extensions.
5. Be a super group member.
1. List all the factors of each number on the line below the rectangles.

2. Color prime numbers yellow.
Prime numbers have only 2 factors: that number and 1.
(Example: 1 x 7 or 1,7)
*All other numbers have more than 2 factors. They are called composite numbers. *“Weird #1 is neither prime nor composite.

3. Color perfect squares red.
(Example: 2 x 2, 3 x 3, 4 x 4, ...)

© 2009 Lone Star Learning, Ltd.
Select an Advanced Multiplication Project to complete independently. Be prepared to present to the class.

A. Write and illustrate word problems using these guidelines. Each one should be on a single sheet of 8.5x11 paper.
 1. One step multiplication problem.
 2. Two step problem using multiplication only.
 3. Two step problem including multiplication and addition.
 4. Two step problem including multiplication and subtraction.
 5. Two step problem including multiplication and division.
 6. Two step problem including multiplication and measurement or geometry.

B. List five different ways / situations when you would use multiplication in real life. Illustrate.

C. Find the surface area of a Kleenex Box. Draw and label your findings. You may Google "Surface Area."

D. Make a Multiplication Game for the class to play.

E. Fill in blanks. Use a calculator to check. Show work.
 I am _____ years old. I am _____ months old. I am _____ days old. I am _____ hours old. I am _____ minutes old.

Name _______________________
A. Rap: Way up North in the Numerator –
 How many parts are we talking about?
 Way Down Deep in the Denominator_
 How many equal parts in all?

B. Definition: A fraction is a part of an object or group.
 It is less than whole #1.
 Hefty Plates with 36 & 48 scallops & Win at One
 (Dollar, Hour, Gallon)
 2. Groups: Our Class / Red & Yellow Counters / Worksheet

C. Linear Model: Number Line
 1. Place 0, ½, 1
 2. Place unit fractions
 3. Place fractions with a difference of 1 or close to 1
 4. Place fractions close to ½
 5. Place decimal fractions

D. Short Consistent Reviews
 1. Whole group / all TEKS – TEKSas Target Practice
 2. Individual - Square Scrambles
 a. Equivalent Fractions
 b. Picture Fraction with Name
 c. Improper with Mixed Numbers
 d. Decimal Fraction with Common Fraction

E. Fraction Without Distractions Mini Guide
 1. Definition
 2. Comparing Fractions - War
 3. Add & Subtract Like Denominators
 4. Multiply Fractions, Whole #s & Mixed #s
 5. Divide Fractions, Whole #s & Mixed #s
 6. Simplify Fractions

F. Probability
Fraction Rap

Way up **North** in the **Numerator** (Point up, high voice)
Way **Down** Deep in the **Denominator** (Point down, low voice)
Way up **North** in the **Numerator** (Point up, high voice)
Way **Down** Deep in the **Denominator** (Point down, low voice)

WHAT DOES IT MEAN ??

Way up **North** in the **Numerator** (Point up, high voice)
How many parts are we talking about?
Way **Down** Deep in the **Denominator** (Point down, low voice)
How many **equal** parts in all?

ONE MORE TIME!

Way up **North** in the **Numerator** (Point up, high voice)
How many parts are we talking about?
Way **Down** Deep in the **Denominator** (Point down, low voice)
How many **equal** parts in all?
No Wasted Time

from Beginning to End

Procedures

- **A. Hug! Greet! S-M-I-L-E**
- **B. Discipline/Attendance Cards**
- **C. Portfolio/Journals**
- **D. Red, Yellow, Green Cups**
- **E. Call backs:**
 1. 1,2,3, Eyes on me!
 2. 2, Eyes on you!
 3. Chit Chat! Stop That!
 4. Meanwhile...
 Back at the ranch!
- **F. Stopwatch for Tasks, dismiss, change groups.**
- **G. WARM UPS!**
 1. Words’ Worth
 2. Days of School
 3. Math
 4. Reading
 5. Language
 6. Science

Traveling / Waiting

- Be aware! Plan ahead!
- Library, Lunch, Picture Day, Changing Classes...
- **A. Vocabulary Review**
- **B. Multiple Mental Math**
- **C. Rhymes:**
 - 6 x 4 is 24, 6 x 6 is 36
 - 6 x 8 is 48, 8 x 8 is 64
 - That is all and say, “No More!”
- **D. Skip/Buzz**
- **E. Square Scramble Race**
- **F. Show Me!**
 - Trick of 9’s
 - Trick of 6’s
 - Ten more, one hundred more, one hundred less, etc.

Unexpected Visitors

- Parent, Principal, Teacher, Student …
- **A. Warm Up or Lesson, CONTINUE ON!!**
- **B. Smart Choices**
- **C. Write definitions synonyms, antonyms …**
- **D. Scavenger Hunt**
- **E. KWL**
- **F. Mystery to Mastery**

Finishing Early

- Math and Quiet!! Center, Shelf, Treasure Chest, Tub… (Talk! = Walk!)
- **A. Quiet Dice for Make the Largest Number, Probability Game, etc.**
- **B. Place Value Folders, Square Scrambles, Guess and Check, Flash Cards, Win at One**
- **C. Geometry Challenges with manipulatives**
- **D. Going Beyond Lessons**
- **E. Concentration with vocabulary cards and definitions/factors and products**

Math Mini-Museum

Math & Quiet Center Stations

Century Club

Math Made Easy

Parent Night

Every Child! Every Chance! Every Day!
Multiplication of Fractions

The problem $\frac{1}{6} \times \frac{1}{2}$ requires students to find the value of one of six equal parts of one half. With pattern blocks, this can be thought of as finding the fractional value, in terms of the double hexagon, of one sixth of the yellow piece.

To solve these problems:
1.) Show the second fraction as part of the double hexagon. ($\frac{1}{2}$)
2.) Find the fractional part of the second fraction indicated by the first fraction. ($\frac{1}{6}$ of $\frac{1}{2}$)
3.) Use the fractional part of the second fraction indicated by the first fraction and rename the pattern block(s) as a fractional part of the double hexagon ($\frac{1}{6}$ of $\frac{1}{2}$ is $\frac{1}{12}$)

Use pattern blocks to solve the multiplication problems listed below

1.) $\frac{1}{6} \times \frac{1}{2}$
2.) $\frac{1}{2} \times \frac{1}{2}$
3.) $\frac{1}{3} \times \frac{1}{4}$
4.) $\frac{1}{4} \times \frac{2}{6}$
5.) $\frac{2}{3} \times \frac{1}{4}$
6.) $\frac{3}{4} \times \frac{2}{6}$
Division of Fractions

The problem \(\frac{1}{2} \div \frac{1}{6} \) means “in one half, there are how many sixths?” With pattern blocks, this can be thought of as “dividing” the yellow piece into blue pieces.

To solve these problems:
1.) Show the first fraction
2.) Find how many of the second fraction are needed to exactly cover the first one;
3.) The number of pieces needed tells you the answer to the problem.

Use pattern blocks to solve the division problems listed below.

A.) Dividing Fractions by Fractions

1.) \(\frac{1}{2} \div \frac{1}{6} \)
2.) \(\frac{1}{6} \div \frac{1}{12} \)
3.) \(\frac{2}{4} \div \frac{1}{12} \)
4.) \(\frac{9}{12} \div \frac{1}{4} \)

B.) Dividing Mixed Numbers by Fractions

1.) \(1 \frac{1}{2} \div \frac{1}{4} \)
2.) \(1 \frac{1}{6} \div \frac{1}{12} \)
3.) \(1 \frac{2}{12} \div \frac{1}{6} \)
A common fraction is a part of an object or group. It is less than whole number 1.

1. Draw pictures of fractions in congruent shapes
2. Find LCD - Least Common (same) Denominator
 - Plan A: Try largest denominator
 - Plan B: Try multiples of largest denominator to find the least common (same) in each list

3. What's the 5th Grade Battle Cry?
 Cross-Multiply!

1. Find least common denominator (See #2, Plan A on p. 3)
2. Add numerators
3. Denominators stay the same

1. Find least common denominator (See #2, Plan B on p. 3)
2. Subtract numerators
3. Denominators stay the same

1. Invert the second fraction
2. Change the ÷ to ×
3. Multiply (See p. 6)

To Compare Fractions
1. Draw pictures of fractions in congruent shapes
2. Find LCD - Least Common (same) Denominator
 - Plan A: Try largest denominator
 - Plan B: Try multiples of largest denominator to find the least common (same) in each list
3. What's the 5th Grade Battle Cry?
 Cross-Multiply!

To Add Like Denominators
1. Add numerators
2. Denominators stay the same

To Subtract Like Denominators
1. Subtract numerators
2. Denominators stay the same

To Multiply Like Denominators
1. Multiply numerators
2. Multiply denominators
3. Use quality check
4. Say “Whole number times denominator plus numerator equals numerator”
5. Denominator stays the same

Multiply Fractions
1. Multiply a Fraction and a Whole Number
2. Multiply a Fraction and a Mixed Number

Add Unlike Denominators
1. Find least common denominator (See #2, Plan A on p. 3)
2. Add numerators
3. Denominators stay the same

Subtract Unlike Denominators
1. Find least common denominator (See #2, Plan B on p. 3)
2. Subtract numerators
3. Denominators stay the same

Reciprocals
Rock!

A common fraction is a part of an object or group. It is less than whole number 1.
Discuss all math terms & concepts illustrated by blank side of paper.

1. Discuss all math terms & concepts illustrated by blank side of paper.
 - rectangle
 - quadrilateral
 - parallelogram
 - right angle
 - parallel lines
 - line segment
 - plane
 - area of a rectangle
 - polygon

2. Discuss all math terms & concepts illustrated by circle side of paper.
 - circle
 - area of circle
 - circumference of circle
 - interior of circle
 - exterior of circle

3. Cut out circle & discard scraps.
 - lines of symmetry

4. Fold the disk in half & unfold.
 - diameter
 - semicircle

5. Fold the disk in half matching the endpoints of the diameter together & unfold.
 - lines of symmetry
 - radius
 - quadrant
 - center of circle
 - central angle

6. Mark a point on the circle at the end of one of the radii formed in step 5. Fold the point to the center using one endpoint of the chord formed in step 6 as an endpoint for a new chord & unfold.
 - point
 - chord
 - sector

7. Fold another point on the circle to the center using one endpoint of the chord formed in step 6 as an endpoint for a new chord & unfold.
 - inscribed angle

8. Fold the remaining arc of the circle to the center.
 - triangle
 - vertex
 - equilateral triangle
 - isosceles triangle
 - scalene triangle
 - equilateral triangle
 - sum of the measures of angles
 - base of a triangle
 - acute angle
 - obtuse angle
 - area of a triangle
 - triangle inscribed in a circle

9. Fold the triangle on one of its lines of symmetry. Unfold.

10. Fold to find the midpoint of one of the sides of the triangle. Fold the opposite vertex to this midpoint.
 - midpoint of a line segment
 - trapezoid
 - isosceles trapezoid
 - area of trapezoid

11. Notice that the trapezoid consists of 3 congruent triangles. Fold one of the triangles over the top of the middle triangle.
 - rhombus
 - congruent triangles
 - area of rhombus

12. Fold the rhombus on a line of symmetry & discuss the area of this new triangle & the relationship to the original triangle.
 - similar

13. Open up the 3 folded over triangles until their corners meet forming a 3-D figure.
 - polyhedron
 - tetrahedron
 - pyramid
 - surface area

14. Open the large equilateral triangle made in step 8. Fold each of the vertices to the center of the circle.
 - irregular pentagon
 - hexagon
 - regular polygon
 - sum of measures of interior angles of a polygon
 - area of irregular pentagon
 - regular hexagon

15. Bring the small triangles in the middle of the hexagon, formed in step 13, so that they are on top of each other.
 - truncated tetrahedron
 - surface area

16. Tape the top of your truncated tetrahedra. For a “Going Beyond Project,” make 19 more truncated tetrahedras and tape them together to display an icosahedron, the Platonic Solid which is also the form the AIDS virus takes, as well as, many other well known viruses. Tape five of the truncated tetrahedra together to form a “top,” five to form a “bottom,” and ten to form a “band” for the center. Then tape the top and bottom to the center band. This may motivate some to research independently!
 - icosahedron
8,502,749,136

Underline the number just after “nearest.”

On that # your thinking must be clearest.

O’s go under everything right.

On the left you just see the same sight.

Look behind that #; it goes up or stays the same.

“Hefty” or “Wimpy” is the name of the game.
DON'T just say a word! They may mispronounce it and have no idea what it means!
DON'T just give matching vocabulary tests to memorize! Use active participation!
DO use Marzano's 6 step plan for vocabulary acquisition:
1. Provide a description, explanation, or example in their own words
2. Ask students to restate the description, explanation, or example in their own words.
3. Ask students to construct a picture, symbol, or graphic representing the term.
4. Periodically engage students in activities that help them add to their knowledge of terms in their notebooks.
5. Frequently ask students to discuss the terms with one another. (Tell a Friend! Partner Teach!)
6. Regularly involve students in games that allow them to play with terms.

And, Let's say it again- a little elaboration / a few more ideas / examples
1. LOVE teaching vocabulary - and MATH! If you don't, fake it!
2. Use a journal when possible. TEACH the words using visuals - your cards!
3. Have a class count syllables by clapping, stomping, snapping, etc.
4. Write the word.
5. Spell as you write.
6. Tell a partner what it means.
7. Draw a sketch of the word.
8. WRITE the definition.
9. Use in a sentence.
10. Play games when possible!
 a. Mystery to Mastery
 b. A Minute to Win it
 c. Word Walks
 d. Read My Mind
 e. Rap it!
 f. Vocabulary Parade / Newscast
 g. Square Scrambles
 h. In the Spotlight
 i. Baseball
 j. Cover Up! Uncover!
 k. Race for a Hundred, Dollar, Hour, Whole
Metric Conversion Chart

<table>
<thead>
<tr>
<th>Grams</th>
<th>Liters</th>
<th>Meters</th>
</tr>
</thead>
<tbody>
<tr>
<td>King</td>
<td>Henry</td>
<td>Died</td>
</tr>
<tr>
<td>kilo</td>
<td>hecto</td>
<td>deca</td>
</tr>
<tr>
<td>G, L, M</td>
<td>deci</td>
<td>centi</td>
</tr>
</tbody>
</table>

Moving Right - Add 0’s or move decimal right. Multiply!

Moving Left - Take away 0’s or move decimal left. Divide!
NO WASTED SPACE!

DAYS OF SCHOOL

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Dilatator
Greater

\[\frac{7}{8} > \frac{1}{2} \]

Little Less Than Mouse

\[12 < 23 \]

Cover Up

\[\frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \frac{1}{32} \]

Uncover

\[\frac{1}{3}, \frac{1}{6}, \frac{1}{12} \]

Win at One™

4 \times 4

Humor

I love MATH!

1/3 = \frac{5}{3}

GRAPHIC ORGANIZERS

Visual Vocabulary

TUG O'WAR

5 and above, give it a shove! 4 and below, stay low!

Line up decimals like 7 + 1.2 + .42 =

buttons on a shirt!

If the decimal's not in sight, it's on the right.

0.70

1.20

+ 0.42

MNEMONICS D \div M \times S - BD:

Meet me at 2:35 at the 7-11 on 13 St.

5 TOMATOES -
To access full page downloads, scan the QR Code or visit www.lonestarlearning.com