Introduction to Fractals and Scaling Homework Solutions for Unit 6:
 Generating Power Laws
 http://www. complexityexplorer.org

Beginner

1. It is equally likely to connect to any node. There are 8 nodes; thus, the probability of connecting to each node is $1 / 8$:
(a) The probability that the new node links to node 1 is $1 / 8$.
(b) The probability that the new node links to node 2 is $1 / 8$.
(c) The probability that the new node links to node 4 is $1 / 8$.
2. The probability of connection is proportional to the number of in-links a node has. There are 7 links, 4 of which point to node 2 , and 3 of which point to node 1 . Thus,
(a) The probability that the new node links to node 1 is $3 / 7$.
(b) The probability that the new node links to node 2 is $4 / 7$.
(c) The probability that the new node links to node 4 is 0 .

Intermediate

1. With probability p the link connects to a node at random (as was the case in Beginner problem 1 and with probability $1-p$ the link connects to a node with a probability proportional to the number of in-links the node has (as was the case in Beginner problem 2. Thus
(a) The probability that the new node links to node 1 is given by:

$$
\begin{equation*}
p \times 1 / 8+(1-p) \times 3 / 7=(0.8)(1 / 8)+(1-0.8)(3 / 7) \approx 0.1857 \tag{1}
\end{equation*}
$$

(b) The probability that the new node links to node 2 is given by:

$$
\begin{equation*}
p \times 1 / 8+(1-p) \times 4 / 7=(0.8)(1 / 8)+(1-0.8)(4 / 7) \approx 0.2143 \tag{2}
\end{equation*}
$$

(c) The probability that the new node links to node 4 is given by:

$$
\begin{equation*}
p \times 1 / 8+(1-p) \times 0=(0.8)(1 / 8)+0=4 / 35=0.1 \tag{3}
\end{equation*}
$$

2. The exponent α is given by

$$
\begin{equation*}
\alpha=1+\frac{1}{1-p} . \tag{4}
\end{equation*}
$$

(a) Plugging in $\alpha=0.8$, one obtains $\alpha=6$.
(b) As p gets closer and closer to one, α gets larger and larger. A larger α means that $p(x)$ decays more rapidly. In terms of the model, as p approaches 1 , the attachment in the model is more and more random - the preferential attachment occurs with a very small probability. Thus, nodes with a large number of in-links are very unlikely. This is consistent with a larger α.

