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Abstract 

Being able to make sense of students’ written work is a key practice that relies on having robust 

subject-matter knowledge and pedagogical content knowledge (Ball, Thames, & Phelps, 2008).  

It also is connected to a teacher’s ability to notice students’ mathematical thinking (e.g., Sherin, 

Jacobs, & Philipp, 2011).  In this paper, I explore the strategies pre-service secondary math 

teachers use to analyze student written work based on in-depth, task-based interviews with eight 

participants.  The participants engaged primarily in mathematical analysis of the written work, as 

well as analysis by comparison to their own solutions to the math tasks.  One participant engaged 

in pedagogical analysis.  The proficiency with which participants made assertions about the 

student work was related to their proficiency in solving the task as well as whether they were 

making high-inference or low-inference assertions.  The results have implications for supporting 

teachers to implement the practices described in Principles to Actions. 
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Interpreting Student Work: 

What Secondary Mathematics Teacher Candidates Bring to Preparation 

NCTM’s Principles to Actions (2014) describes critical mathematics teaching practices 

that build on a teacher’s ability to make sense of student thinking.  Interpreting students’ written 

work is a key component of making sense of student thinking and implementing productive and 

equitable assessment practices.  To inform teacher education efforts, in this study I investigate 

how secondary pre-service teachers reason about student written work at the beginning of their 

teacher preparation programs. 

Literature Overview 

Interpreting student thinking is a critical component of high quality instruction and 

assessment (NCTM, 2014; Teaching Works, 2012).  However, this practice can be difficult for 

novice teachers to implement (Sleep & Boerst, 2012; Shaugnessy, Boerst, & Ball, 2014).  To 

make sense of student work, teachers must draw on both knowledge of mathematics and 

knowledge about students, different aspects of mathematical knowledge for teaching (MKT). 

Ball and colleagues (2008) argue that knowledge of content and students is a component 

of pedagogical content knowledge.  In the context of interpreting student work, drawing on 

knowledge of content and students might take the form of recognizing a common student error 

(e.g., knowing students might believe (a + b)2 = a2 + b2 when learning about the distributive 

property).  Teachers might also draw on subject-matter knowledge when interpreting student 

work.  For example, teachers rely on their own mathematical knowledge when making sense of a 

novel approach to a particular problem.  Research at the elementary and secondary levels has 

shown that MKT is correlated with student achievement (Baumert et al., 2010; Hill, Rowan, & 

Ball, 2005).  Work is on going at the elementary level to integrate thinking about high-leverage 
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practices and MKT (Shaugnessy et al., 2014).  However, research at the secondary level has yet 

to fully unpack the relationship between MKT and the high-leverage practices emphasized in 

Principles to Actions. 

Another key factor in interpreting student work is the ability to notice key aspects of 

student mathematical thinking (e.g., Jacobs, Lamb, & Philipp, 2010; Sherin, Jacobs, & Philipp, 

2011; van Es & Sherin, 2002).  Jacobs and colleauges (2010) note that pre-service and novice 

elementary teachers struggle to identify and interpret students’ mathematical strategies.  These 

results motivate a consideration of what types of reasoning pre-service teachers do engage in 

when asked to analyze student work.  Since expertise around noticing can be learned (Jacobs et 

al., 2010), it is important to tease out what tools pre-service teachers have to work with as they 

enter teacher preparation. 

Drawing on Ball et al.’s (2008) conceptualization of MKT, I investigate the relationships 

between pre-service secondary teachers’ interpretations of student work and MKT.  Building on 

the literature around teacher noticing, I use in-depth interviews and a multi-case approach (Miles 

& Huberman, 1994) to address the following questions:  

(1) What strategies do pre-service secondary teachers use to analyze written work?  

(2) How are these strategies related to teachers’ own solutions to mathematical tasks? 

Methods 

Data Collection 

Data are drawn from a larger project investigating pre-service secondary teachers’ 

development of MKT.  This analysis considers participants at two preparation programs.  Both 

are small, selective, one-year programs culminating in a secondary teaching credential and 
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master’s degree.  East University1 emphasizes strong mathematical preparation.  West University 

has a strong focus on social justice and the integration of research into coursework.  The 

preparation programs were purposively sampled to highlight the role of mathematics content 

courses in teacher preparation (East requires content courses for teachers; West does not).  

Within each program, four participants were purposively sampled with two main criteria: (1) 

participants had a range of mathematical knowledge for teaching; and (2) participants were 

matched across sites (to the extent possible) based on their mathematical knowledge for teaching 

and prior experiences in education (see Baldinger (2014) for more details on sampling logic).  

Though these eight participants are not a representative sample of all future secondary math 

teachers, their mathematical preparation is consistent with that of typical pre-service secondary 

math teachers (Graham, Li, & Buck, 2000).  Table 1 shows participants’ backgrounds. 

Table 1: Participants' math and teaching backgrounds 
School Name Math Background Teaching Background 

Ea
st

 

Daniel Engineering major Tutoring 
Laura Math major Paraprofessional 
Sam Math major; associates degree in 

engineering 
Substitute teacher 

Tim Math and physics major A few teacher education courses 

W
es

t 

Dylan Math and engineering major Tutoring 
Kendra Math major Summer small group teaching, After 

school teaching, Tutoring 
Lisa Math major Tutoring 
Nate Engineering major Peace Corps teaching (not math) 

 

Participants completed in-depth, task based interviews during which they thought aloud 

while solving two high school math tasks (Ericsson & Simon, 1980; Ginsburg, 1981; Goldin, 

1997).  The problems were chosen to be accessible to participants with a range of mathematical 

proficiency, to be challenging, to provide multiple possible solution strategies, and to take 

                                                
1 All school and participant names are pseudonyms. 
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approximately 15 minutes.  The problems were non-familiar; that is, even though they dealt with 

secondary level content, they were not problems participants were likely to have seen or 

completed prior to the interview. Participants were not told whether or not they had solved the 

problems correctly. 

After solving, participants analyzed a sample of student written work on the same tasks.  

They were asked: “What does the student understand, and what doesn’t the student understand?”   

Each student work sample was designed to reflect common student errors.  Participants first 

completed an algebra task (see Figure 1), where the student work sample illustrates a student not 

attending to all of the conditions in the problem statement.  Second, participants completed a 

geometry problem (see Figure 2), where the student work sample suggests a student reasoning 

based on what the diagram looks like, rather than attending to the relevant geometric properties 

of the shape. The interviews were audio and video recorded to capture participant writing and 

were transcribed for analysis. 

 
Figure 1: Algebra problem and student work 
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Figure 2: Geometry problem and student work 
 
Data Analysis 

To address the question of what strategies participants used, I divided transcripts of the 

student work analysis into assertions.  Assertions occurred when the participant made a statement 

about what the student did or did not yet understand.  I analyzed these assertions for two possible 

types of discrepancies (Sleep & Boerst, 2012): discrepancies between the assertion made and the 

evidence used to justify it, and discrepancies between the evidence used and the evidence 

actually available in the written work.  Next I coded the type of reasoning used to make the 

assertion (see Table 2). 
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Table 2: Types of reasoning used in student work analysis 
Type of Reasoning Explanation 
Mathematical Mathematical critique of the student work 
Comparison to participant’s 
solution strategy 

Participant compares the student work to the participant’s own 
solution to the problem 

Pedagogical Participant draws on common student errors or teaching 
practices to support analysis 

 

I developed cases for each task analyzed, noting the number of assertions made, types of 

discrepancies, and types of reasoning used.  I looked across participants for patterns in the types 

of reasoning and discrepancies.  Finally, I compared results across content areas. 

Preliminary Findings 

Strategies for Reasoning about Student Work 

Mathematical analysis.  Participants utilized several different approaches when 

analyzing student work.  All participants engaged in at least some mathematical analysis; for one 

participant (Dylan) this was his only approach, for several others it was their primary approach.  

When utilizing this approach, the participants were engaged in the mathematical practice of 

critiquing the reasoning of others, as described in the Common Core standards (2010).  For 

example, while analyzing the student work on the algebra task, Dylan reasoned, 

Well, they understand that these are two examples of linear equations, that have different 
slopes, and so they're going to intersect.  And when they draw these arrows down and say 
the point (0, 2), they intersect at that point, and then y = 4.  Okay, and then when you do 
the sum function, the x’s cancel and you get 4. […] Where there is a little gap is they're 
not quite sure that the x-axis means that the y-coordinate has to be zero.  And so because 
of that, this counterexample doesn't work.  
 

This shows Dylan carefully examining each step that the student made and seeing what about it 

made sense, while at the same time acknowledging the student error.   

 In some instances, this type of mathematical analysis resulted in interpretations that were 

too broad given the available evidence.  For example, in looking at the student work for the 

geometry problem, Tim reasoned,  
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However, based on this math right here [the set of equations written below the diagram], 
because x plus y is 3, the way, the way that is, I see that the student is taking into account 
that this [segment CB] may be slightly less than uh no slightly more than half of this, or 
slightly less than half of this [segment AB].  So I feel like the generality is there [indicates 
the set of equations]. 
 

Tim is arguing that because the student work includes generalized equations that the student 

recognizes the possibility of non-integer lengths for segments AB and BC.  However, the 

available evidence does not fully support this conclusion. 

 Participants may also have been impeded from utilizing mathematical reasoning to 

analyze student work when they were struggling with the mathematics themselves.  The clearest 

example of this occurred in Nate’s analysis of the algebra student work.  As a result of his own 

mathematical error, Nate was conflicted about whether the sum of the equations y = x + 2 and y = 

-x + 2 should be y = 4 or 2y = 4.  After thinking through this issue, Nate concluded, “I actually 

can’t say whether or not they understand the concept of adding two linear functions together.”  

He recognized that a lack of mathematical understanding was getting in the way of his ability to 

make sense of student thinking. 

Analysis by comparison.  Six of the participants compared the student work and their 

own solutions.  For example, Daniel twice made connections to his own work when analyzing 

the algebra student work.  Early in his analysis, he made a supportable assertion that the student 

understands function notation.  He said, “So this student has said that y equals x plus 2, so 

presumably they’re so familiar with function notation that they’ve done, made the same 

interchange I did, that y is standing in for f(x).”  Later, Daniel made an assertion about the 

student work that was too broad, saying, “Their wrong answer resulted from […] not having 

understood the picture […] I approached this as a picture myself first, so I'm leaning that way…” 

Daniel relied on his own approach to the problem, where he drew a picture to gain insight into 
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the conditions of the problem, to explain why the student might have chosen the erroneous 

example equations. However, there is no evidence to indicate whether or not the student 

understood “the picture”. 

Just as mathematical analysis could be impeded by a lack of mathematical understanding, 

analysis by comparison could also be impeded when a participant had errors within their own 

solutions. For example, on the algebra task, Lisa made essentially the same error as the student 

work sample.  She pointed out that in the student work sample,  

There’s no proof.  On my little paper over here, I did draw a proof that came to this, and 
I’m not sure I would expect that of a high school student to draw proof like that 
[indicates her own algebraic work].  But I did prove that it would equal 2y of whatever 
that P point was, or 2 of the y-value of that point P would be the y-value at f(x) + g(x)’s x1 
point, I guess.  So there was no proof and no why it didn’t work.   
 

However, she also concluded that the student “did give me a counterexample that works, 

basically.  Their counterexample works.  It shows, you know, sum of two functions does not 

always go through P.  That’s basically what I meant by that.  They recognized that that is not 

true.”  Comparison to her own work gave her the expectation of seeing a counterexample, but 

that the student did not write as much as she had, so the student’s proof by counterexample was 

insufficient. 

 Laura’s analysis by comparison was impeded in a different way.  On the geometry task, 

Laura did not arrive at a solution, but did make two conjectures about some possible 

relationships in the geometric figure.  She hypothesized that if M was the midpoint of segment 

CD, then angle AMB was 90 degrees.  Then in her analysis of the student work, she asserted, “I 

don't know personally I feel like they shouldn't assume that this [point M] is the midpoint, angle 

bisector doesn’t mean that it’s the midpoint of the line.  And so I think they're taking that for 
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granted.”  However, there is not actually evidence in the student work related to angle bisectors 

and midpoints. 

Pedagogical analysis.  Only one participant engaged in pedagogical analysis of the 

student work.  This entailed explaining or making sense of observations by connecting them to 

knowledge of common student errors, for example, or knowledge of common teaching strategies.  

In analyzing the algebra task student work, Kendra made three assertions that relied on 

pedagogical analysis.  First, she asserted,  

So it looks like they understand [that] in some situations you set x equal to zero and you 
see what happens to a function, which is – most times that’s presented in class for a 
procedure for finding the y-intercept to kind of start graphing.  So they understand that 
that is a procedure sometimes used with linear functions. 
 

For this assertion, Kendra drew on her knowledge of the school curriculum, and in particular 

how linear functions are commonly taught in school.  Kendra also asserted that one possibility 

for explaining the student error would be that the student did not double-check the work.  She 

reasoned that students commonly “[rush] through with the first answer they got without double 

checking it.”  In this case, Kendra was relying on knowledge of common student errors.  Finally, 

in analyzing the student’s proof, Kendra asserts,  

I think depending on what’s been presented or what’s the expectation of proofs, the 
student might not understand how proofs should be explained.  Because for some classes, 
this would be valid, for others, this would just be kind of your scratch paper notes and 
this wouldn’t be accepted as a formal proof of this statement.  So I think it depends on 
what expectations have been set or what the student’s mathematical background is. 
 

This shows an analysis based on knowledge of typical teaching practices.  Interestingly, Kendra 

did not engage in any pedagogical analysis on the geometry student work. 

 Overall, participants engaged primarily in mathematical analysis of student work, and 

many of the participants also utilized their own solutions as a tool for comparative analysis.  

Only one participant engaged in any pedagogical analysis, and she did not do so frequently.  
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Each type of analysis has the potential to be a productive way to interpret student work, but can 

also lead to potential discrepancies in analysis.  In the next section, I explore the relationships 

between participants’ own success solving the tasks and their ability to reason about the related 

student work. 

Proficiency with Interpreting Student Work 

Participants’ abilities to make reasoned interpretations of the student work seemed to 

vary according to their own success with a task. Dylan, Daniel, and Tim all produced completely 

correct or nearly correct responses to both problems, and their analyses of the student work were 

similarly careful and detailed.  They attended closely to the evidence and mostly (but not 

entirely) made supportable assertions about student understanding.  Dylan engaged entirely in 

mathematical analysis, and made no references to his own work.  Daniel and Tim primarily 

utilized mathematical analysis, but did draw some connections to their own solutions.  

Interestingly, in Daniel’s case, the few instances where there were discrepancies between his 

assertions and the available evidence occurred when he was making comparisons to his own 

work (though he also was able to reason by comparison without discrepancies).  Tim’s work 

does not share this pattern. 

In contrast, participants who struggled more with the mathematics exhibited some 

difficulties in interpreting the student work.  Sam, for instance, was confident that his incorrect 

solution to the algebra task was correct, and so looked for evidence of his approach in the student 

work.  Not seeing it, he asserted that the student showed little understanding.  Additionally, Sam 

tried to make sense of the student work by analyzing the student’s equations without accounting 

for the fact they were chosen as a counterexample.  Laura and Lisa both made similar errors on 

the algebra task to the student work.  Lisa was confident that her approach was correct, and so 
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interpreted the student work accordingly, as shown above.  Laura was much more uncertain 

about her approach was correct, and so felt unable to make many assertions about student 

understanding. 

Laura and Kendra both spent very little time on their solutions for both tasks.  For Laura, 

this was a result of mathematical uncertainty, which limited the number of assertions about 

student work she was willing to make.  Her lack of comfort with the mathematics made it more 

difficult for her to engage in mathematical analysis.  She also had a limited amount of work 

available for comparison.  Kendra illustrates a different pattern.  She attributed her lack of work 

on the mathematics tasks to feeling ill, and expressed more confidence in her ability to analyze 

the student work mathematically.  Like Laura, she had a limited amount of work available for 

comparison.  One possibility is that Kendra may have compensated for this by engaging in 

pedagogical reasoning on the algebra task.  

Participant proficiency in making assertions about the student work samples also showed 

variation based on the nature of the assertions, particularly on the geometry task.  When 

participants made low-inference assertions, such as that the student knows the definition or 

formula for perimeter, there were fewer discrepancies.  Participants tended to have more 

discrepancies when making higher-inference or broader assertions.  For example, Tim’s high-

inference assertion that the student admits the possibility of non-integer side lengths and 

maintains generality through the solution is too broad for the available evidence.  Another 

potential pattern is that the participants tended to make more high-inference assertions when 

discussing what the student did not understand and they made more low-inference assertions 

when discussing what the student did understand. 
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Overall, participant success in engaging in a critique of student work seemed to be related 

to their success with engaging in the mathematics themselves.  There is also a potential 

relationship between the types of analysis strategies utilized and participants’ success with 

solving the problem or understanding the relevant mathematics.  Finally, the quality of the 

assertions also seemed related to the level of inference required to make the assertions. 

Implications 

These findings suggest several implications for teacher preparation.  First, 

mathematically reasoning about another’s solution is part of the standards for mathematical 

practice described in the Common Core (2010), and requires sufficient knowledge of the relevant 

mathematics.  Thus the use of mathematical reasoning in analyzing student work suggests that 

strong subject-matter knowledge and the ability to engage in mathematical practices are key 

tools in enacting this high-leverage practice.  Further, misunderstandings of the relevant 

mathematics can lead to incorrect interpretations of student work.  So supporting pre-service 

teachers to develop subject-matter knowledge and engage in mathematical practices not only 

helps their own knowledge development, it also supports them in more successfully engaging in 

this critical high-leverage practice of interpreting student work. 

A second implication from this work is that it emphasizes the value and importance of 

teachers engaging in the same tasks they assign their students.  Comparisons between student 

work and correct personal solutions supported valuable interpretations about student 

understanding.  Since pre-service teachers frequently utilized analysis by comparison, doing the 

task provides a key resource in interpreting student thinking. Alternately, one could argue that 

because participants had been required to complete the task first, they had access to a type of 

analysis they otherwise might not have engaged in.  Future work might consider whether or not 
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participants would choose to solve a task in order to analyze a piece of student work.  

Participants engaged in reasoning by comparison whether or not they produced correct solutions 

themselves, which points to the importance of supporting novice teachers in finding the 

necessary resources to determine whether or not they have correctly solved a particular problem. 

Finally, the fact that only one participant reasoned pedagogically suggests the possibility 

that pre-service teachers at the beginning of their preparation are potentially unfamiliar with 

common student approaches and errors.  This echoes the findings from the teacher noticing 

literature (e.g., Jacobs et al., 2010).  It suggests the value of supporting novices in learning 

explicitly about common errors and teaching techniques. Developing awareness of common 

student errors will likely support novices in engaging in pedagogical reasoning, and will give 

them an additional resource to draw on when interpreting student work.  Having access to 

pedagogical analysis may also support pre-service teachers in determining an appropriate course 

of action for the student, whereas mathematical analysis and analysis by comparison do not lend 

themselves as easily to assisting with that choice. 

The more resources teachers have to interpret student work, the better able they will be to 

enact the practices detailed in Principles to Actions (2014).  Understanding what skills novice 

teachers bring into teacher preparation will help teacher educators strategically design learning 

opportunities to target key areas for growth.  Future work will consider how teacher preparation 

programs can support novices in developing these skills.   
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