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Unit 2 HW Solutions Guide 
 

Beginner-Level Problems 
 
#1: 
 
The parameter R is assumed to be restricted within the 0 to 4 range in the logistic 
equation for the x-values to remain stable over multiple iterations. If you try to raise R 
beyond 4 for most starting values of x, you’ll notice after a couple of iterations the value 
of x moves off the default graph to a value greater than one, followed by your first 
negative number, and from there shoots down exponentially, running away to negative 
infinity (i.e. diverging). Setting R in the negative domain will also create anomalous 
values for x (such as extreme negative numbers that compound out of control). The graph 
below illustrates these dramatic divergences in x over time from R being just slightly out 
of range: 
 

 
*All$seed$numbers$x0$starting$at$0.5$for$convenient$comparison.$Negative$x;values$
are$logarithmically$scaled$to$illustrate$dramatic$divergence$at$R=4.5$
 
These results also make sense mathematically: The logistic model relies on x to be 
bounded in the interval 0 and 1.  This makes sense in the context of the population 
growth model:  x represents the fraction of carrying capacity, and of course this fraction 
cannot go above 1.  In the mathematical context, x must be kept in the interval 0 to 1 in 



order to keep the function !(1− !) bounded, since this guarantees neither multiplying 
factor (“!” nor “1− !”) exceeds one, preventing subsequent x-values from continuously 
compounding. Because the highest value normally allowed for !(1− !) is in fact .25 
(since . 5 ∗ 1− .5 = .25), R must hence must not go above 4 to guarantee !"(1− !) ≤
1 since 4!(1− !) ≤ 1. If !! ever exceeds 1 at any step, the subsequent !!!! will be 
negative due to “1− !” being negative and all subsequent negative values blowing up. 
The non-stop downward spiraling of negative numbers also happens when you allow R to 
be negative, due to a negative coefficient turning any positive value of !(1− !) into a 
negative !!!!… 
 
#2: 
 
If ! = 1, the equation !!!! = !!!(1− !!) becomes simplified to !!!! = !!(1− !!) 
 
This version has special properties that guarantee x always approaches zero. Simply put, 
because the value !!is always confined between 0 and 1 by the model, and so by 
extension, multiplying the current !! by 1− !! (also confined between 0 and 1 by logical 
extension), resulting in continuously shrinking x’s that nonetheless never go below zero. 
You can observe this by setting R=1 in the Logistic Map NetLogo Model, and notice x 
continuously gets smaller, creeping closer to zero, as you keep clicking the “step”  
button. Below are a couple of examples of starting initial values (x0’s) that all eventually 
converge to zero (or at least asymptotically approach it)… 
 



 
It can also be shown algebraically that this is where the only stable point that exists (i.e. 
where the x-value !!!! is stuck at the same value as in its previous iteration !!) by setting 
!!!! = !! and solving for !!: 
 

!!!! = !! 1− !! = !! 
 

Reduces to solving for this equation 
⇒ !! 1− !! = !! 

 
(expanded out from factored form) 

!! − !!! = !! 
 

 Then removing xt from both sides of the equation 
!!! = 0 

 
⇒ !! = 0 is the stable point where x repeats itself indefinitely… 

 
#4:  
 
(See Video for Demonstration) 
 

Linden Schneider




 
Beginner 3. 
This simply amounts to going to the “Code” tab in the NetLogo program and changing the “set shape” 
within “setup.” 
For example, I changed the shape to “truck,” as shown in the image below: 

 
To change the color, again within “setup,” I added the code (without quotations) “ask patches [ set 
pcolor blue ]” as shown below: 

 
 
Try it out! 
 
Beginner 4. 
To make the background of the plot green, add the code (without quotations) “ask patches [set pcolor 
green]” to the “to draw-axes” procedure, as shown in the image below: 

 
Now, to label the coordinates: within the “to iterate” procedure there are two “ask turtle” commands, 
one for x0 and one for x0’. Within the procedure for x0, add (without the first set of quotations) “set 
label (word x-current ", " x-new)” and within the procedure for x0’, add “set label (word x-current' ", " x-
new')”. The command “word” tells the program that we are concatenating the instances of the variables 
with a string, namely the string “, ” so that the coordinate shows up. (Why should we use x-current and 
x-new, and x-current’ and x-new’, instead of x-cor?) 
 
The code then looks like the image below: 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

Intermediate-Level Problems 
 
#1: 
 
This is a simple exponential function where the population increases by a factor of 1.1 
(i.e. by 10%) per generation from its previous value, as illustrated by the table and plotted 
on the graph. 
 

 



 
 
We can see that the population doesn’t surpass 200 until after the 8th generation. In terms 
of continuous time units, it appears (visually tracing the point population crosses 200 on 
the graph above to the corresponding value for t) that this occurs around t = 7.3 
generations 
 
We can also get a somewhat more precise numerical answer by algebraically deriving the 
value of t where n=200. 

! = !100 1.1 ! = 200 
100 1.1 ! = 200 

 
1.1! = 2 

 
(we need to take the inverse function of exponent base 1.1 to isolate t here, which is the logarithm base 1.1) 

! = log!.! 2 
 

Thus, !! ≈ 7.2725 when n=200 
 

 
 

#2: 
 
Similar to problem #2 from the beginner’s section, the fixed point can be found by 
solving for !!!! = !!, this time in the case of ! = 2: 
 

!!!! = 2!! 1− !! = !! 
 

⟹ 2!! 1− !! = !! 



 
2!! − 2!!! = !! 

 
(Setting equation to zero on one side often simplifies these problems) 

!! − 2!!! = 0 
 

2!!! = !! 
 

!!! = 0.5!! 
 

(Divide both sides by xt) 

!! = 0.5 
 



Intermediate 3. 
This one is more involved as it requires, in addition to including code for x’’, adding a new slider for x0’’, 
two new monitors for x’’{t} and x’’{t+1}, and editing the logistic map plot of “x_t” and “time t(*10)” to 
include x’’{t}. The NetLogo file with these modifications can be found here.  

https://s3.amazonaws.com/complexityexplorer/IntroToComplexity/Unit2/SensitiveDependence_3ICs.nlogo

