An Introduction to Agent-Based Modeling

Unit 5: Components of an Agent-Based Model

Bill Rand
Assistant Professor of Business Management
Poole College of Management
North Carolina State University
So What Makes Up An ABM?

Agents

Environment

Interaction
Basic Agent Properties

WHO
COLOR
HEADING
XCOR and YCOR
SHAPE
LABEL
LABEL-COLOR
BREED
HIDDEN?
SIZE
PEN-SIZE
PEN-MODE
Author-Defined Properties

• In Traffic Basic
 • speed-limit
 • speed
 • speed-min

• Types of values
 • Fixed (10)
 • Distributions (random-normal 10 1)
 • Variable (acceleration)
Agent Actions

Standard Actions
- FORWARD
- RIGHT
- LEFT
- HATCH
- DIE
- MOVE-TO

User-Defined Actions
- speed-up-car
- slow-down-car
Collections of Agents

- Built-In Collections
 - *patches, turtles, links*
 - *turtles-here, in-link-neighbors*
- Agent Breeds
 - *influentials, imitators*
 - can have their own properties
- Agentsets
 - *with*
 - *turtles-on*
Agentsets and Lists

• Lists can hold any type of item, but agentsets can only hold agents
• *no-turtles*
• We can convert from one to the other, primarily using ?

 foreach a-list [
 ask ? [do something]
]
Agentsets and Computation

• It is important to realize that when an agentset is created it remains static until it is created again or updated
• Agentset Ordering
• Agentset Efficiency
The Level of an Agent

Tumor Model

AIDS Model
Meta-Agent

• An agent composed of other agents
• Turtles all the way down!
• *tie* (for a spatial example)

Proto-Agent

• An agent that is not fully realized
• Often built as regular agents
Agent Cognition

• *Agent cognition* is the process by which agents examine their own properties and the world around them, and then make a decision about what actions to take.

• Before constructing your model, you should consider what level of cognition the agents will have?

• The more complex the cognition, the more computational effort may be required, but potentially the more realistic the model.
Types of Agent Cognition
(Russell and Norvig, 1995)

- Reflexive
- Utility-Based
- Goal-Based
- Adaptive
Reflexive Agents

- Simple rules where agents react to what is around them
- Often represented by if-then rules
- Car in Traffic Basic
Utility-Based

- Agents are attempting to maximize some utility function
- Often requires agents to try different actions and then observe the outcome on the utility function
- Traffic Basic Utility
Goal-Based

• Agents are attempting to achieve some goal
• As opposed to utility, there is some criteria that establishes when the agent has achieved its goal
• Traffic Grid Goal
Adaptive Agent

- Agents can change not only their decisions but also their strategies
- The action that an agent takes given the same environment may be different over time based on their past experience
- Traffic Basic Adaptive
Environments

• The second main component
• A number of ways to represent
 • patches - the environment is composed of a number of spaces
 • uniform - one large agent with a uniform set of properties
 • external - could be implemented outside of the ABM environment
Four of the Most Popular Types of Environments

• Spatial Environments
• Network-Based Environments
• 3D Worlds
• GIS
Spatial Environments

• Discrete Spaces
 • Lattice Graphs (mesh graphs or grid graphs)
 • Square Lattice

Von Neumann

Moore
Hex Grids

Hex Cells

Hex Turtles
Continuous Space

- NetLogo is a continuous space with a discrete laid on top of it

ask patches with
 [(pxcor + pycor) mod 2 = 1]
 [
 set pcolor white
]
Boundary Conditions

- **Toroidal Topology**
 - Wrapping
 - Boids Model

- **Bounded Topology**
 - Mazes
 - Ants Model

- **Infinite Plane Topology**
 - Track Agents Anywhere
 - Random Walk 360 model
Network Environments

• Different Types of Networks
 • Grid Environments are Regular Networks
 • Scale-Free / Preferential Attachment
 • Random
 • Small World
 • Real World Data
Visualizations of Networks

Watts and Strogatz, 1997

Preferential Attachment Model
Barabasi and Albert, 1999

Twitter
Stonedahl et al., 2010
Different Types of Measures for Networks

- Degree Distribution
 - How many friends should we expect a person to have?
- Average Clustering Coefficient
 - On average how many friends of my friends are my friends?
 - Out of all possible triangle connections between my friends how many exist?
- Average Path Length
 - How many friendship connections is it from any person in the network to any other person?
- Often real-world networks:
 - have surprisingly low average path lengths for a high clustering coefficient
 - tend to be power-law scaled when it comes to degree distributions
3D Environments

3D Sandpile
GIS Environments

GIS General Examples

projection: WGS_84_Geographic
setup
display-cities
On/Off label-cities
display-rivers
On/Off label-rivers
display-countries
On/Off label-countries
display-rivers-in-patches
display-population-in-patches
display-countries-using-links
draw-us-rivers-in-green
display-elevation
display-gradient-in-patches
display-elevation-in-patches
highlight-large-cities
match-cells-to-patches
clear-drawing
sample-elevation-with-patches
Interactions (the third main element)

• Agent-Self Interactions
 • Agents can interact with themselves
 • Checking to see if a sheep has enough energy to reproduce
• Environment-Self Interactions
 • Patches can interact with their own state variables
 • Regrowing grass within a patch

• Agent-Agent Interactions
 • Agents can interact with other agents
 • Wolves eating sheep

• Environment-Environment Interactions
 • Parts of the environment can interact with each other
 • Spatial Diffusion

• Agent-Environment Interaction
 • The agent can interact with the environment
 • Sheep eating grass
Observer / User Interface

- Design the interface well
- Make sure buttons and sliders are placed where it makes sense to place them
Creating Good Visualizations
Kornhauser et al., 2007

• Simplify the Visualization
 • Remove unwanted clutter
• Explain the Components
 • Make sure it is obvious why each element is there
• Emphasize the main point
 • All models tell a story, make sure the story is obvious
Batch vs. Interactive Interaction

• Interactive
 • Normal way of using NetLogo
 • via immediate use of the Graphical User Interface
• Batch
 • Running many models at once can be done either:
 • via the GUIala BehaviorSpace
 • via the command line via Headless Running
Schedule

• The schedule is a description of the order of events in which the model operates
• SETUP and GO
• Synchronous vs. Asynchronous Updating
 • Asynchronous: Traffic Basic, Wolf Sheep, Ants, Segregation
 • Synchronous: Cellular Automata, Ethnocentrism
• Sequential vs. Parallel Actions
 • Sequential: Agents take actions in turns
 • Parallel: Agents operate simultaneously (Termites)
Unit 5 Overview

- Agents
- Agent sets
- Agent Granularity
- Agent Cognition
- Meta-Agents and Proto-Agents
- Spatial and Network Environments
- 3D and GIS Environments
- Interactions
- Interface
- Schedule
- Unit 5 Slides
- Course Feedback
- Unit 5 Test