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“It won’t work every time”: The refutations of pre-service elementary teachers

Introduction

In today’s reform mathematics classroom, teachers are to support students in both
generating mathematical conjectures and refuting those that are false through the use of
counterexamples (Common Core State Standards Initiative, 2010; Lampert, 1990; Stylianides &
Ball, 2008). Rather than follow a series of rules provided to them by their teachers, students
today are to devise their own conjectures that will guide them through their mathematical work.
Many student conjectures, however, while sound when applied to particular cases, are certain not
to generalize (Stafylidou & Vosniadou, 2004). As a result, teachers today must be capable of
demonstrating for students why their conjectures might fail to generalize. One response to
students’ false conjectures is a thoughtful counterexample.

Although studies show that experienced teachers have greater skill in generating
counterexamples than their less experienced pre-service counterparts (Peled & Zaslavsky, 1997;
Zaslavsky & Peled, 1996), not all experienced teachers display proficiency in this realm. As
such, it is far from guaranteed that teachers will develop the skill in generating counterexamples
that they now require merely through on-the-job experience. One approach to ensuring teachers
possess such skill is through teacher education. However, while several studies have examined
the refutations of pre-service teachers at the secondary level (Peled & Zaslavsky, 1997;
Zaslavsky & Peled, 1996), few have been conducted at the elementary level, leaving the

elementary pre-service teacher educator with little guidance in this area.



Accordingly, this study examined pre-service elementary teachers’ refutations of students’
false conjectures for the process of comparing fractions. The comparison of fractions was chosen
as, in the past, students have typically been told to convert fractions into equivalents with
common denominators in order to compare them, whereas today, students are encouraged to
devise their own conjectures when engaged in this process. By consequence, teachers are likely
to not only encounter a range of student conjectures when teaching the comparison of fractions,

but must be able to generate effective counterexamples when teaching such a unit, as well.

Theoretical Perspectives
Pedagogical Power of Counterexamples

In the math education literature, scholars have argued that two counterexamples that are
both mathematically correct may differ in terms of their pedagogical power. While a
mathematician may regard two counterexamples as roughly equivalent in a mathematical sense,
an educator may identify differences between two such counterexamples that render one more
helpful in supporting student understanding.

Almost two decades ago, Peled and Zaslavsky (1997) examined the knowledge of
refutation displayed by both in-service and pre-service secondary teachers. In their study,
teachers were presented with the task of refuting false student conjectures through the use of
counterexamples (Peled & Zaslavksy, 1997). For instance, one false conjecture presented to
participants in this study read as follows: two rectangles having congruent diagonals are

congruent. The counterexamples generated by participants to refute this and other conjectures



were classified as either adequate (i.e., successful in refuting the conjecture) or inadequate.
Adequate counterexamples were further classified as specific, semi-general, or general.
Specific counterexamples succeeded in refuting the incorrect student conjecture, but
failed to hint at some procedure to follow in generating many more such counterexamples (see
Table 1). Semi-general counterexamples, on the other hand, not only refuted the false student
conjecture, but hinted at some procedure for generating other similar such counterexamples, as
well. Finally, general counterexamples succeeded not only in refuting the false student
conjecture, but also suggested a procedure to follow in generating an infinite number of

counterexamples to refute the conjecture.

Table 1
Specific, semi-general, and general counterexamples for the rectangles conjecture

Rectangles conjecture
“Two rectangles having congruent diagonals are congruent”

Specific Semi-general General
counterexample counterexample counterexample

Peled and Zaslavsky argued that counterexamples should serve two purposes: 1) to
demonstrate why a claim is false and 2) to suggest a procedure for generating many more such
counterexamples. Counterexamples that hint at a procedure to follow in generating many more
counterexamples, they argue, are better able to explain why a conjecture is false, and therefore,

have greater pedagogical power than those that fail to do so. In failing to suggest a procedure for



generating many counterexamples, a specific counterexample, while correct mathematically, has
less pedagogical power than either semi-general or general counterexamples. While a specific
counterexample can successfully refute a false conjecture, it may leave a student with the
impression that such a counterexample represents a single “pathological case” (p. 51) rather than
an instance of a group of cases. If presented, however, with a general counterexample, a student
is faced with a wealth of disconfirming evidence refuting his/her conjecture and is, therefore,

more likely to abandon his/her flawed reasoning.

Accessibility of Counterexamples

Mathematical complexity. The framework of Peled and Zaslavsky has done much to
further the field’s understanding of how two counterexamples equivalent mathematically possess
different pedagogical power. However, this framework, while incredibly useful, fails to capture a
number of additional pedagogical distinctions between two given counterexamples.

In recent years, scholars in another area have devoted significant attention to exploring
and unpacking a unique form of mathematical knowledge required by those who teach the
subject to students, what is commonly referred to as mathematical knowledge for teaching (Hill,
Rowan, & Ball, 2005). A key component of this unique mathematical knowledge is skill with
exemplification, specifically, the selection of appropriate examples for the teaching of a given
mathematical concept. According to Ball, Thames, and Phelps (2008), the teaching of
mathematics involves, among other things, “considering what numbers are strategic to use in an
example” (p. 398). To illustrate their point, Ball et. al provide the example of the subtraction

problem, 307-168, and describe how teachers skilled with exemplification would not select



numbers like those in this particular problem haphazardly when teaching subtraction to students.
Such teachers would acknowledge that this particular subtraction problem requires two
regroupings, thereby making the problem less than ideal for an initial discussion of multi-digit
subtraction. Slight modifications to this particular subtraction problem, however, could preclude
the need for regrouping and thereby render the problem both less mathematically complex and
more accessible to children. Perhaps a teacher might choose to save the problem 307-168 until
many days into a unit on multi-digit subtraction, starting such a unit instead with simpler
problems like 368-107, which, unlike 307-168, requires no regrouping.

To a layperson, the problems 307-168 and 368-107 may appear roughly equivalent, yet to
a teacher skilled in the realm of exemplification, these problems present vastly different demands
on a young learner of mathematics. The intentional and thoughtful selection of numbers is likely
relevant not only in the domain of arithmetic, however, but when generating counterexamples, as
well.

Mirroring of logic employed in comprehending both confirming- and counter-
examples. In addition to mathematical complexity, counterexamples are likely to vary along
other dimensions, as well. Studies of students’ responses to refutations of their false conjectures
demonstrate that, when faced with conflicting evidence, students may choose to amend, rather
than abandon, their faulty conjectures. Zazkis and Chernoff (2008) shared a revealing classroom
vignette from their work with a group of pre-service elementary teachers revolving around the
comparison of fractions. In this vignette, one pre-service teacher named Tanya described how,
when comparing two fractions, one need only find the difference between each fraction’s

numerator and denominator, as the fraction with the larger such difference will always be



smaller. Tanya accompanied her description of this procedure with the confirming case of 2/7 &
5/7. As Tanya’s teacher educator recognized that this procedure would not result in the correct
identification of the larger of two fractions in every fraction comparison, she proceeded to
present Tanya with a series of counterexamples. While correct mathematically, several of these
counterexamples failed to support Tanya in abandoning her faulty conjecture.

Tanya was first presented with the counterexample 1/2 & 2/4, to which she responded,
“they never give you fractions that are the same to compare” (p. 204), likely referring to the fact
that 1/2 & 2/4 are equivalent fractions. Realizing that this counterexample had failed to lead
Tanya to relinquish her faulty conjecture, Tanya’s teacher educator next presented Tanya with
another counterexample, 5/6 & 6/7. Again, Tanya displayed resistance when faced with this
disconfirming evidence, noting that her conjecture wouldn’t apply “if the difference is the
same” (p. 204).

The counterexamples provided by Tanya’s teacher educator appeared not to mirror
Tanya’s confirming case well enough to lead her to abandon her faulty conjecture. Unlike the
teacher educator’s counterexample of 1/2 & 2/4, Tanya’s confirming case, 2/7 & 5/7, involved
two fractions that represented different, not equivalent, quantities. Furthermore, unlike the
teacher educator’s other counterexample, 5/6 & 6/7, Tanya’s confirming case involved two
fractions missing a different number of pieces, not the same number. The logic employed by
Tanya in comparing fractions was likely that, “in any fraction comparison, the fraction missing
more pieces is the smaller of the two fractions.” The first counterexample presented by Tanya’s
teacher educator, 1/2 and 2/4, did not mirror Tanya’s logic very well, as the counterexample

consisted of two fractions that, unlike her confirming case, were not different in size, but were



the same size. The second counterexample of 5/6 and 6/7, on the other hand, also failed to mirror
Tanya’s logic, as, unlike her confirming case, 2/7 & 5/7, this counterexample consisted of a pair
of fractions missing the same number of pieces.

Mapping of confirming examples and counterexamples. As the vignette involving
Tanya continues, Zazkis and Chernoff describe how Tanya was next presented with a third
correct counterexample, 9/10 & 91/100. When faced with this particular counterexample, Tanya
again resisted, choosing to amend her conjecture and arguing that it still worked, simply not with
numbers that were “ridiculously large” (p. 204). According to Zazkis and Chernoff, the “relative
size of numbers” in counterexamples like 9/10 & 91/100 compared to those comprising the
fractions in Tanya’s confirming case, 2/7 & 5/7, likely played little role in uprooting Tanya’s
faulty reasoning. And yet, Tanya’s emphatic disregard for the counterexample involving
“ridiculously large numbers” suggests that the disparity between the numbers comprising the
confirming and disconfirming cases could very well have played a role in her initial dismissal of
this third counterexample. Presumably, what Tanya was referring to with the phrase “ridiculously
large” were the double-digit numerator and triple-digit denominator of the fraction 91/100, which
bared little resemblance to either of the fractions comprising Tanya’s confirming case, 2/7 & 5/7.
Similar to Tanya’s confirming example, on the other hand, were still more counterexamples
presented to her after 9/10 & 91/100 like 2/3 & 5/7 and 3/4 & 8/11, which “appeared to the
students as more convincing than the originally suggested fractions of 9/10 and 91/100” (p. 205).
While it is not entirely clear why these particular fractions were more convincing, it would not

be implausible to contend that the convincing power of these counterexamples stemmed from



them being comprised of fractions that, like Tanya’s confirming example, consisted of
reasonable, rather than ridiculous, numbers.
This study addressed three research questions:
1. What is the pedagogical power of counterexamples generated by pre-service
elementary teachers in refuting students’ false conjectures?
2. How do these counterexamples vary in their potential accessibility to a young

learner of mathematics?

Method

Setting and Participants

For this study, 17 pre-service teachers from an elementary math-methods course in
number and operation were recruited to take part in semi-structured interviews (Ginsburg,
Jacobs, & Lopez, 1998). This methods course was the first of two taken by these pre-service
teachers and was taken during the second year of participants’ education program, prior to any
experience teaching in a field placement. In this course, pre-service teachers spent considerable
time exploring both operations on fractions and fraction equivalency concepts. Additionally, pre-
service teachers engaged in in-depth explorations of pictorial models for the multiplication of
fractions, as well as placed fractional numbers on number lines.

Participants were recruited from multiple sections of the course, each taught by a
different instructor, in order to increase the likelihood of obtaining a diverse sample. Teachers
recruited from one section of the course (n=4) participated in pilot interviews, which resulted in

several revisions to the interview protocol. Students from a second (n=10) and third section



(n=7) were later interviewed using a revised version of the interview protocol; the interviews of
these 17 pre-service teachers were the focus of this particular paper. Typical of pre-service

elementary teachers, the teachers in our sample were about 20-21 years of age and

predominantly female (16/17=94%).

Data Collection

The 17 pre-service elementary teachers in this study took part in hour-long structured
interviews. Interviews were conducted after the course from which participants were recruited
had completed and grades for the course had been submitted, as it was feared that conducting the
interviews while the course was still in session may have led participants to worry that their
responses might adversely affect their grades. In the interviews, each pre-service teacher was
presented with three measures, the first being the focus of this paper. The first measure (see
Figure 1), henceforth referred to as “the fractions measure,” was borrowed for use from the
Content Knowledge for Teaching Mathematics (CKT-M), an assessment tool designed as part of
the Measures for Effective Teaching (MET) initiative. For the fractions measure, pre-service
teachers were asked to determine if each of five student explanations for why 7/8 is greater than
6/9 were mathematically valid or not. The mathematical explanations provided by students A and
C in this measure were the only ones that lacked mathematical validity and were thus ideal for
investigating pre-service teachers’ refutations.

During each interview, the interviewer first read through the measure then provided the
pre-service teacher 4 minutes to think about and respond to the measure independently. After 4

minutes had elapsed, pre-service teachers were given 14 minutes to share their thinking in



response to the measure. During this 14-minute time period, pre-service teachers were
encouraged to discuss each of the student solutions presented in the measure in whatever order
they wanted and were posed a series of probing questions intended to uncover more about their
reasoning. All pre-service teachers who indicated that student C’s explanation lacked
mathematical validity were asked to generate a counterexample to refute the student’s conjecture.
In some cases, pre-service teachers’ discussion of student A’s explanation involved mention of
counterexamples, although, due to time limitations, teachers were not explicitly asked to refute
this faulty explanation.

Pre-service teachers’ mathematical work and discussion of the fractions measure were
captured by a video camera placed directly above the teachers’ designated workspace. In
addition, the interviewer took detailed field notes as pre-service teachers shared their responses

and related reasoning.

Data Analysis

A first pass through the video-recorded interviews was conducted to gauge the
pedagogical power of the counterexamples provided by pre-service teachers. While this first pass
revealed distinctions in the pedagogical power of pre-service teachers’ counterexamples, as will
be discussed below, additional distinctions not captured using the framework borrowed from
Peled and Zaslavksy (1997) were identified, resulting in additional analysis that sought to
capture further distinctions regarding the accessibility of counterexamples.

Coding-scheme development. The framework of Peled and Zaslavsky (1997) was

operationalized for use in coding the counterexamples provided by pre-service teachers in the



Mr. Lee asked his students to compare % and g All of his students correctly answered that % is
greater than g, but they offered a variety of responses when asked to explain their reasoning. Of the

following, which student responses provide mathematically valid explanations for why % is greater

6

than = ? For each student response, indicate whether or not it provides a mathematically valid

explanation.

. Does Not
Provides a .
. Provide a
Mathematically .
. Mathematically
Valid .
Explanation Valid
P Explanation

When you compare them, % is greater than g

A)
because 7 is greater than 6.

You can see that % is greater than g because

B) | ninths are smaller than eighths, which means that

6 is less than 6 which is less than l.
9 8 8

You just need to look at how many pieces are

missing. 7 s greater than S because L is only
0 8 9 8

missing one piece from the whole, but g is

missing three pieces from the whole.

I think % is greater than g because % has more

D)
pieces than g and those pieces are larger.

AN greater than 6 because € is equal to l, and
8 9 9 3

E) | because % is greater than é, % is farther away

from 1 than % is.

Figure 1. Fractions measure. Reprinted from “Content knowledge for teaching: Mathematics
grades 4-5 assessment,” G. Phelps & D. Gitomer, 2012, Educational Testing Service, 11.
Copyright 2012 Bill & Melinda Gates Foundation and Educational Testing Service.

present study. However, as initial viewings of the interviews of a subsample of pre-service

teachers revealed that not all counterexamples provided by participants could be classified as

specific, semi-general, or general, additional categories were added to our operationalized



framework. As such, this operationalized framework, developed via constant comparison (Glaser
& Strauss, 1965), contained not three, but six levels (Table 2): R - no counterexample provided,
Ro - inadequate counterexample; R; - hinted at, but didn’t provide, counterexample; R -
specific counterexample; R3 - semi-general counterexample; and R4 - general counterexample.

Instances assigned a code of R, no counterexample provided, received such a code either
because the pre-service teacher was not asked to provide a counterexample — relevant for
Solution A — or because the pre-service teacher believed the conjecture to be refuted was actually
valid. Instances assigned a code of Ro, inadequate counterexample, received this code as the
counterexample was actually consistent with the false student conjecture. Instances assigned a
code of R; - hints at, but doesn’t provide a counterexample - were coded as such, as the pre-
service teacher suggested that he/she or one of his/her students could create a counterexample to
refute the conjecture under consideration, but no such counterexample was actually generated.
Instances assigned a code of Ry, specific counterexample, received such a code as the pre-service
teacher provided a counterexample that did refute the false student conjecture, yet did not
describe some procedure to follow in generating more such counterexamples. Instances that
received a code of R3, semi-general counterexample, received such a code as the pre-service
teacher not only provided a counterexample that refuted the false student conjecture, but
described some procedure to be used in generating other similar such counterexamples. Finally,
instances assigned a code of R4, general counterexample, were coded as such, as the pre-service
teacher both provided a counterexample that refuted the false student conjecture and described
some procedure that could be followed in generating an infinite number of similar such

counterexamples.



Table 2

Refutation coding scheme

Level of Refutation

Description

R: No counterexample provided
because not asked or conjecture
viewed as valid

Pre-service teacher does not provide a counterexam-
ple because they weren’t asked to or they believe the
conjecture to be refuted is actually valid.

Ro: Counterexample does not re-
fute, but is consistent with conjec-
ture

Pre-service teacher provides an example that, rather
than refute the conjecture under consideration, is con-
sistent with this conjecture.

Ri: Hints at, but doesn’t provide,
counterexample

Pre-service teacher suggests that he/she or one of his/
her students could create a counterexample to refute
the conjecture under consideration, but no such coun-
terexample is actually generated.

R2: Specific counterexample

Pre-service teacher provides a counterexample that
refutes the conjecture under consideration, but in do-
ing so, does not hint at a procedure to follow in gen-
erating many similar such counterexamples.

R3: Semi-general counterexample

Pre-service teacher provides counterexample that re-
futes the conjecture under consideration and hints at a
procedure for generating many similar such coun-
terexamples.

R4: General counterexample

Pre-service teacher provides counterexample that re-
futes the conjecture under consideration and makes
evident a procedure for generating an infinite number
of similar such counterexamples.

Determining instances and the coding process. Once our operationalized framework

was ready for use, pre-service teachers’ discussion of student A’s and C’s explanations were
parsed into instances, which began when one of these two explanations was first addressed and

ended when discussion of that particular explanation was over. Next, a diverse subsample of pre-

service teacher interviews were coded by two raters and agreement between the codes of each



rater was assessed. Wherever disagreement existed, discussion ensued until consensus was
reached.

As an example of such disagreement, consider the example of a pre-service teacher
providing a pair of equivalent fractions to refute student A’s conjecture that, in any fraction
comparison, the fraction with the larger numerator is the larger of two fractions. One rater coded
this particular instance at the “general” level, arguing that, in providing a pair of equivalent
fractions, the pre-service teacher suggested that any pair of equivalent fractions, of which there
are an infinite number, could be used to refute student A’s conjecture. However, the second rater
disagreed, arguing that the pre-service teacher would need to make explicit mention of this in
their response, rather than just provide a pair of equivalent fractions, in order for their refutation
to be coded as “general.”

Wherever disagreement arose, revisions to the operationalized framework, including
examples used to exemplify each level of the framework, were made. Revised frameworks were
then used to code additional subsamples of pre-service teachers’ interviews. This process of
coding, calculating agreement between raters, and revising the coding scheme, continued until
agreement between raters’ codes exceeded 80%, at which point, the final version of the

operationalized framework was used by one rater to code every instance.

Accessibility of Counterexamples
As stated previously, after coding the pedagogical power of pre-service teachers’
counterexamples, it was felt that additional distinctions in these counterexamples existed that

were not captured using our operationalized framework. Efforts were thus made to capture



additional distinctions in the accessibility of counterexamples. To accomplish this objective,
instances coded at the same level in terms of pedagogical power were subjected to further
scrutiny. To gauge accessibility, counterexamples were quantified along three dimensions: a)
mapping, b) logic, and c¢) complexity. Mapping was defined as the degree to which the numbers
comprising the fractions in a given counterexample mirrored those in the student’s confirming
example, 7/8 & 6/9. Logic, on the other hand, gauged how closely the reasoning employed in
understanding a counterexample matched that employed by the student who authored the false
claim being refuted. Finally, complexity was a measure of the number of mathematical concepts
conceivably involved in understanding a given counterexample.

Mapping. As stated above, mapping was defined as the degree to which the numbers
comprising the fractions in a given counterexample mirrored those in the student’s confirming
example, 7/8 & 6/9. Mapping of counterexamples to student A’s conjecture was quantified by
first calculating the difference between the numerators in both the first fractions of the
confirming example and counterexample, then calculating the difference between the numerators
in both the second fractions of the confirming example and counterexample, and finally,
summing these two values (Table 3). For example, for the counterexample 6/8 & 3/4, mapping
would have been quantified as follows: 7-6=1,6 -3 =3 =>1 + 3 = 4. In quantifying
counterexamples to student A’s conjecture, the focus was on the numerators alone, as this is what
student A was focused on in making his/her conjecture, and as such, what pre-service teachers
were themselves focused on in designing counterexamples to refute this particular conjecture.

In quantifying counterexamples to student C’s conjecture, first, the difference was found

between the number of pieces missing from the first fractions of both the confirming example



and counterexample, then the difference was found between the number of pieces missing from
the second fractions of both the confirming example and the counterexample, and finally, these
values were added. Following this procedure, the counterexample 1/2 & 2/4, for example, would
have received a mapping value of 1, calculated as follows: 7/8 & 6/9 are missing 1 and 3 pieces,
respectively, whereas 1/2 & 2/4 are missing 1 and 2 pieces, respectively, therefore, 1 -1 =0, 3 -
2=1=>0+ 1= 1. When quantifying counterexamples to student C’s conjecture, the focus was
on the number of pieces missing, as this is what student C was focused on in making his/her
conjecture, and by consequence, what pre-service teachers were themselves focused on in

designing counterexamples for this particular student conjecture.

Table 3
Quantifying “mapping” of counterexamples
Student  Confirming Counter- Procedure for quantifying “mapping” Mapping
_Explanation _example  example score
A 7/8 & 6/9  6/8 & 3/4 Difference between numerators in 1st 4

fractions: 7-6=1

Difference between numerators in 2nd
fractions: 6 -3=3

Sum of differences: 1 +3 =4

C 7/8 & 6/9 1/2 & 2/4 Difference between # of pieces missing in 1st 1
fractions: 1 -1=0

Difference between # of pieces missing in
2nd fractions: 3 -2 =1

Sum of differences: 0 +1 =1

Logic. As described above, logic was a measure of how closely the reasoning employed
in understanding a pre-service teacher’s counterexample matched that employed by the student

who authored the false claim the counterexample refuted. Student A’s logic was that, when



comparing two fractions, the fraction with the larger numerator is larger. As such,
counterexamples that followed a similar logic received stronger logic scores (Table 4). Any
counterexample that successfully refutes student A’s conjecture, however, will necessarily
diverge from student A’s logic somewhat, otherwise, the counterexample would confirm, rather
than refute, the student’s conjecture. That being said, when quantifying, it was determined that
the less a counterexample diverged from student A’s logic, the stronger logic score it would
receive. If, for example, a counterexample followed the logic that, in a fraction comparison, the
fraction with the larger numerator is not the larger, but the smaller fraction, it was assigned a
value of 0, the best value obtainable, for logic. A counterexample like 7/20 & 1/2 follows student
A’s logic closely, as the fraction 7/20 has a larger numerator, yet is smaller. If, on the other hand,
a counterexample followed the logic that the fraction with the smaller numerator is larger, the
counterexample was assigned a value of 1. A counterexample like 6/9 & 7/100, for example,
follows this particular logic. However, a student like student A may be thrown by such a
counterexample, for he/she was talking about fractions with larger, not smaller, numerators,
when making his/her conjecture. As such, a counterexample like 6/9 & 7/100 received a weaker
logic score. Finally, if a counterexample followed the logic that, in comparing two fractions, the
fraction with the larger numerator is the same size as the fraction with the smaller denominator,
the counterexample was assigned a value of 2. A counterexample like 9/12 & 3/4, for example, is
similar to the confirming example, 7/8 & 6/9, as it consists of one fraction with a larger
numerator than the other. However, as the fraction pair 9/12 & 3/4 consists of fractions that,
unlike the confirming example of 7/8 & 6/9, are the same size, a counterexample like this

received the weakest logic score.



Table 4
Quantifying “logic” of counterexamples

Student  Confirming Counter- Mirroring of student’s and pre-service Logic
_Explanation _example  example teacher’s “logic” score
A 7/8 & 6/9 7/20 & 1/2 < Student’s logic: The fraction with the larger 0

numerator is the /larger fraction.

 Pre-service teacher’s logic: The fraction
with the /arger numerator is the smaller
fraction

7/8 & 6/9 6/9 & 7/100 « Student’s logic: The fraction with the /arger 1
numerator is the /arger fraction.
* Pre-service teacher's logic: The fraction
with the smaller numerator is the larger
fraction.

7/8 & 6/9 9/12 & 3/4 + Student’s logic: The fraction with the larger 2
numerator is the /arger fraction.
 Pre-service teacher's logic: The fraction
with the larger numerator is the same size
as the other fraction.

C 7/8 & 6/9 1/2 & 7/10 + Student’s logic: The fraction missing fewer 0
pieces is the larger fraction.
* Pre-service teacher's logic: The fraction
missing fewer pieces is the smaller fraction.

7/8 & 6/9 3/4 & 9/12 « Student’s logic: The fraction missing fewer 1
pieces is the larger fraction.
* Pre-service teacher's logic: The fraction
missing fewer pieces is equivalent to the
fraction missing more pieces

7/8 & 6/9  5/8 & 1/2 + Student’s logic: The fraction missing fewer 2
pieces is the larger fraction.
* Pre-service teacher's logic: The fraction
missing more pieces is the larger fraction.

7/8 & 6/9 1/2 & 3/4 < Student’s logic: The fraction missing fewer 3
pieces is the larger fraction.
* Pre-service teacher's logic: The fractions
are missing the same number of pieces, but
are different sizes.

Student C’s logic posited that, when comparing two fractions, the fraction missing fewer

pieces is the larger fraction. As such, counterexamples that followed a similar such logic



received better logic scores. However, as noted above, the logic of any such counterexample
would, by virtue of being a counterexample, necessarily diverge from that underlying student C’s
conjecture. As an example, a counterexample like 1/2 & 7/10, which follows the logic that the
fraction missing fewer pieces is smaller, was assigned a value of 0, the best logic score
attainable. Up until the final conclusion (i.e., “smaller” instead of “larger”), such a
counterexample follows student C’s logic exactly, thereby earning the counterexample a strong
logic score. If, on the other hand, a counterexample followed the logic that the fraction missing
fewer pieces is equivalent to the fraction missing more pieces, it was assigned a value of 1. Such
counterexamples were assigned a value of 1 because they followed student C’s logic initially,
yet, as they consisted of equivalent fractions, not fractions that differed in size like 7/8 & 6/9 in
the confirming case, they received a worse logic score. If, on the other hand, a counterexample
followed the logic that the fraction missing more pieces is larger, the counterexample was
assigned a value of 2. Such counterexamples received a weaker logic score as, unlike student C,
they focused on the fraction missing more, not fewer, pieces, which we anticipate might confuse
a student like student C. Finally, if a counterexample consisted of two fractions each missing an
equal number of pieces, the counterexample was assigned a value of 3. Such counterexamples
received the weakest possible logic score, as, unlike student C’s confirming example, they
consisted of fractions both missing the same number of pieces.

When quantifying logic, the order of the fractions provided in the counterexample was
maintained, as it was determined that this order may not have been chosen arbitrarily by the pre-
service teacher. Furthermore, we believed that two counterexamples comprised of the same

fractions, but in reverse order, may mirror the student’s logic quite differently. As an example,



while reversing the order of the fractions in the counterexample 7/20 & 6/12 to 6/12 & 7/20 may
appear inconsequential, the latter counterexample, 6/12 & 7/20, could potentially throw a student
like student A, as his/her confirming example, 7/8 & 6/9, is comprised of two fractions in which
the first fraction, not the second one, consists of the larger numerator. Similarly, reversing the
order of the fractions in the counterexample 1/2 & 4/6 to 4/6 & 1/2 would diminish the degree to
which the counterexample mirrors student C’s logic, as, unlike the confirming example 7/8 &
6/9, in the latter counterexample, the first fraction, not the second, is missing more pieces.
Mathematical complexity. Mathematical complexity was quantified in order to capture
further how two counterexamples, despite being correct mathematically or equally
“pedagogically powerful,” may not be equally accessible to a student. Complexity was equated
with the number of mathematical concepts a student would conceivably need to understand in
order to make sense of a given counterexample. As the purpose in providing a counterexample is
to support a student in coming to see why their conjecture is false, not to engage them in a series
of lessons on a number of related mathematical concepts, those counterexamples that precluded
the need for such lessons received the best scores. In quantifying complexity, each concept
involved in comprehending a given counterexample was assigned a value of 1 (Table 5). Hence,
to refute student A’s conjecture, a counterexample like 6/8 & 3/4 would receive a complexity
score of 1, as this counterexample would require one to comprehend only one concept, that of
equivalent fractions. A counterexample like 6/8 & 5/6, on the other hand, would require a student
to comprehend several concepts, not one, and as such, received a worse score. As it is not
immediately evident which of the two fractions in the counterexample, 6/8 & 5/6 is larger, a

student would conceivably need to understand several concepts before they could comprehend



the counterexample, specifically: (a) having a common denominator makes fractions easier to
compare, (b) a common denominator can be found by converting fractions into equivalent
fractions (e.g., 6/8 = 36/48 and 5/6 = 40/48), and (c) equivalent fractions consist of different
numbers, but represent the same quantity. As such, a counterexample like 6/8 & 5/6 is far more
complex mathematically than the equally correct counterexample of 6/8 & 3/4.

The complexity of counterexamples to student C’s conjecture was calculated by
following the same procedure as that described above for counterexamples to student A’s
conjecture.

Table 5
Quantifying “complexity” of counterexamples

Student  Confirming Counter- Concepts a student would conceivably need Complexity

_Explanation _example  example to know to comprehend the counterexample score
A 7/8 & 6/9 6/8 & 3/4 < Equivalent fractions 1
7/8 & 6/9 6/8 & 5/6 « Having common denominators facilitates 3

the comparison of fractions
» Common denominators
» Equivalent fractions

Results
Pedagogical Power of Counterexamples
The participants in this study refuted student conjectures using almost exclusively
counterexamples coded as “specific.” Only once did a pre-service teacher provide a semi-general
counterexample and not once was a “general” counterexample provided (see Table 6). While pre-
service teachers were not asked explicitly to provide a counterexample to refute student A’s false
conjecture, 6 pre-service teachers did provide adequate counterexamples when discussing

student A; of these 6 counterexamples, all but one were specific. On the other hand, when asked



explicitly to refute student C’s conjecture, 15 of 17 pre-service teachers provided adequate

counterexamples, all 15 of which were specific.

Table 6
Specific, semi-general, and general counterexamples
Pre-Service Teacher* Counterexample for Student A Counterexample for
(Ro, R1, R2, R3, or Ry) Student C

(Ro, Ri1, R2, R3, or Ry)

Emilia R Ro
Ella Rs Ro, Ri, & (R2)
Claudia Ro Ro
Nina R R>
Delaney R Rz
Olga Ro R & R2
R
Cynthia R2 R>
Maria R R
Katherine R R2 & R
Melanie R R
Ashley R Ro
Annabelle R Ro & Rz
Ro
Brian R Ri & Rz
Caroline R (R2)
Esther R R
R
Lane Ro Ro
Veronica R R

R: No counterexample provided, Ro: Counterexample does not refute, but is consistent with conjecture,
Ri: Hints at, but doesn’t provide, counterexample, R2: Specific counterexample, R3: Semi-general
counterexample, R4: General counterexample

*All names are pseudonyms.

Note. If a pre-service teacher’s thinking was supported by the interviewer in such a way as to render the
validity of this thinking questionable, the refutation code assigned was placed in parentheses.



Note. If a pre-service teacher provided evidence of reasoning at multiple levels in a given instance, all
such levels were indicated, not merely the highest of such levels.

Note. In discussing student A’s false conjecture, three pre-service teachers, Olga, Annabelle, and Esther,
provided different counterexamples at two separate stages in their discussion of student A.

As pre-service teachers were not asked to refute student A’s false conjecture, a
preponderance of “R” codes - no counterexample provided - are found under the column
“Counterexample for Student A” in Table 6. On the other hand, given that every pre-service
teacher was asked to refute student C’s false conjecture, only one such “R” code is found under
the column in Table 6 labeled, “Counterexample for Student C.”

As an example of a specific counterexample, consider the counterexample provided by
pre-service teacher Annabelle in her discussion of student A’s false conjecture that, “7/8 is
greater than 6/9 because 7 is greater than 6”:

Yeah, um, because, in fractions, it doesn’t, the numerator being higher than the next one

doesn’t mean that’s the larger fraction. In, for instance, what else, what else can I do that?

Okay, 4/8 or ', they would be, say the 4 is bigger than the 1, but it’s actually the same

fraction.

Here, Annabelle refuted student A’s conjecture using a specific case, that of 4/8 & 1/2. While it
could be argued that Annabelle may have been recommending here that any pair of equivalent
fractions would constitute an effective counterexample to student A’s conjecture, given that such
a procedure was not stated explicitly, the counterexample could not be coded as anything more
than specific.

As another example, consider the following specific counterexample provided by pre-

service teacher Maria in refuting student C’s false conjecture that, “7/8 is greater than 6/9



because 7/8 is only missing one piece from the whole, but 6/9 is missing three pieces from the
whole”:

Um, [ think that, that’s wrong because say you have 1/16, and you have, or you have

15/16 and you have 7/8, they’re both missing one, but the size of the 1/16 that’s missing

from the 15/16 is much smaller.

Again, the pre-service teacher here refutes the false student conjecture using a specific case, that
of 15/16 & 7/8. Maria here appears to be suggesting that, in order to generate a counterexample
that refutes student C’s conjecture, all one must do is create a pair of fractions each one piece
short of whole. However, again, as such a procedure can only be inferred from what Maria said
and wasn’t stated explicitly by her, Maria’s counterexample can not be coded semi-general or
general.

The single semi-general counterexample encountered in this study was generated by pre-
service teacher Ella in refuting student A’s conjecture that, “7/8 is greater than 6/9 because 7 is
greater than 6

So, if the denominator was, if it was 7 out of 20, and then here it was 6 out of 12, yeah,

that's great that 7 is greater than 6, that all makes sense, but it depends on the

denominator. So, for example, if the denominator under 7 is greater than the denominator

under 6, then this 7 on 20, for example, is smaller than this 6 on 12.

Here, Ella hinted at a procedure to follow in generating additional counterexamples similar to the
one she provided by stating that, if one were to create two fractions, one with a numerator of 7
and another with numerator of 6, and further, ensure that “the denominator under 7 is greater

than the denominator under 6,” the two fractions would constitute an adequate counterexample.



As Ella’s counterexample suggested a procedure for generating several, but not every
counterexample (i.e., only those with numerators of 7 and 6), it was coded “semi-general,” not
“general.” Following Ella’s procedure, one could generate a fraction pair like 7/10 & 6/8, in
which “the denominator under 7 is greater than the denominator under 6,” and that would
constitute an adequate counterexample. However, using Ella’s procedure, one could also
generate another fraction pair that would fail to refute student A’s conjecture. For example, the
fraction pair 7/10 & 6/9 could be generated following Ella’s procedure, as in this fraction pair,
“the denominator under 7 is greater than the denominator under 6.” However, this fraction pair
confirms rather than refutes student A’s conjecture, as the fraction with the larger numerator,
7/10, is actually the larger of the two fractions. Although Ella’s procedure is only sometimes
successful, we found its attempt at generalization noteworthy:.

While no general counterexamples were provided by pre-service teachers in refuting the
false conjectures of students A and C, it is worth mentioning what sort of counterexample would
have been classified as such. For example, suppose that Annabelle, the pre-service teacher who
refuted student A’s conjecture with the counterexample of 4/8 & 1/2, had also described how any
pair of equivalent fractions would successfully refute student A’s false conjecture. If this had
been the case, Annabelle’s counterexample would have been coded “general,” as her response
would have suggested a procedure to follow in generating an infinite number of adequate
counterexamples for refuting student A’s false conjecture. As another example, suppose that
Maria, the pre-service teacher who refuted student C’s false conjecture using the counterexample
of 15/16 & 7/8, had gone on to say that any pair of fractions each one unit fraction short of

making a whole could be used to refute student C’s conjecture. If Maria had accompanied her



counterexample with a description of such a procedure, her counterexample would have been

coded “general,” as this procedure would enable one to generate an infinite number of adequate

counterexamples to refute student C’s false conjecture.

Accessibility of Counterexamples

As mentioned above, in coding pre-service teachers’ counterexamples using an
operationalized framework for pedagogical power, we failed to capture additional and
noteworthy distinctions in these counterexamples. While the vast majority of counterexamples
provided by pre-service teachers were coded “specific,” there was great variety in these specific
counterexamples in terms of their potential accessibility, or lack thereof, to a young child
learning mathematics. In particular, specific counterexamples varied in terms of: a) mapping or
the degree to which the numbers comprising the fractions in a given counterexample mirrored
those in the student’s confirming example, 7/8 & 6/9, b) logic or how closely the reasoning
employed in understanding a counterexample matched that employed by the student who
authored the false claim being refuted, and ¢) complexity or the number of mathematical
concepts conceivably involved in understanding a given counterexample.

While coding is still underway, some preliminary results from the coding of diverse
subsamples of pre-service teachers can be reported here (Table 7). As an example, consider the
counterexample of 6/8 & 5/6 provided by pre-service teacher Esther to refute student A’s false
conjecture. In following the process for quantifying “mapping” described in the methods section
of this paper, Esther’s counterexample was assigned a value of 2, as the difference between the

numerators in the first fraction of the confirming example, 7/8, and Esther’s first fraction, 6/8,



was 1, whereas the difference between the numerators in the second fraction of the confirming
example, 6/9, and Esther’s second fraction, 5/6, was 1. As the sum of these two differences (1 + 1
= 2) was 2, Esther’s counterexample received a mapping value of 2. As the logic employed in
comprehending Esther’s counterexample was that the fraction with the larger numerator is the
smaller fraction, Esther’s counterexample received a logic score of 0, the strongest logic score
possible. However, as a student would conceivably need to know several concepts in order to
comprehend Esther’s counterexample, the complexity score assigned to this particular
counterexample was a 3. As it is not immediately apparent which of the two fractions in Esther’s
counterexample, 6/8 & 5/6, is the larger of the two, a student, or even an adult, for that matter,
would likely need to convert the two fractions into equivalent fractions sharing a common
denominator before the relative sizes of the fractions could be compared. For example, the
fractions 6/8 & 5/6 could be converted into the fractions 36/48 & 40/48, respectively, which
would enable one to see that 6/8 (i.e., 36/48), despite having the larger numerator, is actually the
smaller of the two fractions. To get to the stage where these two fractions could be compared as
such, however, would conceivably require a student to understand the following three concepts:
a) converting fractions into equivalent fractions that share a common denominator facilitates
their comparison, b) equivalent fractions represent equal quantities even though they are
comprised of different numbers, and c) equivalent fractions can be made by multiplying the
numerator and denominator by the same number (e.g., 6/8 x 6/6 = 36/48). While Esther’s
counterexample scored well in terms of mapping and logic, as a student would conceivably need
to know 3 mathematical concepts before they could comprehend the counterexample, her

counterexample scored less well in terms of complexity.



Table 7
Mapping, logic, and complexity of specific counterexamples

Participant Student Counter- Mapping Logic Complexity
Explanation example (Disparity (Agreement (Number of math
(Student A provided between between student concepts a
or example and logic and logic student would
Student C) counter employed by need to
example) author of counter-  understand to
example) make sense of the
counter-example)
Esther A 6/8 and 5/6 2 0 3
Ella A 7/20 and 6/12 0 0 2
Cynthia C 3/4 and 9/12 0 1 1
Veronica C 5/8 and 1/2 4 2 2

Note. Only adequate counterexamples that were also coded specific (R2) are included here.

By contrast, consider the counterexample of 7/20 and 6/12 provided by Ella to refute
student A’s false conjecture. As there is no difference between the numerators in the first fraction
of Ella’s counterexample and the first fraction in the confirming example, nor is there any
difference between the numerators in the second fraction of Ella’s counterexample and the
second fraction in the confirming example, Ella’s counterexample received a mapping score of 0.
The logic underlying Ella’s counterexample was that the fraction with the larger numerator is the
smaller fraction. As such, Ella’s counterexample received a logic score of 0, the best logic score
possible. In order to comprehend Ella’s counterexample, a student would conceivably need to
comprehend that 7/20 is less than 10/20, which itself is equivalent to 1/2, and further, that 1/2 is
equivalent to 6/12, therefore, 7/20 is smaller than 6/12. As such, a student would need to know
two concepts in order to understand Ella’s counterexample: 1) that of equivalent fractions and 2)

that 1/2 is a useful benchmark for comparing fractions.



Turning to student C, consider the counterexample of 3/4 and 9/12 provided by pre-
service teacher Cynthia to refute student C’s false conjecture. In following the process for
quantifying “mapping” specified in the methods section of this paper, this counterexample was
assigned a mapping value of 0, as, like the confirming example of 7/8 & 6/9, the fractions in
Cynthia’s counterexample were also one and three pieces short of making a whole, respectively.
As the logic employed in comprehending Cynthia’s counterexample was that the fraction missing
fewer pieces is the same size as the fraction missing more pieces, this counterexample received a
“logic” score of 1. Finally, regarding complexity, both raters agreed that the sole concept a
student would likely need to know in order to comprehend Cynthia’s counterexample was that of
equivalent fractions. As such, Cynthia’s counterexample received a “complexity” score of 1.

By contrast, consider the counterexample of 5/8 & 1/2 provided by Veronica to refute
student C’s false conjecture. The fractions comprising Veronica’s counterexample were three and
one pieces short of making a whole, respectively. On the other hand, the confirming example, 7/8
& 6/9, consisted of two fractions that were one and three pieces short of making a whole,
respectively. As such, Veronica’s counterexample received a mapping score of 4 (i.e., 1 - 3 =|-2|
=2and 3 -1=2=>2+2=4). The logic underlying Veronica’s counterexample was that the
fraction missing more pieces is the larger fraction, whereas student C’s logic was that the fraction
missing fewer pieces is larger. As such, Veronica’s counterexample received a logic score of 2. In
order to comprehend Veronica’s counterexample, a student would likely need to know that 5/8 is
greater than 4/8, and as 4/8 is equivalent to 1/2, 5/8 is greater than 1/2, even though 5/8 is

missing more pieces. As a student like student C would need to comprehend two concepts in



order to make sense of Veronica’s counterexample, those of equivalent fractions and the

usefulness of the 1/2 benchmark, this counterexample received a complexity score of 2.

Discussion

This study demonstrates that, unlike their counterparts at the secondary level (Peled &
Zaslavsky, 1997), the pre-service elementary teachers in this sample didn’t tend to provide semi-
general or general counterexamples when refuting students’ false claims. When asked to refute
the false conjecture that two rectangles having congruent diagonals are congruent, 24/45 of the
pre-service secondary teachers in Peled and Zaslavsky’s study provided adequate
counterexamples. Of these adequate counterexamples, 7 were specific, 4 were semi-general, and
13 were general. By contrast, of the 21 adequate counterexamples provided by pre-service
elementary teachers in refuting the conjectures of students A and C in the present study, all but
one such counterexample was specific. This is concerning because specific counterexamples,
while mathematically correct, are more likely to leave children with the impression that their
false conjectures are correct except for some single pathological case. By consequence,
elementary pre-service teacher educators may wish to dedicate time in teacher education courses
to developing pre-service elementary teachers’ ability to generate more pedagogically powerful
semi-general and general counterexamples.

An additional contribution of this study is the providing of a framework for
distinguishing counterexamples according to their accessibility to a child. Existing research
suggests that the design of counterexamples influences whether or not they lead students to

abandon or cling to their faulty conjectures (Zazkis & Chernoft, 2008). According to our



framework, counterexamples falling in the same category of Peled & Zaslavsky’s framework can
be further distinguished in terms of: a) the degree to which the numbers comprising a
counterexample map onto the numbers comprising a confirming example, b) the manner in
which the logic underlying a counterexample mirrors that employed by a student who has
authored a faulty conjecture, and c¢) the mathematical complexity of a counterexample. While yet
to be empirically validated, this new framework suggests that generating counterexamples
composed of numbers that more closely resemble those constituting a particular confirming
example are likely to be more effective in leading a student to abandon a faulty conjecture.
Additionally, according to this framework, counterexamples that employ logic that more closely
resembles that employed by a student in generating faulty conjecture would be more likely to
support students in abandoning their false conjectures. Finally, of two counterexamples to some
false student conjecture, the one that is least complex mathematically is, in theory, more likely to
succeed in leading a student to abandon faulty reasoning.

Further work with school-aged children would need to be conducted in order to
empirically verify such propositions. Accordingly, a next step in this line of inquiry could
involve presenting elementary-school students with the task of generating their own conjectures
for comparing fractions. Of these conjectures, those that are false could then be responded to
using counterexamples falling at different points along the mapping, logic, and complexity
continuums. The effectiveness of such counterexamples at leading students to abandon their false
conjectures could then be assessed.

The present study examined counterexamples to students’ false conjectures in one topic

area, the comparison of fractions. However, the framework described here could be applied or at



least used to guide one’s work when generating counterexamples in a number of different
mathematical domains. In today’s reform mathematics classroom, teachers are to encourage
students to generate their own strategies for solving problems of arithmetic, geometry, and a host
of problems in other content areas, as well. For example, rather than demonstrate the standard
procedure for solving, say, a multi-digit addition problem, or the formula for finding the area of a
square, teachers today are to encourage students to devise their own methods and procedures for
solving such problems. Undoubtedly, such attempts are likely to result in the generation of
methods that may work in some cases, but fail to work in general (e.g., Erlwanger, 1973;
Stafylidou & Vosniadou, 2004). As such, teachers today must not only be prepared to refute
students’ false conjectures for comparing fractions, but their conjectures in a range of other
mathematical domains, as well.

Teachers today will undoubtedly encounter false student conjectures on a daily basis and,
therefore, must be ready to respond with counterexamples that will support, rather than confuse
or frustrate, their students. While ensuring that the counterexamples one generates in response to
students’ false conjecture are pedagogically powerful is likely to support students’ thinking, as
demonstrated by the present study, such counterexamples may not come so easily, especially to
the novice teacher. By consequence, a second response to students’ false conjectures could
involve the crafting of counterexamples that not only do well to map those cases that confirm
students’ reasoning, but also mirror the logic utilized by students and are marked by the least

complexity possible.
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