Unit 2 Homework: Graphs and Networks

Course: Algorithmic Information Dynamics: A Computational Approach to Causality and Living Systems From Networks to Cells

Hector Zenil and Narsis A. Kiani

Course available at the Sta Fe Institute MOOC platform the Complexity Explorer at: https://www.-complexityexplorer.org/courses/63-algorithmic-information-dynamics-a-computational-approach-to-causality-and-living-systems-from-networks-to-cells

- Question 1

What is the adjacency matrix of the following graph:

Answer:

- Question 2

Can you determine from looking at this adjacency matrix if it represents a directed or an undirected graph?
$\operatorname{AdjacencyGraph}\left[\left(\begin{array}{llll}0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0\end{array}\right)\right]$

Answer:

- Question 3

Write down the adjacency matrix of a completely disconnected graph of 5 nodes in which every node has only a self-loop.

Answer:

- Question 4

What is the degree distribution of the following graph? Sort the result from greatest to lowest degree.

Answer:

- Question 5

If relaxing the low degree requirement and only caring about node distance, is the following graph a small-world graph?

In[78]:= CompleteGraph[5, ImageSize \rightarrow Small, PlotTheme \rightarrow "Web"]

Out[78]=

Answer:

Question 6

Is the following en example of a scale-free network?
$\ln [302]:=\quad \mathbf{g}=$

With degree distribution sorted from largest to smallest degree:
$\ln [43]:=$ Reverse[Sort[VertexDegree[g]]]
$O u t[43]=\{31,24,18,13,10,9,8,7,7,7,6,6,6,6,6,6,5,5,5,5,5,5,4$, $4,4,4,4,4,4,4,4,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3$, $3,3,3,2$, $2,2\}$

Answer:

- Question 7

What is the graph spectrum of the Tetrahedral graph (sort it from largest to lowest eigen value)?

Out[52] $=$

Answer:

- Question 8

Are g and h isomorphic graphs? Justify (or provide mapping)
$\operatorname{nn}[64]:=\mathbf{g}=$

Answer:

Question 9

Are these two graphs co-spectral?

Answer:

Question 10

Is h a subgraph of g ?
$\ln [70]:=$

Answer:

