Launch, Explore, Summarize:
Strategies to Implement a Problem-Based Lesson
Amy McQueen
K-12 Mathematics Specialist
David Douglas School District
Portland, OR
@atmcqueen

Steve Vancil
K-12 Mathematics Specialist
David Douglas School District
Portland, OR
@bagger_vancil
<table>
<thead>
<tr>
<th>ENROLLMENT AND DEMOGRAPHICS</th>
<th>Grades K - 3</th>
<th>Grades 4 - 5</th>
<th>Grades 6 - 8</th>
<th>Grades 9 - 12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Enrollment</td>
<td>3,238</td>
<td>1,696</td>
<td>2,358</td>
<td>3,036</td>
</tr>
<tr>
<td>Regular Attenders</td>
<td>84.2%</td>
<td>86.2%</td>
<td>83.6%</td>
<td>71.3%</td>
</tr>
<tr>
<td>Economically Disadvantaged</td>
<td>77%</td>
<td>77%</td>
<td>75%</td>
<td>74%</td>
</tr>
<tr>
<td>Students with Disabilities</td>
<td>11%</td>
<td>11%</td>
<td>13%</td>
<td>11%</td>
</tr>
<tr>
<td>Ever English Learners</td>
<td>39%</td>
<td>43%</td>
<td>47%</td>
<td>48%</td>
</tr>
<tr>
<td>Different Languages Spoken</td>
<td>43</td>
<td>41</td>
<td>41</td>
<td>45</td>
</tr>
<tr>
<td>Mobile Students</td>
<td>16.3%</td>
<td>13.8%</td>
<td>15.3%</td>
<td>15.2%</td>
</tr>
</tbody>
</table>
1. Beginning and closing activity to facilitate entry and summary of work.
2. Working towards a mathematical goal.
3. Eliciting and responding to students’ mathematical contributions.
4. Representing student thinking verbally and on the board.
5. Orienting students to one another’s ideas and to the mathematics.
6. Positioning students as competent mathematical thinkers.
7. Assessing student understanding.
8. Managing time, space, voice, and manner.

1. Beginning and closing activity to facilitate entry and summary of work.
2. Working towards a mathematical goal.
3. Eliciting and responding to students’ mathematical contributions.
4. Representing student thinking verbally and on the board.
5. Orienting students to one another’s ideas and to the mathematics.
6. Positioning students as competent mathematical thinkers.
7. Assessing student understanding.
8. Managing time, space, voice, and manner.

LAUNCH
Launching Complex Tasks

- Read the article.
- What is the purpose of an effective Launch?
- What are the four crucial aspects of an effective Launch?
THREE READS & PROBLEM STEM

WAYNE BUND, 1ST GRADE
THREE ACT TASK &
I NOTICE, I WONDER

CARLA MONTOYA, 5TH GRADE
Structures for a Launch

- I notice, I wonder  
  (Annie Fetter & Max Ray-Riek)
- Three Reads  
  (Kelemanik & Lucenta)
- Problem Stem  
  (Phil Daro or Tracy Zager)
- Three-Act Tasks – Act 1  
  (Dan Meyer or Graham Fletcher)
- Which One Doesn’t Belong  
  (Christopher Danielson)
- Math/Number/Pattern Talks or Number Strings  
  (Cathy Fosnot or Sherry Parrish or Ruth Parker or Cathy Humphreys)
- Other?

https://sites.google.com/pdx.edu/eamml
Navigate to the Lesson Study Tab
TURN AND TALK

How does the launch support equity and increase access to the mathematics task?
1. Beginning and closing activity to facilitate entry and summary of work.
2. Working towards a mathematical goal.
3. Eliciting and responding to students’ mathematical contributions.
4. Representing student thinking verbally and on the board.
5. Orienting students to one another’s ideas and to the mathematics.
6. Positioning students as competent mathematical thinkers.
7. Assessing student understanding.
8. Managing time, space, voice, and manner.

EXPLORE
3 KEY FEATURES OF GROUPWORK

1. Worthwhile task
2. Authority delegated to students
3. Members need one another to complete the task

THINK, WRITE, SHARE

• What are traditional classroom norms?
• How would the norms for groupwork differ from traditional classroom norms?
• What behaviors would students need to learn to participate effectively in groupwork?
<table>
<thead>
<tr>
<th>Norms for Groupwork</th>
<th>Behaviors</th>
<th>Skillbuilders</th>
</tr>
</thead>
</table>
| Responding to the needs of the group | • Pay attention to what other group members need.  
• No one is done until everyone is done. | Broken Circles  
Broken Squares |
| Learning to help, ask questions, and explain | • Discuss and decide.  
• Give reasons for your suggestions.  
• Explain by telling how.  
• Everyone helps.  
• Help others do things for themselves.  
• Find out what others think.  
• Tell why. | Rainbow Logic  
Master Designer  
Four-Stage Rocket  
Guess My Rule |
<table>
<thead>
<tr>
<th>Norms for Groupwork</th>
<th>Behaviors</th>
<th>Skillbuilders</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Everyone gives information.</td>
<td>Shipwreck</td>
</tr>
<tr>
<td></td>
<td>• Make a plan.</td>
<td>Space Ship</td>
</tr>
<tr>
<td>Preventing dominance</td>
<td>• Agree on strategies.</td>
<td>Alligator River</td>
</tr>
<tr>
<td></td>
<td>• Describe accurately and in detail.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Say your own ideas.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Listen to others; give everyone a chance to talk.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Ask others for their ideas.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Give reasons for your ideas.</td>
<td></td>
</tr>
</tbody>
</table>
DETERMINING GROUPS

CARLA MONTOYA, 5TH GRADE
TURN AND TALK

How does the Explore support equity and increase access to the mathematics task?
“Groupwork is…a superior technique for conceptual learning, for creative problem solving, and for developing academic language proficiency. Socially, it will improve intergroup relations by increasing trust and friendliness… Most important, groupwork provides greater access to the learning tasks to more students in the classroom with a wide range of academic skills and linguistic proficiency. Productive groupwork increases and deepens opportunities to learn content and develop language and thus has the potential to build equitable classrooms.”

How Expert Discussion Facilitation is Characterized

- **Skillful improvisation...**
  - Diagnose students’ thinking on the fly
  - Fashion responses that guide students to evaluate each others’ thinking, and promote building of mathematical content over time.

How Expert Discussion Facilitation is Characterized

...requires deep knowledge of:

- Relevant mathematical content
- Student thinking about it and how to diagnose it.
- Subtle pedagogical moves
- How to rapidly apply all of this in specific circumstances

Some Sources of Challenge in Facilitating Discussions

- Lack of familiarity
- Reduces teachers’ perceived level of control
- Requires complex, split-second decisions
- Requires flexible, deep, and interconnected knowledge of content, pedagogy, and students.
Five Practices for Orchestrating Productive Mathematics Discussions

O1 Identifying learning goal
O2 Selecting a mathematical task
1. Anticipating (e.g., Fernandez & Yoshida, 2004; Schoenfeld, 1998)
2. Monitoring (e.g., Hodge & Cobb, 2003; Nelson, 2001; Shifter, 2001)
3. Selecting (Lampert, 2001; Stigler & Hiebert, 1999)
4. Sequencing (Schoenfeld, 1998)
5. Connecting (e.g., Ball, 2001; Brendehur & Frykholm, 2000)

Purpose of the Five+ Practices

To make student-centered instruction more manageable by moderating the degree of improvisation required by the teachers and during a discussion.

You fill 8 drinking glasses \( \frac{3}{4} \) of the way full. How many of those glasses could you have filled to the top instead?
<table>
<thead>
<tr>
<th>Strategy</th>
<th>Work of Specific Students</th>
<th>Sequence</th>
<th>Compare</th>
<th>Questions to Assess</th>
<th>Questions to Advance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Questioning Type</td>
<td>Description</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------------------------------------------</td>
<td>-----------------------------------------------------------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gathering Information</td>
<td>Students recall facts, definitions, or procedures</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Probing Thinking</td>
<td>Students explain, elaborate, or clarify their thinking, including articulating the steps in solution methods or the completion of a task.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Making the mathematics visible</td>
<td>Students discuss mathematical structures and make connections among mathematical ideas and relationships.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Encouraging reflection and justification</td>
<td>Students reveal deeper understanding of their reasoning and actions making an argument for the validity of their work.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Having a hard time determining what questions to ask?

https://sites.google.com/pdx.edu/eamml
Navigate to the Lesson Study Tab
You fill 8 drinking glasses $\frac{3}{4}$ of the way full. How many of those glasses could you have filled to the top instead?
SUMMARIZE

SARAH WOLFGANG, 4TH GRADE
TURN AND TALK
How does the Summarize support equity and increase access to the mathematics task?
1. Beginning and closing activity to facilitate entry and summary of work.
2. Working towards a mathematical goal.
3. Eliciting and responding to students’ mathematical contributions.
4. Representing student thinking verbally and on the board.
5. Orienting students to one another’s ideas and to the mathematics.
6. Positioning students as competent mathematical thinkers.
7. Assessing student understanding.
8. Managing time, space, voice, and manner.

Thanks!

ANY QUESTIONS?

You can find us at:

Amy McQueen  
@atmcqueen  
amy_mcqueen@ddsd40.org

Steve Vancil  
@bagger_vancil  
steve_vancil@ddsd40.org