Dear Ms. Doe,

Your sample for the analysis arrived on 23/05/2016 in the laboratory and was evaluated according to the highest laboratory quality standards (ISO 15189 and ISO 17025). The results were evaluated by two independent geneticists and molecular biologists and personally approved by me, the laboratory manager. After obtaining the results, your personal report was compiled. I would like to send this to you in the format of your choice.

I would like to thank you for your trust and I hope that you are satisfied with our service. We are always open for questions and suggestions, please do not hesitate to contact us. This is the only way we can continuously improve our services.

I hope the analysis meets your expectations.

Kind regards,

Dr. Daniel Wallerstorfer, B.Sc.
Laboratory director
Personal analysis results for:
Jane Doe | Date of birth: 05/08/1975

Order number:
DEMO_27

This report contains personal genetic data and is to be treated confidentially.
How genes influence our health

The human body consists of about 50 trillion individual cells. Most of these cells have a nucleus which contains 46 chromosomes. A chromosome consists of a very closely wound thread, the DNA "double helix."

DNA, the genetic code, is the blueprint of the human body. This genetic code consists of approximately 3.1 billion molecules, which are each represented by a letter. About 1% of this code makes up the genes. Each gene is an instruction for the body, usually with a single function. For example, some genes tell the body how to generate the iris. Differences in these genes produce different eye colors. Every function of the body is controlled by one or more genes, including the way we process food and medicine.

Our genes are not completely error-free. The genes of each person are changed slightly by environmental effects. Most of these changes have no effect. A small number have a harmful effect. An even tinier number can produce a beneficial effect. Parents pass these changes, including defects, to their children. Thus most of our genetic defects are inherited from our parents.

In addition, our genes developed to help us live in the primitive world, and some of the traits in our genes can interact with our modern environment to create negative effects on our world. For example, the genetic predisposition to build up fat quickly and lose it slowly is beneficial for people who go through times when food is scarce: they will have a better chance of...
surviving because their bodies use fat efficiently. However, in the modern world, this trait is harmful because it programs the body to gain weight quickly and lose weight slowly. Genes increase our risk of heart attacks, trigger asthma and allergies, cause lactose intolerance, and many other disorders.

Genetic traits can affect our health. While some genetic defects always cause disease, most genetic traits just increase our risk of getting a disease. For example, a person may have genes that increase their risk for diabetes. However, not everyone at risk for diabetes actually develops the disease. Furthermore, even people with a high risk of diabetes can lower their risk with the right diet and exercise plan. Other genetic traits only cause illness when they are triggered by a specific environmental feature. For example, lactose intolerance is a genetic condition that causes a person who drinks milk to become ill. However, a lactose-intolerant person who never drinks milk will not have any symptoms.

Thanks to the latest technologies, it is now possible to test specific genes to determine if you have genetic traits that are linked to various diseases. Based on the results of the analysis, we can develop a prevention program that significantly reduces your personal disease risk and helps you stay healthy.

A healthy lifestyle will decrease your risk of many diseases whether or not you have specific information about your genetic traits. However, we provides you with additional information that may point out other changes to your lifestyle that are not part of standard medical advice. There are many examples, but one of the traits we test for is a gene that impairs your body's ability to absorb iron. If you have this trait, we will recommend that you take iron supplements beyond the general recommendations so that your body absorbs all the iron you need.

Experts estimate that every person carries about 2,000 genetic defects, which may affect their health, and, in some cases, cause illnesses. A variety of factors can cause changes in our genes (also called mutations). In a few cases, these mutations can benefit us. However, the vast majority either have no effect or have a negative impact on our health. The best-known cause of mutations, as depicted in the media and Hollywood, is radioactivity. Radioactive rays and particles actually impact the DNA in our cells and physically alter our genes. In the movies, these changes or mutations often lead to the creation of monsters like Godzilla, or characters with supernatural powers, as in X-Men. In reality, they mostly go unnoticed or cause deadly diseases, such as cancer, or congenital abnormality for newborns. Mutations are also caused by substances such as carbon, which can be ingested from burnt food. Carbon enters the cells and damages our genes, which can lead to colon cancer, among other form of cancer. UV radiation from the sun can also damage our genes and cause diseases such as skin cancer.

External influences can affect individual genes and disrupt their function, but the majority of our defective genes are inherited from our parents. Each embryo receives half of its genes from the father and half of its genes from the mother, resulting in a new human being with some of the characteristics of each parent. The genetic defects are unfortunately passed together with these genes; for example, a genetic defect that causes heart attack may pass from the father to the child and further to the grandchild and so on, leading to passing the same disease to each generation. Whether the genetic defect is passed, however, is determined randomly, and it may be that some of the grandchildren carry the defective gene and others do not.

Each person is the unique product of generations of accumulation and combination of different genetic traits. Some of those traits have negative effects on our health. With the
latest technology, it is now finally possible to examine one's genes and determine his personal health risks and strengths. In many cases, taking advantage of this knowledge, and following some precautionary measures, the diseases may even be prevented. This is the next step in preventive medicine and a new generation of health care.
FEMSENSOR PREGNANCY
Risk assessment and prevention during pregnancy

- Analysis of the pregnancy relevant polymorphisms
- Genetic risk of pregnancy illnesses
- Genetic assessment of the thrombosis risk
- Effective precautions
Pregnancy

When the question of starting a family and the wish for children emerge one of the happiest phases in the shared life of most couples begins. While some couples have these thoughts from early on, others need a bit more time until they decide to have offspring. Unfortunately, a great percentage of pregnancies end in abortion. Scientists assume that genetic factors are responsible for 50% of pregnancies ending in a miscarriage; of very early (unnoticed) miscarriages even 80% are suspected. Genetic factors also have an influence on pregnancy illnesses, so called gestosis (e.g. preeclampsia) and prenatal development disruptions.

Gestosis is the umbrella term for illnesses that only occur during pregnancy and only affect the mother. Previously they were known as "pregnancy poisoning", however, that is an outdated and incorrect term. It is differentiated between early gestosis (regurgitation, increased salivation) in the first three months and late gestosis (eclampsia, HELLP syndrome, superimposed preeclampsia) during the last third of the pregnancy. The different disease patterns can manifest themselves through various symptoms of which the 3 most common (oedemata, proteinuria and high blood pressure) have become known under the term EPH gestosis or preeclampsia. The exact causes of preeclampsia are to date not know. It is assumed that aside genetic factors also a healthy diet plays a significant role. For the early detection of a gestosis a thorough and strict preventative health examination of pregnant women is essential.
Miscarriage (Abortion)

During the first weeks of the pregnancy the risk of a miscarriage (spontaneous abortion) is especially high. 80% of the miscarriages occur in this time and are described as early miscarriages. During the first 12 weeks the zygote settles in and the placenta develops. These processes are extremely complex and can often be disturbed. When the pregnancy is more advanced the danger of a miscarriage decreases as well. In the 15th week of pregnancy the risk of a miscarriage is already under 3%. The reasons of a miscarriage vary. Often genetic factors, as trisomy (a chromosome or a part of a chromosome exists thrice instead of twice) are the cause. Further causes can be infections, hormonal disturbances, chronic illnesses, ovarian insufficiency or a malformation of the uterus. Science is already aware of genetic constellations which dramatically increase the risk of a miscarriage. If you are the carrier of such a constellation you should perform a miscarriage prevention to minimize the risk.

Fetal dystrophy

Fetal or prenatal dystrophies are various prenatal development disturbances (e.g. low birth weight). Worldwide the most common causes of this retardation of growth are malnutrition, different diseases, consumption of tobacco and genetic mutations.

Especially the smoking of tobacco during the pregnancy can risk the unborn child. It has been proven that the consumption of only a few cigarettes a day can dramatically reduce the birth weight of the child. This effect can even be reinforced through the combination with different detoxification genes, which are responsible for the production of important detoxification enzymes.

Thrombosis in pregnancy

Further studies have shown that the thrombosis risk of a pregnant woman is 4 to 10 times higher than that of a not pregnant woman. This risk increases in the months after the delivery to about 10 to 20 times. Also, the young age (15-19 years) in which most cases occur is striking. On the average every twentieth European woman is already without a pregnancy genetically prone to thrombosis and her thrombosis risk lies about 8 to 80 times higher than that of the average population. When a genetically defect person is pregnant these two risk factors collide and a dangerous constellation of a gen defect and a risk situation arises which increases the thrombosis risk to about 60 times and can lead to life-threatening health conditions. It is estimated that thrombosis is responsible for about a third of the deaths that occur during pregnancy and about 30-60% of the women, who developed thrombosis were also genetically defect. Therefore, it is already accepted in the medical field that genetically defect women are medically treated during the entire pregnancy to prevent cases of thrombosis.
Relevant genes for the pregnancy

To date science has identified several genes and polymorphisms which can increase the risk of an abortion and/or pregnancy associated diseases. By analyzing all relevant polymorphisms the risk can be assessed more easily. The following genes can have an impact on the pregnancy:

Preeclampsia

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>rs NCBI</th>
<th>POLYMORPH</th>
<th>GENOTYPE</th>
<th>OR</th>
<th>RESPOND</th>
<th>PROTECTIVE</th>
<th>RISK</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGT</td>
<td>rs699</td>
<td>T>C</td>
<td>T/T</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MTHFR</td>
<td>rs1801133</td>
<td>C>T</td>
<td>C/T</td>
<td>1.26</td>
<td>RESPOND</td>
<td>-</td>
<td>RISK</td>
</tr>
</tbody>
</table>

Thrombosis during pregnancy

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>rs NCBI</th>
<th>POLYMORPH</th>
<th>GENOTYPE</th>
<th>OR</th>
<th>RESPOND</th>
<th>PROTECTIVE</th>
<th>RISK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factor-V</td>
<td>rs6025</td>
<td>G>A</td>
<td>G/G</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Factor-II</td>
<td>rs1799963</td>
<td>G>A</td>
<td>A/A</td>
<td>25</td>
<td>-</td>
<td>-</td>
<td>RISK</td>
</tr>
<tr>
<td>MTHFR</td>
<td>rs1801133</td>
<td>C>T</td>
<td>C/T</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Miscarriage

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>rs NCBI</th>
<th>POLYMORPH</th>
<th>GENOTYPE</th>
<th>OR</th>
<th>RESPOND</th>
<th>PROTECTIVE</th>
<th>RISK</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTHFR</td>
<td>rs1801133</td>
<td>C>T</td>
<td>C/T</td>
<td>1.34</td>
<td>RESPOND</td>
<td>-</td>
<td>RISK</td>
</tr>
<tr>
<td>Factor-V</td>
<td>rs6025</td>
<td>G>A</td>
<td>G/G</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Factor-II</td>
<td>rs1799963</td>
<td>G>A</td>
<td>A/A</td>
<td>2.36</td>
<td>-</td>
<td>-</td>
<td>RISK</td>
</tr>
</tbody>
</table>

Tobacco consumption and fetal dystrophy

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>rs NCBI</th>
<th>POLYMORPH</th>
<th>GENOTYPE</th>
<th>OR</th>
<th>RESPOND</th>
<th>PROTECTIVE</th>
<th>RISK</th>
</tr>
</thead>
<tbody>
<tr>
<td>GSTT1</td>
<td>Null allele</td>
<td>del=Null allele</td>
<td>A/A</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>GSTM1</td>
<td>Null allele</td>
<td>T=Null allele</td>
<td>C/C</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CYP1A1</td>
<td>rs4646903</td>
<td>T>C</td>
<td>T/C</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

LEGEND: rsNCBI = description of examined genetic variation, POLYMORPHISM = form of the genetic variation, ODDS RATIO = risk multiplier for disease triggered by polymorphism, GENOTYPE = personal analysis result, RESPONDER = because of genetic variation your body reacts particularly to various measures, PROTECTIVE = the genetic variation gives you a certain protection against the disease, RISK = this genetic variation increases your risk of disease.
Summary of effects

Here you can see a summary of the influence your genetic variations have on your health and body:

- Your risk of a preeclampsia is increased (OR: 1.3)
- Your risk of developing venous thrombosis is approximately 25 -times increased
- You do not have an increased risk of developing a fetal dystrophy
- You have an increased risk of having a miscarriage during pregnancy (OR: 3.2)
Prevention

Due to your genetic profile you have an increased risk of developing a preeclampsia. Therefore, precautionary measures are very important to you now to detect a possible development early on and treat the condition in good time. The following points are absolutely recommendable for you:

- Regularly attend the medical examination during your pregnancy
- Go to all the preventive medical checkups
- Have your blood pressure and urine values examined
- Avoid stress
- Keep an eye open for symptoms of a preeclampsia (e.g. high blood pressure, swollen limbs, dizziness, headaches, drowsiness, impaired vision, nausea)
- Obesity increases the risk of a preeclampsia
- Pay attention to a healthy and balanced diet

Based on your genetic profile you have an increased risk of developing a venous thrombosis. As the thrombosis risk is dramatically increased during the pregnancy it would be strongly recommendable for you to take some precautionary measures to prevent the development of the disease at the best possible:

- Pay attention to sufficient exercise
- Keep a balanced and healthy diet
- Compression stockings can relieve the veins and support the backflow of the blood to the heart
- Avoid sitting for too long, e.g. have enough breaks during long car drives
- Varicose veins in the legs increase the risk
- Abandon by all means alcohol and cigarettes completely
- When having a very high risk blood-thinning medication (heparin) can be used under medical surveillance

As your genetic risk of an induced abortion (miscarriage) is increased you should avoid the following risk factors by all means. Precautions are now very important for you and you should therefore note the following points:

- Attend the pregnancy medical examination regularly in order to e.g. detect infections early on and treat them
- Self-tests from the pharmacy can be helpful to recognize a possible vaginal infection
- Keep your histology in mind (e.g. diabetes) and discuss it with your doctor
- Pay attention to a healthy, balanced and nutrition-rich diet
- Drink at least 2.5 liters a day
- Do not diet during the pregnancy
- Forgo by all means alcohol and cigarettes during the pregnancy completely
- Keep an eye on a high caffeine consumption. Drink a maximum of 2 cups of coffee a day
Avoid stress and take care of your spirit
Don't forget sufficient exercise (walks, swimming, yoga etc.)

Your risk of a fetal dystrophy is not increased. According to your provided information you are a non-smoker and therefore no other precautionary measures are recommended other than the pregnancy health examination.
FemSensor Pregnancy

AGT - Angiotensinogen (serpin peptidase inhibitor, clade A, member 8) (rs699)

Angiotensinogen and his metabolites Angiotensin (AT) I, II, III and IV play a key role as potent vasopressors and regulators of the electrolyt- and fluidhomeostasis. A polymorph mutation of this gene (Met235Thr) is associated with the development of essential hypertension and elevated risk levels for developing preeclampsia in pregnancy.

<table>
<thead>
<tr>
<th>RES</th>
<th>Genotype</th>
<th>POP</th>
<th>Possible results</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>T/T</td>
<td>37%</td>
<td>No increased risk of a preeclampsia</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>No increased risk of a hypertension caused by pregnancy</td>
</tr>
<tr>
<td></td>
<td>T/C</td>
<td>43%</td>
<td>Increased risk of a preeclampsia</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Increased risk of a hypertension caused by pregnancy</td>
</tr>
<tr>
<td></td>
<td>C/C</td>
<td>20%</td>
<td>Increased risk of a preeclampsia</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Increased risk of a hypertension caused by pregnancy</td>
</tr>
</tbody>
</table>

References

Factor-II - Coagulation factor II (thrombin) (rs1799963)

The G>A Pos. +20210 polymorphism of the prothrombin (F2) gene, a Vitamin dependent clotting factor, leads to an increased prothrombin activity in the plasma. Prothrombin is the preamplifier of the active clotting enzyme thrombin which has a key position in the regulation of clotting. The F2 G20210A mutation increased the Thrombose risk drastically. The polymorphism is furthermore associated with an increased abortion risk.

<table>
<thead>
<tr>
<th>RES</th>
<th>Genotype</th>
<th>POP</th>
<th>Possible results</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>A/A</td>
<td>1%</td>
<td>Increased risk of a thrombosis caused by pregnancy</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Increased risk of a habitual miscarriage</td>
</tr>
<tr>
<td></td>
<td>A/G</td>
<td>3%</td>
<td>Increased risk of a thrombosis caused by pregnancy</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Increased risk of a habitual miscarriage</td>
</tr>
<tr>
<td></td>
<td>G/G</td>
<td>96%</td>
<td>No increased risk of a thrombosis caused by pregnancy</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>No increased risk of a habitual miscarriage</td>
</tr>
</tbody>
</table>

References

The F5 Leiden mutation is the most common reason for developing APC resistance. About 50% of the women, who develop pregnancy induced thrombosis, carry this polymorphism. Women, who take ethinylestradiol containing oral contraceptives and carry the heterozygote form of the factor 5 Leiden mutation have a 30 to 50% elevated risk of developing thrombosis. Moreover, the incidence of thrombosis in women, who take HRT and carry heterozygote F5 mutation is about 1.5/100/year. Furthermore, this polymorphism is associated with preeclampsia, recurrent miscarriage and subfertility.

<table>
<thead>
<tr>
<th>RES</th>
<th>Genotype</th>
<th>POP</th>
<th>Possible results</th>
</tr>
</thead>
<tbody>
<tr>
<td>A/A</td>
<td>1%</td>
<td></td>
<td>Increased risk of a thrombosis caused by pregnancy</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Increased risk of a habitual miscarriage</td>
</tr>
<tr>
<td>A/G</td>
<td>3%</td>
<td></td>
<td>Increased risk of a thrombosis caused by pregnancy</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Increased risk of a habitual miscarriage</td>
</tr>
<tr>
<td>X</td>
<td>G/G</td>
<td>96%</td>
<td>No increased risk of a thrombosis caused by pregnancy</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>No increased risk of a habitual miscarriage</td>
</tr>
</tbody>
</table>

References

MTHFR - Methylenetetrahydrofolate reductase (NAD(P)H) (rs1801133)

The Ala>Val Codon 222 polymorphism of the methylenetetrahydrofolatic acid reductase gene (MTHFR) has also been associated with pregnancy complications. Methylenetetrahydrofolatic acid is a key enzyme for the reduction of homocysteine to methionine. This polymorphism leads to increased thermolability of the enzyme, therefore reduced enzyme activity, increased homocysteine and decreased methionine and folic acid levels. Homozygous carriers of this polymorphism also have serologically proven hyperhomocysteinemia and therefore an increased risk of illnesses which are akin to hyperhomocysteine (infarction, heart or vascular diseases).

<table>
<thead>
<tr>
<th>RES</th>
<th>Genotype</th>
<th>POP</th>
<th>Possible results</th>
</tr>
</thead>
<tbody>
<tr>
<td>C/C</td>
<td>47%</td>
<td>No increased risk of preeclampsia</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>No increased of a miscarriage</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>No increased risk of thrombosis (venous)</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>C/T</td>
<td>44%</td>
<td>Increased risk of a preeclampsia</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Increased risk of a miscarriage</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>No increased risk of thrombosis (venous)</td>
<td></td>
</tr>
<tr>
<td>T/T</td>
<td>9%</td>
<td>Increased risk of a preeclampsia</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Increased risk of a miscarriage</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Increased risk of thrombosis (venous) (OR: 3)</td>
<td></td>
</tr>
</tbody>
</table>

References

Glutatione-S-Transferrases (GST) are enzymes that detoxify many different exogene and endogene substances. In the human liver the represent 4% of the dissoluble proteins and catalyze the agglomerate of glutathione to a number of potentially toxic xenobiotics. A deletion polymorphism in the Glutathione-S-Transferase Theta 1 (GSTT1) gene has special effects and leads to a reduced enzymatic activity and that the environmental toxins and the tobacco smoke is more difficult to break down. The so-called zero genotypes miss a functioning GSTT1 protein. This polymorphism is especially important to the prevention of pregnancy complications.

<table>
<thead>
<tr>
<th>RES</th>
<th>Genotype</th>
<th>POP</th>
<th>Possible results</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>A/A</td>
<td>36%</td>
<td>No increased risk</td>
</tr>
<tr>
<td></td>
<td>A/DEL</td>
<td>42%</td>
<td>Increased risk of a low birth weight due to tobacco consumption during the pregnancy</td>
</tr>
<tr>
<td></td>
<td>DEL/DEL</td>
<td>22%</td>
<td>Increased risk of a low birth weight due to tobacco consumption during the pregnancy</td>
</tr>
</tbody>
</table>

References

The glutathione S-transferases are found in the liver and in the lymphocytes, and are involved in the detoxification of endogenous and exogenous substances. A defective GSTM1 gene reduces the enzymatic activity of the protein, which leads to a limited cellular detoxification.

<table>
<thead>
<tr>
<th>RES</th>
<th>Genotype</th>
<th>POP</th>
<th>Possible results</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>C/C</td>
<td>10%</td>
<td>No increased risk</td>
</tr>
<tr>
<td></td>
<td>C/DEL</td>
<td>38%</td>
<td>Increased risk of a low birth weight due to tobacco consumption during the pregnancy</td>
</tr>
<tr>
<td></td>
<td>DEL/DEL</td>
<td>52%</td>
<td>Increased risk of a low birth weight due to tobacco consumption during the pregnancy</td>
</tr>
</tbody>
</table>

References

CYP1A1 - Cytochrome P450, family 1, subfamily A, polypeptide 1 (rs4646903)

Cytochrome P450 1A1 (CYP1A1), an important phase I detoxification enzyme, catalyzes next to other reactions also the activation of pro-carcinogens. To this pro-carcinogens also the group of polycyclic, aromatic hydrocarbons (PAH) in the tobacco smoke count. A well-documented polymorphism (T>C Pos. -3801) in the CYP1A1 gene is associated with an increased enzyme activity.

<table>
<thead>
<tr>
<th>RES</th>
<th>Genotype</th>
<th>POP</th>
<th>Possible results</th>
</tr>
</thead>
<tbody>
<tr>
<td>T/T</td>
<td>62%</td>
<td>No increased risk</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>T/C</td>
<td>37%</td>
<td>Increased risk of a low birth weight due to tobacco consumption during the pregnancy</td>
</tr>
<tr>
<td>C/C</td>
<td>1%</td>
<td>1%</td>
<td>Increased risk of a low birth weight due to tobacco consumption during the pregnancy</td>
</tr>
</tbody>
</table>

References

Customer Service

Questions or comments about our service?

Our customer service team is happy to help with any enquiries, questions or problems. You can contact us in the following ways:

➤ Tel: +43 (0) 662 425 099 -33
➤ Fax: +43 (0) 662 425 099 -44
➤ office@genosense.com

Our team is looking forward to your call. Customer satisfaction is our first priority. If you are not fully satisfied with our service, please let us know. We will do our best to help find a satisfactory solution to your problem.
Certifications

The Novogenia laboratory is one of the most modern and automated laboratories in Europe, and has numerous certifications and quality assurance systems that meet international standards or even exceed them. The various fields of business are certified separately to the highest standards.

Analysis for Lifestyle-purposes
Certified through analysis in our ISO 15189 certified laboratory

Analysis of medical genetic samples
Certified through analysis in an ISO 17025 certified laboratory

Medical interpretation of genetic analyses
Certified through analysis in our ISO 15189 certified laboratory

Scientific release of analysis results
Licensed for medical genetic analyses by the Austrian government

Company and office
Certified through ISO 9001
TECHNICAL DETAILS

Technical details

Address
Saalachstrasse 92
5020 Salzburg
AUSTRIA

Order number
DEMO_27

Date of birth
05/08/1975

Responsible company
GenoSense Diagnostics
Saalachstrasse 92
5020 Salzburg
Austria
www.genosense.com

Analyzing laboratory
Novogenia GmbH
Saalachstrasse 92
5020 Salzburg
AUSTRIA

Laboratory director
Dr. Daniel Wallerstorfer, B.Sc.

Method of analysis
Automated DNA extraction, Real-Time PCR genotyping, Sequencing, HRM analysis, mass spectrometry

Detection rate
~99%

Sample type
Cheek swab / saliva sample

Analysis times
Sample received: 23/05/2016
Analysis started: 23/05/2016
Analysis completed: 30/05/2016
Report generated: 30/05/2016

Version
v421
MEDIC
NOTES: