<table>
<thead>
<tr>
<th>Isotope</th>
<th>RL</th>
<th>LLD</th>
<th>WSA 01</th>
<th>WSA 02</th>
<th>WSA 03</th>
<th>WSA 53</th>
<th>WSA 54</th>
<th>WSA 55</th>
<th>WSA 04</th>
</tr>
</thead>
<tbody>
<tr>
<td>H-3</td>
<td>30,000</td>
<td>2,000</td>
<td>< LLD</td>
</tr>
<tr>
<td>Mn-54</td>
<td>1,000</td>
<td>15</td>
<td>< LLD</td>
</tr>
<tr>
<td>Fe-59</td>
<td>400</td>
<td>30</td>
<td>< LLD</td>
</tr>
<tr>
<td>Co-58</td>
<td>1,000</td>
<td>15</td>
<td>< LLD</td>
</tr>
<tr>
<td>Co-60</td>
<td>300</td>
<td>15</td>
<td>< LLD</td>
</tr>
<tr>
<td>Zn-65</td>
<td>300</td>
<td>30</td>
<td>< LLD</td>
</tr>
<tr>
<td>Zr-95</td>
<td>400</td>
<td>15</td>
<td>< LLD</td>
</tr>
<tr>
<td>Nb-95</td>
<td>400</td>
<td>15</td>
<td>< LLD</td>
</tr>
<tr>
<td>I-131</td>
<td>20</td>
<td>15</td>
<td>< LLD</td>
</tr>
<tr>
<td>Cs-134</td>
<td>30</td>
<td>15</td>
<td>< LLD</td>
</tr>
<tr>
<td>Cs-137</td>
<td>50</td>
<td>18</td>
<td>< LLD</td>
</tr>
<tr>
<td>Ba-140</td>
<td>200</td>
<td>15</td>
<td>< LLD</td>
</tr>
<tr>
<td>La-140</td>
<td>200</td>
<td>15</td>
<td>< LLD</td>
</tr>
</tbody>
</table>

Sampling and Collection Frequency: Once per month

Type and Frequency of Analysis: Gamma isotopic and tritium analysis of each monthly sample.

Notes

1. The Nuclear Regulatory Commission (NRC) sets Reporting Levels (RL) for various environmental sampling media. If radioactivity exceeds the RL when sample results are averaged over any calendar quarter, SCE shall prepare and submit to the NRC within 30 days a special report that identifies the causes for exceeding the limits.

2. The Lower Limit of Detection (LLD) relates to the method used for the analysis. It is a measure of the detection capability for the analytical method and not for any single sample analysis. The LLD ensures that radiation measurements are sufficiently sensitive to detect any levels of concern and small changes in the environment.