Developing and Extending the Concept of a Radian NCTM 2016 Annual Meeting & Exposition April 14, 2016

Roger Wolbert: rwolbert@edinboro.edu Erin Moss: emoss@millersville.edu

Today's outline and activity

- 1. The 8 Mathematical Teaching Practices (see back)
- 2. Pedagogical considerations when teaching about the radian.
- 3. Student Activity: How Much Is a Radian?
 - **Steps 1-4:** Provided by the presenters to the whole group
 - **Step 5:** Find the center of your circle.
 - **Step 6:** Use a straightedge and draw a radius. Then measure your radius using string.
 - **Step 7:** Using the length of the radius (the string length), mark off the arc length that is equal to the radius.
 - **Step 8:** Draw a second radius from your marking to the circle's center to make a sector. Then cut out the sector that represents your radian.
 - **Step 9:** Answer the following questions. Come to a group consensus to support your answer using all six sectors in your group.
 - a. Do larger circles correspond to larger angle measurements when following the procedure we used for determining an angle? Provide a reason for your response.
 - b. Define a radian in your own words.
 - c. How are radians related to degrees?
- 4. Reflection (The presenters will guide you through this part)
 - a. What other math topics does this lesson naturally lead to?
 - b. How could this lesson on the radian be extended?
 - c. What pedagogical considerations would you need for those extensions?
 - d. Where was (MTP see back) used in the lesson?
 - e. How could the lesson be modified to incorporate even more MTPs?

Planning and Reflection Guide for Any Math Lesson

Mathematics Teaching Practice	Where was MTP in the lesson?	Plans for Improvement
Establish mathematics goals to focus learning		
Implement tasks that promote reasoning and problem solving		
Use and connect mathematical representations		
Facilitate meaningful mathematical discourse		
Pose purposeful questions		
Build procedural fluency from conceptual understanding		
Support productive struggle in learning mathematics		
Elicit and use evidence of student thinking		