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Abstract  

This study examined the impact of the ordering of teaching approaches on students’ abilities to 

solve percent problems. Group 1 received multiple representations first followed by traditional 

algorithms. Group 2 received these in reverse order. Participants included 43 seventh grade 

students from an urban Midwestern US middle school. Results indicated ability gains in both 

groups however no significant differences. Comparisons of effect size however indicated larger 

growths in abilities for students in Group 1.  
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Introduction 

Research suggests that the ability to solve complex problems and transfer skills to new 

situations is related to how well students’ procedural and conceptual knowledge have developed 

(Hiebert & Carpenter, 1992).  Procedural knowledge in mathematics refers to the ability to 

execute algorithms and encompasses knowledge of procedures, symbols, and domain 

conventions (Hiebert & Lefevre, 1986). Conceptual knowledge, on the other hand, is more 

networked, connected, and rich in relationships between the concepts of a domain. For 

mathematics and other domains both kinds of knowledge have been hypothesized to contribute 

to procedural flexibility, or the ability to solve a range of problems flexibly and efficiently 

(Blöte, van der Burg, & Klein, 2001; NRC, 2001; Star & Seifert, 2006). Howe (1999) 

proclaimed that there is no serious conflict between procedural knowledge and conceptual 

knowledge. In fact, many leaders in mathematics education today support the idea that students 

must have a balance of both conceptual understanding and procedural fluency in all areas of 

mathematics (Capraro & Joffrion, 2006; NCTM, 2000). In addition, the writers of Common Core 

State Standards for Mathematics (CCSSO & NGA, 2010) share the belief that both conceptual 

understanding and procedural fluency are essential for student mathematics learning, and Hiebert 

and Lefevre (1986) add that there are many benefits when conceptual and procedural knowledge 

are linked.  

The teaching of many mathematical topics in the U.S. however, often relies heavily on 

algorithmic approaches which emphasize procedural skills (National Research Council [NRC], 

2001; Lee, Brown, & Orrill, 2011; Ma, 1999, 2010; Van de Walle & Louvin, 2006). For 

example, instruction on rational numbers (e.g., fractions, decimals, and percents) and their 
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manipulations is traditionally algorithmic, rule-based, and relies on sets of procedures aimed at 

making students quick and accurate when solving problems (National Research Council [NRC], 

2001).  Traditional algorithmic instruction, a form of direct instruction, often begins with 

teachers stating an algorithm (e.g., “to divide by a fraction, invert and multiply”), teacher-led 

demonstrations of how the algorithm works by presenting several examples, and then student 

practice, independently or in groups, on similar exercises. While algorithmic approaches have 

been found to be efficient methods for teaching students how to solve problems (Newton & 

Sands, 2012), major issues arise when, as a result of these approaches, students begin to view 

mathematics as sets of rules and give up their own mathematical sense-making while carrying 

out the steps of an algorithm (Fosnot & Dolk, 2002). The National Research Council (NRC) 

finds that the "rules for manipulating symbols are being memorized but students are not 

connecting those rules to their conceptual understanding nor are they reasoning about the rules" 

(National Research Council [NRC], 2001, p. 234).  

In efforts to promote deeper understanding of mathematical topics various methods have 

been used and recommended.  One successful teaching approach for helping students make 

better sense of mathematics and develop deeper conceptual understanding is the use of multiple 

representations (Fosnot & Dolk, 2002; Van den Heuvel-Panhuizen, 2003; Ng & Lee, 2009).  

Research suggests that engaging students in mathematics through multiple representations 

(MRs)—such as diagrams, graphical displays, and symbolic expressions— helps them better 

visualize, simplify, and make sense of abstract mathematical topics, and using representations 

flexibly is a key characteristic of skilled problem solvers (NRC, 2001; Lamon, 2001; NCTM, 

2000; Dreyfus & Eisenberg, 1996). Representations refer not only to the product, or student 
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created model, but to the process and act of capturing mathematical concepts or relationships 

using student created models (NCTM, 2000).  Van den Heuvel-Panhuizen (2003) proclaims, “it 

is not the models in themselves that make the growth in mathematical understanding possible, 

but the students’ modeling activities” (p. 29). Therefore, when using MRs, it is important for 

teachers to place emphasis beyond the model and more on students’ focus on sense making while 

using the models, their justification, and the use of multiple methods to find solutions. Lamon 

(2001) found that by using different representations of rational numbers students gained a deeper 

understanding of them and were better able to transfer their knowledge from one model to 

another. Furthermore, students have been shown to gain confidence in their abilities by exploring 

problems through multiple approaches and justifying their choices (Newton & Sands, 2012).  

Hence, representations are recommended as an essential component of mathematical activities 

and means for capturing mathematical concepts (e.g., Goldin & Shteingold, 2001).   

While traditional algorithmic instruction and multiple representation instruction are both 

useful for helping students achieve a balance of conceptual understanding and procedural 

fluency, questions still remain as to how these approaches should be integrated to best meet the 

learning needs of students. For example, should teachers begin with teaching approaches that 

help students develop conceptual understanding first (e.g. using multiple representations), or 

teaching approaches that help students develop procedural fluency first (e.g. using traditional 

algorithms).  The research questions that this study investigate are: 

1). Does the order of teaching approaches (MR first versus TA first) impact students’ 

abilities to solve math problems that involve fractions, percents, and decimals? 
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2). Does the order of teaching approaches (MR first versus TA first) impact students’ 

confidence to solve math problems that involve fractions, percents, and decimals? 

3). Does the teaching approach (MR versus TA) impact students’ on task behaviors? 

Theoretical Perspectives  

For many decades, researchers have attempted to examine how conceptual and 

procedural knowledge influence and impact each other (Byrnes & Wasik, 1991; Canobi, Reeve, 

& Pattison, 1998; Dixon & Moore, 1996; Gelman & Gallistel, 1978; Gelman & Meck, 1983; 

Greeno, Riley, & Gelman, 1984; Hiebert, 1986; Resnick & Ford, 1981; Rittle-Johnson, Siegler, 

& Alibali, 2001; Sophian, 1997). From this body of research, various theoretical perspectives 

have emerged (see Rittle-Johnson, Siegler, & Alibali, 2001; Schneider & Stern, 2010). Concepts-

first theory conjecture that students initially gain conceptual knowledge and then derive and 

develop procedural knowledge from it through repeated practice with solving problems (Gelman 

& Williams, 1998; Halford, 1993).  Empirical evidence supporting the concepts first perspective 

has been found for the teaching of various mathematics concepts including simple arithmetic and 

proportional reasoning (Byrnes, 1992; Cowan & Renton, 1996; Dixon & Moore, 1996; Hiebert 

& Wearne, 1996; Siegler & Crowley, 1994; Wynn, 1992; see Rittle-Johnson, Siegler, & Alibali, 

2001). Procedures-first theory, on the other hand, state the opposite and suggest that students 

first learn procedures and from practice with those procedures, gradually develop conceptual 

knowledge ( Karmiloff-Smith, 1992; Siegler & Stern, 1998). Similarly, empirical evidence have 

also been found in support of the procedures first approach for teaching various mathematical 

concepts such as counting and fraction multiplication (Briars & Siegler, 1984; Byrnes & Wasik, 

1991; Frye, Braisby, Love, Maroudas, & Nicholls, 1989; Fuson, 1988; Hiebert & Wearne, 1996).  
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While these two perspectives continue to be debated, the importance of these 

perspectives are their implications for how teaching approaches should be sequenced to best 

meet the needs of students. In support of the concepts first theory, the researchers of this study 

hypothesize larger gains in student learning outcomes for those presented with MR approaches 

before TA approaches.  

Purpose of the Study 

The purpose of this study was to examine and compare the impact of the order of two 

teaching approaches (e.g. multiple representation (MR) instruction and  traditional algorithmic 

(TA)) on students’ abilities to solve math problems that involve fractions, decimals, and 

percents, and confidence in their abilities to solve these types of problems. Additionally, this 

study sought to examine whether the teaching approaches (e.g. MR versus TA) impacted on task 

behaviors while learning.  

Method 

To be successful in algebra, students should be fluent with rational numbers, their 

operations, and the ability to convert between equivalent forms (i.e. decimals, fractions, and 

percents) (Bottoms, 2003; Stacey & MacGregor, 1997). Due to the importance of these 

mathematical skills, the population of interest for this study was middle school aged pre-algebra 

students and the mathematical topic of interest was percentage problems that involved decimals 

and fractions. 

Sample 

The participants for this study included forty-three 7th graders enrolled in two pre-algebra 

sections in an urban middle school in Midwestern U.S. Over half were males (56%), and all 
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students were 12-13 years old. Students came from very diverse ethnic backgrounds including 

19% African American, 9% were Asian American, 5% were Hispanic, 37% were White, 26% 

were Mixed Race, or 5% indicated Other.  

Content 

The content for this study included a 7th grade pre-algebra unit on percentage problems 

involving fractions, and decimals. Problem types included: 1) finding the unknown part of a 

number represented by the percent of a whole number, 2) finding the unknown whole number 

when the percent and the part were known, and 3) finding the unknown percent when the part 

and the whole numbers were known and 4) combinations of the three types.  These problems 

included both de-contextual and contextual based problems. Two example problems are provided 

below: 

 De-contextual: 24 is 60% of what number?  

 Contextual: Three candidates participated in a school election.  Bianca received ¼ of 

the votes, Chelsea received 0.30 of the votes, and Francisco received the rest of the 

votes.  What percent of the votes did Francisco receive?  

Teaching Approaches 

For research purposes, two teaching approaches also guided the design of instructional 

activities within modules. These two approaches are explained below.  

Traditional Algorithmic (TA) Approach.  The TA teaching approach relied heavily on 

the use of common textbook algorithms and mnemonic devices for solving percent problems 

(Bennett et al., 2007). For example, students were given the mnemonic device, “is over of; 
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percent over 100” and instruction/practice with setting up proportions for the various problem 

types (see Table 1).  

Table 1: Proportion Algorithm Set-up by the Major Problem Type 

Problem Type Example Problem Proportion Algorithm Set-Up 

Finding the percent of a 
number 

15% of 240 = n 15

100
=

𝑛

240
 

Finding the percent one 
number is of another 

p% of 240 = 18 𝑝

100
=

18

240
 

Finding a number when the 
percent is known 

15% of n = 18 15

100
=

18

𝑛
 

 

During the TA approach students were provided with direct instruction on how to solve 

problems using algorithms. The steps usually followed during the algorithmic approach were: 1) 

identify the problem type, 2) set up a proportion to represent the problem, 3) solve the problem, 

and 4) check and verify solution. During TA lessons, students were provided with guided, 

independent, and group practice on how to solve these problems step-by-step. In the TA 

approach, emphasis was placed on using the proportion set-up algorithm (see Equation 1).  Using 

the mnemonic device, students set up proportions for problems where is, of, and percent were 

cue words to guide them in their placement of the known and unknown values.   

                                     
𝑖𝑠

𝑜𝑓
 = 

%

100
         (Equation 1) 

An example problem that students could solve with this algorithm is, “What is 20% of 4000?”  

Students would use “what is” to place an unknown variable (x) in the first numerator.  They 

would use “of” to place the 4000 in the denominator.  Finally, they would place 20 (%) over 100 
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(see Equation 2). To solve the unknown value in the proportion, students used the already 

familiar “cross multiply and divide” algorithm from a previous unit.  Basically, students would 

multiply 20 times 4000 and 100 times x. The result would be the equation 100x=8000. Students 

would then divide 8000 by 100 to find their solution. 

                                     
𝑥

4000
 = 

20

100
        (Equation 2) 

Multiple Representations (MR) Approach.   The MR approach included opportunities 

for exploring multiple representations and multiple solution methods, and mathematical 

communication. In the MR approach students learned and were expected to solve percent 

problems by using various representations and models, explaining their methods in writing, 

discussing strategies with their peers in groups, and rationalizing methods verbally with their 

teacher and peers.  Examples of representations and models used by students included chunking, 

number lines, double number lines, percent bars, ratio tables, and writing equations (See Figure 

1). While students were introduced to these MR approaches, students were encouraged to 

explore, create their own models, and given choice with which representation they could use to 

solve problems. A major aspect of the MR approach was that students justified the representation 

they used. An additional aspect of the MR approach was that students were encouraged to 

estimate and self-evaluate whether their answers made mathematical sense. For example, one 

MR method, “chunking”, was used to calculate or estimate percentages by using the benchmarks, 

10% and 1%. To calculate 32% of 200, students could add three times 10% of 200 (or 20) plus 

two times 1% of 200 (or 2) to get the correct answer 64. 
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Figure 1:  Example of using MR approach methods for solving percent problems 

Design  

This study used a quasi-experimental design using two intact groups, two pre-algebra 

classes which students had already been assigned to based on their individual scheduling needs. 

Students from both groups received each teaching approach (i.e. MR and TA approach) however 

they were offered in different order dependent on the treatment group that students were placed 

into.  

Treatment Groups 

Group 1, the MR first group (N=22), experienced MR lessons first in Module 1 and then 

TA lessons in Module 2. Group 2, the TA first group (N=21), received TA lessons in Module 1 

and then MR lessons in Module 2. The counterbalanced design was used to assess whether the 

order of teaching approach impacted student learning outcomes but also to ensure that both 

groups had equal opportunities to experience both teaching approaches. 

Instruments & Measures 

Data were obtained through performance tests, scales, and observations during the spring 

2013 semester. These instruments are described below:  
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Pre/Post Knowledge Test: In order to measure students’ abilities to solve problems involving 

fractions, decimals, and percentages, show their work, and explain their thinking process locally 

developed parallel assessments for pre and post knowledge assessments were used.  Each test 

consisted of 10 open response items. These included 2 de-contextual based and 8 contextual-

based problems. To differentiate student abilities to solve and show their mathematical processes 

and sense-making for solving, a rubric was used to score students’ open-ended responses on each 

item. With this rubric emphasis was placed on the approaches that students took to solve the 

problem however, the approach that students took was not prescribed (i.e. students could use TA 

approaches or MR approaches). Responses were scored based on the appropriateness of students’ 

approaches and the correctness of solutions obtained by those approaches. For incorrect or no 

approach shown students received 0 or 1 points (0 for incorrect responses, 1 for correct 

responses) and 2 or 3 points for correct approaches (2 for incorrect responses, 3 for correct 

responses). The maximum score on each of pre and post-knowledge tests was 30 points. The 

open response format of the items and the associated rubric allowed researchers to gather deeper 

information on students’ reasoning and sense-making in contrast to commonly used 

dichotomously scored multiple choice items which often conceal those details. Pre and post 

knowledge assessments were administered before and after the treatments. The purpose of these 

instruments was to examine the impact of treatment conditions on students’ abilities to solve and 

to investigate whether treatment conditions impacted students differently.  

Confidence Scale: This measure consisted of a 5-point likert scale item (1=No confidence – 5- 

Very high confidence) and asked students “How much confidence do you have with solving 

mathematics problems that involve fractions, decimals, and percents?”. This scale was  
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administered before and after the treatments. The purpose of this scale was to assess whether the 

treatment conditions had an impact on students’ confidence in their abilities to solve.  

On Task Behaviors Observation Form:  An adapted version of the Basic 5 Observation Form 

(Sprick, Knight, Reinke, & McKale, 2006) was used as a measure of students’ on task behaviors. 

On task behaviors, related to the task at hand during the observation, and these included students 

writing or taking notes, tracking the teacher with their eyes, talking with their partners about 

relevant topics, asking questions, drawing MR models, and/or following directions.  Examples of 

observable off-task behaviors included: off-topic conversations, (audible) up and out of seat or 

tipping over in chair while laughing, not tracking the teacher or staring into space, and/or not 

following directions.   During the observation, for five minutes, the trained observer focused on 

different students every 5 seconds. If the student were on-task the observer would tally a “+” on 

the form. Alternatively, a “-” was tallied if an off-task behavior was observed. A total of sixty 

tallies were made during each observation session. The percentage of on task behaviors was 

calculated by dividing the total number of on-task tallies by the set total number of tallies (60) 

and multiplying by 100.  For each module, groups 1 and 2 received a total percentage of on task 

behaviors. This form was used to measure and assess students’ on-task behaviors within their 

treatment groups while learning with each distinctive teaching approach (e.g. MR or TA).  

Teacher Reflection Notes: Each day after class, the teacher wrote down her reflections on how 

the lesson went and students reactions to the lesson. To organize these notes, the teacher used a 

reflection notes template that consisted of a blank table with three columns: module day, group 1 

notes, and group 2 notes; and rows for each module day. The purpose of the reflection notes was 
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to gather additional data to support and further explain students’ on task behaviors within their 

treatment groups while learning with each distinctive teaching approach (e.g. MR or TA). 

Procedures 

For both groups, instruction over percents, fractions, and decimals was broken into two 

modules. Before Module 1, students completed a Pre-Confidence Scale and a  Pre-Knowledge 

Test. During Module 1 students experienced MR or TA lessons depending on the group that they 

were in. On day three of Module 1, an outside observer (trained instructional coach from the 

school district) completed the On Task Behaviors Observation Form for each group.  On day 7, 

students began Module 2. During Module 2, groups were presented with the other teaching 

approach (i.e. Group 1 experienced TA lessons and Group 2 experienced MR lessons). On day 9, 

a trained observer recompleted the On Task Behaviors Observation Form for each group.  

Following the completion of Module 2, students fill out a Post-Knowledge Test and Post-

Confidence Scale on day 11. For each module day students were in class for about 50 minutes. 

Data Analysis 

The scores from all instruments were entered and analyzed using SPSS v21. Inferential 

statistics were then used to examine the impact of the teaching approach order on student 

learning outcomes (i.e. abilities to solve and confidence in abilities), and the impact of teaching 

approach on student engagement. Data analyses included ANCOVAs, Chi-square tests, and 

qualitative data analyses. These are described in Table 2 below.  
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Table 2: Summary of research questions, variables, and data analyses 

Research Questions/Variables Instruments Data Analysis 

Does the order of teaching approaches (MR first versus TA first) impact student learning 

outcomes (SLO1, SLO2) when working with math problems that involve fractions, percents, 

and decimals?  

SLO1). Abilities to solve  Pre/Post Knowledge Tests 

 

ANCOVA with pre-

knowledge as a covariate 

SLO2). Confidence in abilities 

to solve  
Pre/Post Confidence Scales ANCOVA with pre-

confidence as a covariate 

Does the teaching approach (MR versus TA) impact students’ on task behaviors (SLO3)?:  

SLO3). On Task Behaviors 

while learning 

On Task Behaviors 

Observation Form 

Teacher Reflection Notes 

McNemar Chi square 

 

Qualitative data analysis 

 

Limitations 

Methodological limitations for this study include the small sample size and the short 

duration of treatment conditions. Consequently, while results may provide valuable insights, they 

are suggestive and may not generalize to all middle school student populations. Specifically, the 

use of a sample of convenience may limit the study to middle school pre-algebra students. 

Further because the duration of treatment groups was short (i.e. eleven days), students may not 

have been exposed to the treatments long enough for them to have an impact on their student 

learning outcomes. Nevertheless, numerous results were found that provide opportunities for 

insight and application. 

Results 

The goal of this study was to investigate and compare the impact of the order of two 

teaching approaches (e.g. multiple representation (MR) instruction and  traditional algorithmic 

(TA) instruction) on students’ abilities to solve math problems that involve fractions, decimals, 
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and percents (SLO1), and their confidence in their abilities to solve these types of problems 

(SLO2). In addition, this study sought to examine whether the teaching approaches (e.g. MR 

versus TA) impacted on task behaviors while learning (SLO3). The results of these 

investigations are provided below. 

 

Order of Teaching Approach: Impact on Students’ Abilities to Solve (SLO1) 

Using pre-knowledge score as a covariate, an ANCOVA was used with group (e.g. MR 

first vs TA first) as a between-subjects factor and ability to solve as the dependent measure. 

Although Group 1 (MR first) had a slightly higher post-knowledge tests (M=23.36, SD=6.63) 

than Group 2 (TA first) on post-tests (M=22.33, SD=5.79), no significant differences on ability 

to solve were found between the two groups (F(1,40)=1.01, p=0.32). The covariate, pre-

knowledge, was significant (p=0.03) indicating that treatment groups differed in prior knowledge 

(see Table 3).  

Table 3: ANCOVA Results for Teaching Approach Order on Ability to Solve 

Source SS df MS F p 

Pre-knowledge 188.96 1 100.18 5.38 0.03* 

Group 35.32 1 108.24 1.01 0.32  

Error 1404.80 40 1.32   

Total 1605.16 42    

*Significant covariate p<0.05 
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Order of Teaching Approach: Impact on Students’ Confidence in Their Abilities to Solve 

(SLO2)  

A second ANCOVA was used with group as a between-subjects factor, confidence to 

solve as the dependent measure, and pre-confidence score as a covariate. Although Group 2 (TA 

first) had slightly higher post-confidence scores (M=4.30, SD=0.57) than Group 1 (MR first)  

(M=3.91, SD=0.971), no significant differences on confidence to solve were found between the 

two groups (F(1,39)=.80, p=0.38). The covariate, pre-confidence, was significant (p=0.003) 

indicating that treatment groups differed in prior knowledge (see Table 4).  

Table 4: ANCOVA Results for Confidence to Solve 

Source SS df MS F p 

pre-confidence 5.32 1 5.319 10.02 0.003* 

Group 0.42 1 0.423 0.797 0.38 

Error 20.70 39    0.531   

Total 732.00 42    

*Significant covariate p<0.05. 

As a follow up investigation, two separate paired sample t-tests were used to examine the 

difference between pre and post confidence scores. Both paired sample t-tests were statistically 

significant for both groups indicating that Group 1 (PreC-M=3.50, PreC-SD=0.74; PostC-

M=3.91, PostC-SD=0.97), t(21)=-2.25, p=0.04; and Group 2 (PreC-M=3.90, PreC-SD=0.85; 

PostC-M=4.30, PostC-SD=0.57), t(19)=-2.18, p=0.04, showed increases in their confidence to 

solve. Effect sizes, calculated by using the within-subject calculator for means and standard 

deviations method presented by Morris and DeShon (2002), indicated moderate effect sizes for 
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both Group 1 (d= 0.494) and Group 2 (d= 0.509). Findings suggest similar positive increases in 

students’ confidence in their abilities to solve among both groups. 

Teaching Approach: Impact on Students’ On Task Behaviors (SLO3) 

In order to explore whether there was a relationship between students’ engagement and 

each distinctive teaching approach used (i.e. MR approach versus TA approach), a McNemar Chi 

square test was performed. Results indicated a significant relationship was found indicating that 

students exhibited higher levels of engagement when TA approaches were used (Group 1: 78%; 

Group 2: 80%) compared to when MR approaches were used (Group 1: 55%; Group 2: 57%) ( 

χ2(1, N = 240) = 11.358, p =.001). Additionally, teacher written reflections were examined to 

further explore student behaviors during the implementation. Similarly, reflection notes 

suggested that in students exhibited a higher percentage of on task behaviors when TA 

approaches were used. Student’s perceptions towards TA instruction were also more favorable 

compared to MR approaches.  For example, students in Group 1 struggled with the MR methods 

in Module 1, but when they were introduced to algorithms in Module 2, they were more on task 

and engaged. Teacher reflection notes also suggested that the teacher perceived that “students 

felt like the algorithms helped them fit together the pieces from what they had learned or 

struggled with during modeling [MR approach].”   Further, the teacher indicated that she also 

experienced difficulty with motivating Group 2 students [TA first] to engage in the modeling 

[MR] activities having already received instruction on algorithms. The teacher states that 

students in Group 2 (TA first) “already knew a method for solving the problem, and during 

Module 2 they asked whether they could use proportion algorithm instead.” This preference may 

be due to the novelty of the MR approach as the teacher noted that students “complained about 
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the newness of the modeling approaches [MR]” and vocally expressed that they “experienced 

difficulty with trying something new.”  

Discussions 

The goal of this study was to test the hypotheses that students taught with the multiple 

representation (MR) approach first before traditional algorithmic (TA) approaches would 

improve their learning, confidence to solve, and that when students were taught with MR 

approaches they would be more engaged in their learning. To test these hypotheses, we used two 

treatment groups: Group 1 received MR approaches first and Group 2 received TA approaches 

first. The primary goal of this study was not to test which teaching approach is better but rather 

to investigate how teachers can best organize these two approaches to better meet the learning 

needs of students and get the most effective student learning outcomes.  

No significant differences were found between the two treatment groups (MR first versus 

TA first) in terms of abilities to solve on post-tests however, results from follow up paired 

sample t-tests suggested a larger gain in abilities to solve for students introduced to MR 

approaches before TA approaches. In this study, students in Group 1 (MR first) began with lower 

abilities to solve (e.g. pre-knowledge) than Group 2 and yielded higher abilities to solve on post-

tests when compared to Group 2 (TA first). This finding suggests that students may improve 

their learning if they are first introduced to MR approaches that were designed to emphasize 

mathematical sense making and justification. After being presented with various MR 

representations students may then be more ready to supplement those initial problem solving 

skills with more efficient algorithms (Van de Walle & Lovin, 2006; Donovan & Bransford, 

2005). The sequence of MR first is also aligned with a number of empirical studies that support 
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Bruner’s theory (Bruner, 1966) which recommends that instruction be sequenced from grounded 

representations to more abstract ones with numbers and symbols (Bransford, Brown, & Cocking, 

1999; Goldstone & Son, 2005; Koedinger & Anderson, 1998; Moreno & Mayer, 1999; Nathan, 

Kintsch, & Young, 1992; Nathan & Koedinger, 2000). While the results of this study suggest 

support for the MR first approach, it is important to highlight that much empirical support has 

also been found for the procedures-first approach (Briars & Siegler, 1984; Byrnes & Wasik, 

1991; Frye, Braisby, Love, Maroudas, & Nicholls, 1989; Fuson, 1988; Hiebert & Wearne, 1996). 

Future research therefore should continue to further investigate how both TA and MR teaching 

approaches can be integrated to best support student learning outcomes and with other 

mathematical content. 

Results further suggest that, in terms of teaching, using MR approaches before TA 

approaches may also be advantageous for teachers. In this study, the teacher noted that although 

most students struggled and were challenged by MR approaches, it was especially difficult to 

engage TA first students who had already been presented with traditional algorithmic approaches 

on how to solve given problems. Furthermore, the teacher noted that TA first students expressed 

that they did not find much value for exploring alternative methods for solving problems having 

already been introduced to efficient algorithms that could be used. This also caused the teacher a 

few challenges. Although the two approaches were presented in different order, observed 

students’ on task behaviors were also similar for MR first students. During Module 2 where MR 

first students were presented with TA approaches, students were observed to be more on task. 

Teacher reflections also noted that students even expressed preference for step-by-step 

algorithmic approaches. While there may be many reasons for these results, this may be 
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attributed to the ease of using algorithms. Furthermore, students’ preferences may have been due 

to students’ familiarity with this type of teaching approach which is often emphasized in U.S. 

mathematics classrooms and textbooks (National Research Council [NRC], 2001; Lee, Brown, & 

Orrill, 2011; Ma, 1999, 2010; Van de Walle & Louvin, 2006). Further, a major assumption of 

using MR approaches is that they will lead to increased student on task behaviors because 

students are required to make sense of their various representations and models, explain their 

methods in writing, discuss strategies with their peers in groups, and rationalize their methods 

verbally with their teacher and peers. Unfortunately, as this study suggests, this may not always 

be the case. Future research should continue to investigate students’ on task behaviors but also 

students’ preferences for various problem solving strategies and tools. Furthermore, it is 

important to highlight the importance of teacher knowledge and preferences as well. Previous 

research has found that students often use the same tools and models that their teachers use (Cai, 

2004; Cai & Lester, 2005). If teachers stress TA approaches over MR approaches this may 

explain students’ preferences and comfort with TA approaches. This also leads to implications of 

how teachers are prepared. Unfortunately, if teachers have been taught prepared and trained 

solely with TA approaches (Wu, 2001), they often also teach mathematics the way they were 

taught mathematics. As students find MR approaches challenging, research has also found that 

teachers may also lack the deep mathematical understanding and proficiency to use MR 

approaches (Ma,1999). Future research should continue to investigate, not only how students can 

be supported but also how their teachers can be better prepared to support to help their students. 

More research is needed on how to provide teachers with guidelines on how to scaffold student 

learning with MR approaches.  
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In terms of confidence to solve, Newton and Sands (2012) found that by engaging in 

exploring alternate strategies and justifying their choices students gained in their confidence.  

Results of this study found that students’ confidence was positively impacted by both teaching 

approach combinations (i.e. MR first and TA first) and both impacted students similarly. Future 

studies should however continue to investigate whether students’ confidence increased by 

learning multiple approaches and further investigate whether student engagement has an impact 

on confidence and student abilities to solve. Furthermore, future studies could include student 

interviews that could provide an additional source of data to capture student confidence.   

Conclusions 

Many leaders in mathematics education today support the idea that students must have a 

balance of both conceptual understanding and procedural fluency in all areas of mathematics 

(Capraro & Joffrion, 2006; Fennell et al., 2007; NCTM, 2000, 2006). While conceptual 

knowledge should not be elevated above procedural knowledge (Howe, 1999), teaching 

approaches that help students with conceptual understanding are critical especially with newer 

mathematical standards that require as much attention to be given towards conceptual 

understanding as to procedural fluency (NRC, 2001). With these new standards teachers and 

students may be encouraged to partake in teaching approaches that they may not be familiar 

with, such as the use of multiple representations and mathematical models. With that being the 

case, as was evident in this study, more research is needed on how to support students with these 

new approaches and how to organize their instruction in light of the traditional instructional 

practices that students have been accustomed to.  
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