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Abstract 

This research targets children’s informal strategies and knowledge of fractions by examining 

their ability to create, interpret, and connect representations in doing and communicating 

mathematics when solving fractions tasks. Our research group followed a constant comparative 

method to analyze clinical interviews of children in grades 2-6 solving fraction tasks. Several 

iterations of coding yielded an emergent coding scheme that helps capture the nuances of 

children’s reasoning with multiple types of fractions representations. Initial results from the 

interview analyses suggest variation in children’s reasoning across four categories: (a) model 

types, (b) children use of representations and representational fluency, (c) connectedness of 

children’s informal to formal reasoning type, and (d) meanings of fractions. We discuss the 

challenges of negotiating first-order versus second-order models of children’s meaning of 

fractions, and the relationship between children’s representational fluency and conceptions of 

fractions. 

Keywords: fractions, children, representational fluency, meanings, clinical interviews 
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Fractions, ratios, and proportions play an important role in school curriculum that spans 

from elementary to university-level mathematics, and arguably they are the most challenging to 

learn and most difficult topic to teach (e.g., Lamon, 2007). Fractions are difficult because they 

have multiple meanings: part-whole, quotient, measure, ratio, and operator (Kieren, 1980). 

Research shows that students persistently hold limited conceptions of fractions, especially in the 

United States (Siegler, et al., 2010), which poses a barrier in their learning of later topics of 

rational numbers and algebraic reasoning. Building a solid understanding of fractions at the 

elementary level lays a foundation for other advanced mathematics.  

Research has documented the importance of building from children’s informal 

knowledge and experiences to develop a robust fractions sense before being introduced to 

operation rules (Empson & Levi, 2011; Lamon, 2007; Mack, 1990). Investigating students’ 

representational fluency—the ability to create, interpret, and connect representations in doing 

and communicating mathematics—offers an important entry into student thinking and 

understanding of mathematical ideas. Research on fractions suggests that translating between 

multiple representation types and models helps make concepts more meaningful to learners (e.g., 

Behr, Lesh, Post, Silver, 1983), and in turn provides potential for researchers and teachers to 

build a second-order model of children’s understanding (Steffe & Olive, 2010). Yet little is 

known about how children reason within and between fraction representation systems and what 

informal and prior knowledge children draw on when learning fractions. Drawing from Behr, 

Lesh, Post, & Silver’s (1983) representation systems (i.e., pictures, manipulatives, spoken and 

written symbols, and “real-world” situations), we investigate the problem of how children drawn 

on their prior/informal knowledge when solving fractions tasks by looking at their 

representational fluency and meanings of fractions in solving such fraction tasks. 
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Purpose and Research Questions 

The purpose of this study is to examine children’s informal strategies and knowledge of 

fractions by looking at their creations, interpretations, and connections within and between 

multiple fractions representations. In particular, this study addresses an unanswered question 

about children’s understanding of fractions as established by Lamon (2007): What 

informal/intuitive strategies and prior experiences are drawn on as children reason about tasks 

for fractions concepts and operations with fractions? 

To address this question we conducted and analyzed clinical interviews with children on 

their solving of fraction tasks. We adopt a conceptual lens that privileges children’s observable 

representational activities across various models of fractions and researcher-conjectured second 

order models of children’s meanings of fractions (Steffe & Olive, 2010). 

Conceptual Perspective 

Three mutually supportive conceptual lenses were adopted to guide this research: (a) 

model types for fractions, (b) an interactive model for using representation types (Figure 1), and 

(c) multiple meanings of fractions. Each lens is discussed in turn. 

First, we consider three model types for fractions as a single whole, fractions as multiple 

wholes, and fractions as a discrete collection (e.g., see Wilson et al. [2012] who distinguish 

between “collection” and “whole”). Second, the interactive model as proposed by Behr et al. 

(1983), distinguishes between five inter-related types of representations: written symbols (e.g., 

⅝), spoken symbols (e.g., five-eighths), graphs/diagrams/pictures (e.g., •••••ooo), manipulatives 

(e.g., three-eighths cut out of a circle of paper with a five-eighths wedge remaining), and real-

world situations (sharing one cake fairly among eight people, how much is five people’s 
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shares?). The representation types informed the design of tasks for clinical interviews and in our 

analysis of clinical interviews with children.  

 
Figure 1. Representation types (Behr et al., 1983). 

  
A third conceptual lens on children’s understandings of fractions is described as multiple 

meanings of fractions (Behr et al., 1983; Charalambous & Pitta-Pantazi, 2007; Kieren, 1980). 

These five personalities of fractions include fraction as: part-whole (e.g., 3 out of 4), measure 

(e.g., ¾ on a number line), ratio (e.g., 3: 4), operator (e.g., 3/4 of something), and quotient (e.g., 

3 divided by 4). As elaborated next in the Methodology section we used these three mutually 

supportive lenses on model types, representation types, and meanings of fractions to inform the 

design and selection of tasks and the analyses of children’s activity and cognition.  

Methodology 

Clinical Interviews 

Children across grades 2-6 at various schools within the southeast region of the U.S. 

volunteered to participate in an interview study. We followed a clinical interview method 

(Opper, 1977; Piaget, 1976) to discover the child’s cognitive processes in the face of 
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improvisations, to examine children’s intuitive or informal knowledge, and to observe their 

construction of knowledge (Lamon, 2007). Probing questions were specific to each interview, 

following the path of the child, using evidence of their thinking to test and confirm or refute 

conjectures about their understandings based on initial hypotheses grounded in research literature 

and existing empirical evidence of children’s thinking. 

Tasks. Interview protocols were designed as a sequence of tasks that aimed to address 

various meanings of fractions (Table 1). Each protocol typically addressed more than one task 

type, selected based on best guesses of the prior experience and understandings of each child. In 

general, we sought to elicit a diversity of strategies in accessible contexts that shed light on 

children’s understanding of fractions. We also sought to elicit children’s informal strategies in 

accessible contexts thus often started from a fair-sharing real-world context (Empson & Levi, 

2011). Congruous with the Common Core State Standards for Mathematics (National Governors 

Association Center for Best Practices, & Council of Chief State School Offices, 2010), fractions 

as measure was emphasized as a meaning of fraction. 

 
Table 1 
Task types for interview protocols 
  

Meaning/Context Type of Task 

Fair-sharing •  Share things fairly 
•  Name and justify the share 

Measure •  Specify fractions on a number line 
•  Given a fractional length, identify other fractions 

Comparing and Operations •  Comparing fractions, equivalency 
•  Addition/subtraction, estimation 
•  Multiplication/division, estimation 
•  Specify operations 
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Participants and data collection. A total of 24 40-60 minute interviews were conducted 

near the end of the 2013-2014 school-year with children in grades 1(1 child), 2(5), 3(5), 4(6), 

5(7), and 6(2). Each interview was conducted by a single researcher trained in the method of 

clinical interviews; a second researcher assisted with equipment, recorded field notes and 

timestamps to inform coding, and sometimes gave additional prompts to elicit a child’s 

understanding. Data include video and audio-recorded interviews, artifacts, and researcher field 

notes. 

Data Analysis 

In this paper we focus on analyses of two major phases: a task analysis, and initial 

interview analyses. Additional analyses for the larger corpus of data are in progress. 

Task analysis. In an initial phase of analysis, all written tasks from interview protocols 

were compiled. A sample of 26 tasks were analyzed by the authors following a constant 

comparative method (Glaser, 1965) to develop a coding scheme for the types of understandings 

that were intended to be elicited in the task statements. Our conceptual lenses on model types, 

representation types, and meanings of fraction formed the basis of our analyses. We consider the 

process and results of this analysis to be first-order models of the intended mathematics based on 

the intent of the researcher (cf. Steffe & Olive, 2010). 

Interview analysis. The analyses of clinical interview data ensued in several iterations. 

First, several rounds of open coding were conducted together in which three researchers (the 

authors of this report) viewed and memoed select clinical interviews together during research 

meetings. During these meetings we identified interesting segments and instances that seemed to 

contribute to our understanding of informal strategies children drew on while solving fraction 

tasks. We also summarized each clinical interview we coded by noting key reasoning patterns. 
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These memos helped establish the foundation of a coding scheme and general categories, three 

of which are relevant to this report: (a) representation types, (b) meanings of fractions, and (c) 

intuitive understandings/prior experience. The fourth category was “action,” which was later 

decided to be too fine-grained to capture our overall research goal, yet informed our thinking 

when categorizing typologies of children’s activity in various model types. 

Once we had a relatively stable sense of coding categories, our second round of coding 

involved four researchers (the authors of this report, and another researcher) who each coded 1-3 

different clinical interviews, capturing a diversity of student reasoning. Two major outcomes of 

this round of coding were: (a) the establishment of a common unit of analysis, and (b) elaborated 

coding categories. We denote a new unit of analysis by identifying a shift in the clinical 

interview such that a researcher uses a question that prompts beyond explanation or clarification 

such that task doesn’t serve the same purpose (as prior activity) (i.e., it may potentially invoke a 

conceptual shift, cf. Steen, [1996]). Code categories were revised and updated to capture new 

insights gained from this round of coding, and two categories were added to the coding scheme: 

(a) model types, and (b) reasoning types (i.e., capturing several commonly observed explanations 

or strategies). 

In the third and fourth rounds of coding, each researcher coded two clinical interviews, 

with two researchers overlapping on three of four children’s interviews. Our focus in this round 

of coding was to identify formal and informal reasoning and how that relates to meaning(s) of 

fractions, representation types, models types, and types of objects in the task situation (e.g., 

cakes, candies). Each researcher also wrote a summary of the coded clinical interviews to inform 

discussions as a group. These discussions informed further refinement to the coding scheme, 

clarification of how to apply the unit of analysis in coding, and an updated coding template. 
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Reflection on this final round of coding in light of our research goal and conceptual frames 

informed the version of the coding scheme presented next as preliminary results with data 

exemplars. Future analyses are planned including validating the task codes, and a strategy 

analysis (cf. Empson et al., 1999). 

Preliminary Results: Children’s Informal Reasoning with Fraction Representations 

This section reports progress toward addressing the research question: What 

informal/intuitive strategies and prior experiences are drawn on as children reason about tasks 

for fractions concepts and operations with fractions? The four major categories of our emergent 

coding scheme are: (a) model types, (b) children use of representations and representational 

fluency, (c) connectedness of children’s informal to formal reasoning types, and (d) meanings of 

fractions. 

Model Types 

We classify children’s use of model types according to their observed activity and 

discourse around the task(s) they worked on. From extant literature and supported by our 

emergent coding scheme, we identify three model types: single whole, multiple whole, and 

discrete collection. See Table 2 for descriptions and examples from clinical interviews. 

Table 2 
Model type evident in children’s reasoning about fraction tasks 
 

Model Type Description Example 

Single Whole One thing that can be partitioned 
or otherwise in some way 
divided 

Oscar (grade 2) could partition a circle 
into thirds more accurately than a 
rectangle or linear strip of paper 

Multiple 
Whole 

From the child’s perspective, 
something that can only be 
solved with fractional pieces 

Oscar (grade 2) shared five tortillas with 
two people to get 2 ½ tortillas per person 
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Discrete Set A collection of objects that 
cannot be cut or broken (e.g., 
gems, shells, balloons) 

Asked to share 17 cookies fairly among 3 
people, Ariel (grade 3) said it is not 
doable (cookies cannot be broken) 

 
An emergent trend we observed in our data is that the model type seems to influence the 

strategy that children use. For example, Oscar’s partitioning strategy was successful a 

manipulative of a circle but not with a rectangle (row 1 Table 2). In some situations, the model as 

intended was not the same as the model children used to make sense of the problem (for example 

the case of Ariel, row 3 of Table 2). Thus we argue that by coding children’s treatment of model 

types we gain insight into their informal reasoning strategies. 

Children’s Use of Representations and Representational Fluency  

Children’s use of representation types. Recall that following the model proposed by 

Behr et al. (1983), there are five types of representations or representation systems: (a) spoken 

symbols, (b) written symbols, (c) manipulative aids, (d) pictures, and (e) real-world symbols. 

From a lens on constructing a second-order model of children’s mathematics (ala. Steffe & 

Olive, 2010), a more nuanced view of fraction tasks is possible as evidenced in our interview 

data. Consider the representation types and examples provided in Table 3. 

 
Table 3. 
Representation use evident in children’s activity in solving fraction tasks 
 

Representation 
Use 

Description Example 

Spoken 
Symbols 

Audibly names a fraction that 
specifically deals with number (i.e., 
child qualifies or quantifies the size 
of a fraction or fractional amount) 

“one out of three” 
“one third” 
“each person gets 2 pieces” 
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Written 
Symbols 

Records a formal symbol, word, or 
operation string/equation using 
paper-and-pencil 

“¼” (fraction symbol) 
“1 4th” (numeric/word symbols) 
“1 fourth” (word) 

Manipulative 
Aids 

Enacts a physical object that’s not a 
drawn representation (but can be 
drawn on) 

A child may systematically or 
randomly cut or fold a cutout circle or 
rectangle. Other materials may 
include a maker box, paper strip, or 
coin 

Pictures Draws or interprets a drawn shape 
or figure 

Bar, number line, rectangle 

Real World 
Situation 

Engages with a context such as fair-
sharing or measuring 

Child describes a fair share or 
describes a fractional measurement 
(e.g., one-eighth of a bar) 

 
In spoken symbols, there are different ways children name fractions, which could give a 

hint on what meaning of fractions they are holding. For example, most children were observed to 

verbally give a fraction name such as “three fourths” whereas some children, such as Caroline, 

used language such as “ten out of sixteen.” These two children might hold different conceptions 

when naming fractions. In the former case, s/he may be regarding the fractions as a whole, one 

singleton. In contrast, Caroline’s “ten out of sixteen” language may indicate that she tends to 

look at fractions in a part-whole relationship, treating the numerator and denominator as separate 

numbers. 

In written symbols, we capture if children record their spoken symbols in words (i.e., 

one-fourth), in symbolic numbers (1/4), or as operations (1÷ 4). For example, at the beginning of 

a task Lucy (a second grader) expressed difficulty in writing down “one and a fourth” in a 

symbolic form (i.e., 1(¼)), but put the fractions in words. Likewise, Paul (a fourth grader) could 

reason that ⅝= 2 and ½ of ¼, but could not make this into an equation: ⅝ = 2(½) × 1/4. By 
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coding for the nuanced nature in which children use written representations, it helps us to capture 

children’s informal and formal understanding of fractions. 

For manipulatives aids, we capture the action that children enact in the physical object 

such as folding and cutting. For example, one child folded a cut-out carefully before cutting into 

fourths. This action gave us a sense that this child had some systematic way of partitioning, 

which is different from a child who randomly breaks the cut-out into (generally unequal) fourths. 

In coding for children’s use of pictures, we capture the type of picture used in a child’s 

reasoning such as a bar diagram, number line, or circular area model. Children may create a 

picture or reason from a given picture or diagram to make sense of the problem. In some 

instances, a child’s use of pictures sheds light on additional nuances of their reasoning that would 

otherwise be hidden if only symbolic representations were considered. 

Finally, for a real world situation, we capture if children refer to a context when 

reasoning with fractions or fractions operations. Children may also extract fractions out of a 

given context, or draw on a different context to make sense of the problem. An example of this 

was given above in Ariel’s reasoning from the context of fair-sharing cookies to the context of 

fair-sharing cake. 

Overall, coding for the ways in which children use representations within one 

representation type provides an importance lens on children’s understanding of fraction concepts 

and operations. Initial results suggest that we should not overlook children’s abilities to reason 

within one representation system, and for some children, they may benefit from opportunities to 

move forward from their sound informal understanding of fractions such as in spoken words or 

real-world contexts to the formal use of symbolic form. 
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Children’s representational fluency. Recall that representational fluency is the ability 

to create, interpret, and connect multiple representations in doing and communicating about 

mathematics. This section of the coding scheme specifically captures children’s interpretations of 

multiple representations either within the same representation type or across representation types. 

As demonstrated in Table 4, preliminary results highlight that children often express 

inconsistencies or mismatches when reasoning across representations types, sometimes posing a 

hindrance to their problem solving process (see Elliott, Tran, Fonger, & Ziols, under review). 

 
Table 4.  
Mismatches within and between representation types 
 
Mismatch Examples 

Spoken-written Lucy (a second grader) says “a whole and one fourth” and 
writes “1/1 4/4” 

Spoken-manipulative Oscar (a second grader) says “one-third” yet partitions a 
rectangle into three non-equal pieces 

Picture-spoken Sadie (a fourth grader) is able to use a diagram to identify ¼ 
and 1/8, yet cannot use spoken symbol to state that is 1/8 more 

Manipulatives Oscar (a second grader) is able to cut a circle into thirds, but 
not a rectangle 

 
Per our emergent coding scheme, mismatches between different representation types are 

more prominent than correct connections in children’s reasoning about fraction concepts and 

operations with fractions. Another level of abstraction of representational fluency involves 

talking about the nature of children’s understanding of the connections between representations 

and their understandings/conceptions. Consistent with Fonger (2011), we consider a connection 

as an instance in which students are able to articulate invariant features across representations 

within and across representation types. 
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Reasoning Types 

An important result of our emergent coding scheme is the classification of children’s 

reasoning into three categories: (a) informal intuitive, (b) formal and disconnected, and (c) 

formal and connected. See Table 5, which is elaborated in Ziols, Fonger, Tran, Elliott (in 

review). These categories of reasoning type are largely related to children’s representational 

fluency in solving fraction tasks with formal or disciplinary representations (i.e., written symbols 

per Behr et al., 1983) and their relation to informal representation types (i.e., real-world 

situations, spoken symbols, manipulatives, and pictures per Berh et al., 1983).  

 
Table 5. 
Connectedness of children’s informal to formal reasoning type (Ziols et al., in review) 
 
Reasoning  Description Example 

Informal/ 
Intuitive 

Student may not have formal 
instruction yet (observing all 
informal strategies); often 
reasoning involving real-world 
situation and spoken symbols 

• Sadie (a fourth grader) introduces brownies 
that can be partitioned instead of candies 
in a discrete collection in order to reason 
about fraction sizes. 

• Ariel (a third grader) recognizes that 2 cakes 
can be cut and shared equally with 3 
people after saying it was impossible to 
equally share 2 cookies with 3 people.  

Formal and 
Disconnected 

Formal instruction of fractions 
is observed, can make sense of 
the problem using informal 
reasoning but could not connect 
the two; knowledge within one 
representation is not extended to 
the other 

• Isaac (a third grader) argues that 2/3 is larger 
than 5/8 when using an area model to 
compare fractions but that 5/8 comes after 
2/3 on a number line. 

Formal and 
Connected 

Formal instruction of fractions 
evident, can make sense of the 
problem using informal 
reasoning and make the 
connection between the two; 

• Paul (a fourth grader) identifies a unit 
fraction from a bar described as 2/5 and is 
able to find the length of the whole. He 
generalizes his knowledge when given 
13/15 as a numeric symbol only. 
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knowledge is extended from 
one representation to another 

 

Informal/intuitive reasoning. Across all interviews results indicate that fair-sharing 

contexts are accessible for children even before formal instruction of fractions (i.e., grade 2), and 

children exhibit flexibly using their own strategies (typically informal working on either 

manipulatives, picture/diagram or in a verbal form). In the examples given in Row 1 of Table 5, 

both Sadie and Ariel relied on informal understandings of fractions in a contextual situation of 

fair-sharing to make the fraction task meaningful. 

Formal and disconnected reasoning. A common reasoning strategy across children’s 

problem solving was to exhibit a disconnection between their informal reasoning and a formal or 

rule-based procedure. This disconnection was often observed when children toggled back and 

forth between a real-world context, using a picture/diagram, manipulatives, describing verbally, 

and a non-contextual numeric calculation. For example, Thomas, a 3rd grader, was successful 

using a model to solve the task of sharing 1¾ submarine sandwiches among two people, naming 

each share as 7/8. However, typical of several children, Thomas repeatedly used cross 

multiplication to manipulate parts of the share (¾ and 1/8), which confused him and was in 

conflict with reasoning within other representation type. 

Formal and Connected. In formal and connected reasoning a student demonstrates 

representational fluency in their creation and/or interpretation of symbolic representations by 

drawing meaning from other formal representations or informal representation types such as 

pictures, spoken symbols, real-world contexts, or manipulatives. For example, children could 

reason with symbolic forms and connect them to specific situations where they rely on 

picture/diagram or context to base the reasoning. For example, Paul identifies a unit fraction 
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from a bar described as 2/5 and is able to find the length of the whole. He generalizes his 

knowledge when given 13/15 or any given fractions as a numeric symbol. 

Meaning of Fractions 

Following the framework of fractions meanings (Kieren, 1980), we coded the meaning 

that children elicit when reasoning with the tasks. See Table 6 for a summary of code names and 

descriptions. 

Table 6. 
Meanings of fractions 

Meaning of 
Fraction 

Description 

Part-Whole Counting number of parts of the total number of parts of a partitioned 
whole; does not require a unit to measure, involves fractions less that 1 

Measure Assignment of a number to a region done through an iteration of the 
process of counting the number of units used in covering a region (Kieren 
1980); use one fraction to measure another such as on a number line 

Quotient A division relationship, “a/b” as in “a” divided by “b” 

Ratio A relationship between two quantities by comparison of whole quantities. 
This includes fraction as pieces compared to pieces as in “a” compared to 
“c” (in context of “a/b”, “c/d”). 

Operator Two fractions are mentioned in reasoning, related by an operation 
(explicitly or tacitly) “a/b of __”; a fraction operates on another fraction 

 

Clear examples of meanings of researchers’ second-order models of children’s meaning 

of fractions are forthcoming. We can report, however, on two interesting nuances in our findings. 

First, sometimes there are discrepancies between the researchers’ intended meaning when 

designing the tasks and the meaning from children’s perspective when they reason work on the 

tasks. For example, in the interview with Paul, the task asked him to compare two fractions bars 



Variation in Children’s Fraction Understanding  Fonger, Tran, Elliott 

 17 

⅝ and ¼ in a given rectangular area figure. In the task design, we intended for the child to  

expose to the measure meaning of fractions, especially using one fraction to measure the other. 

This meaning does come through in his reasoning. In addition, another meaning of fraction 

emerged: Paul seemed to use an operator meaning of 5/2 in the statement, “⅝ is 5/2 of ¼” (i.e., 

the fraction 5/2 operates on ¼ to make ⅝). Also, as Paul worked with ⅝ and ¼, sometimes it is 

not clear that he was drawing on the part-whole meaning (seeing ⅝ as 5 out of 8) or as a 

measurement meaning (5 of ⅛). The coding for fractions meanings is still challenging and in 

some situations we could not classify student reasoning into one of the five meanings. Mostly, 

these instances arise when children seem to talk about fractions as a number without attaching to 

any specific meaning. One speculation is to consider adding a category of “rational number” to 

capture the idea that from a researcher’s view it seems as though the child is considering the size 

of the fraction as a number or perhaps as quantity. 

Discussion 

Research on children’s informal and intuitive reasoning strategies in solving fractions 

tasks is needed (Lamon, 2007). Our conceptual lens combines three perspectives: model types, 

representation types, and meanings of fraction (Behr et al., 1983; Kieren, 1980). The data corpus 

for this research consists of clinical interviews with children in grades 2-6 who solved a series of 

fraction tasks. Our conceptual lens was useful in two main ways. First, this lens informed our 

task design and first-order models of intended task types for the clinical interviews. Second, this 

lens served as a foundation to an emergent coding scheme that developed over several cycles of 

coding the clinical interview data. The preliminary finding presented in this report is an emergent 

coding scheme that spans four categories: (a) model types, (b) children use of representations 
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and representational fluency, (c) connectedness of children’s informal to formal reasoning type, 

and (d) meanings of fractions. 

In all interviews, our results confirm that contexts are accessible for children based on 

their prior experiences (Empson & Levi, 2011). Akin to task variations proposed by Behr and 

colleagues (1983), we found that models of the whole influence the common strategies used and 

the big ideas highlighted. The findings reported here combine these perspectives, extending 

research on multiple meanings of fractions across a diverse range of children. In this study we 

found that syntheses of research from various perspectives on meaningful fraction instruction can 

inform the purposeful design and selection of tasks to use with a variety of children at different 

levels. 

We argue that our preliminary findings help address the issue of better understanding 

children’s informal reasoning with fractions as it relates to their more formal strategies and 

representational fluency in solving fractions tasks. This is especially prominent in the results 

presented in Table 5 in the classification of the connectedness of children’s reasoning. However, 

the relationship of children’s reasoning types and mismatches in representations remains to be 

explored. Another future direction of this research is to further elaborate the role of 

representational fluency in relation to children’s conceptions of fractions. 

Finally, in addressing meaning of fractions in Table 6, we noted several difficulties in 

coding children’s meanings of fractions. Our attempt to use these first-order logico-mathematical 

meanings in analyses of second-order models of children’s mathematics is complex and 

interesting. Our future research is guided toward expanding this aspect of the coding scheme 

with the aim of constructing second-order models of children’s understanding of fractions as it 

relates to their informal representational activity. 
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