
Christopher M. Judd

Tutorial

Christopher M. Judd

CTO and Partner at

leader

Columbus Developer User Group (CIDUG)

Introduction

http://hadoop.apache.org/

Scale up

Scale up

Scale up

Scale outScale up

Hadoop Approach

• scale-out

• share nothing

• expect failure

• smart software, dumb hardware

• move processing, not data

• build applications, not infrastructure

What is Hadoop good for?

http://www.chrisstucchio.com/blog/2013/hadoop_hatred.html

<100 mb - Excel
100 mb > 10 gb - Add memory and use Pandas
100 gb > 1 TB - Buy big hard drive and use Postgres
> 5 TB - life sucks consider Hadoop

Don't use Hadoop - your data isn't that big

if your data fits in RAM
it is not Big Data

Hadoop is an evolving project

Hadoop is an evolving project

org.apache.hadoop.mapreduceorg.apache.hadoop.mapred
old api new api

Hadoop is an evolving project

MapReduce 1 MapReduce 2
Classic MapReduce YARN

Setup

Hadoop Tutorial
user/fun4all

/opt/data
hduser/hduser

Configure SSH

attach to NAT

Configure SSH

Configure SSH

add port forwarding rule

$ ssh -p 3022 user@localhost
user@127.0.0.1's password:
Welcome to Ubuntu 12.04.3 LTS (GNU/Linux 3.8.0-29-generic x86_64)

 * Documentation: https://help.ubuntu.com/

Last login: Wed Jun 25 22:53:10 2014 from 10.0.2.2
user@user-VirtualBox:~$

SSH’ing

Hadoop

http://www.cloudera.com/

http://hortonworks.com/

http://hadoop.apache.org/

http://www.mapr.com/

HCatalog

Zebra

Tez

Owl

Add Hadoop User and Group

$ sudo addgroup hadoop
$ sudo adduser --ingroup hadoop hduser
$ sudo adduser hduser sudo

$ su hduser
$ cd ~

Install Hadoop

$ sudo mkdir -p /opt/hadoop
$ sudo tar vxzf /opt/data/hadoop-2.2.0.tar.gz -C /opt/hadoop
$ sudo chown -R hduser:hadoop /opt/hadoop/hadoop-2.2.0
$ vim .bashrc

other stuff
java variables
export JAVA_HOME=/usr/lib/jvm/java-7-openjdk-amd64

hadoop variables
export HADOOP_HOME=/opt/hadoop/hadoop-2.2.0
export PATH=$PATH:$HADOOP_HOME/bin
export PATH=$PATH:$HADOOP_HOME/sbin
export HADOOP_MAPRED_HOME=$HADOOP_HOME
export HADOOP_COMMON_HOME=$HADOOP_HOME
export HADOOP_HDFS_HOME=$HADOOP_HOME
export YARN_HOME=$HADOOP_HOME

$ source .bashrc
$ hadoop version

Run Hadoop Job

$ hadoop jar $HADOOP_HOME/share/hadoop/mapreduce/hadoop-mapreduce-examples-2.2.0.jar pi 4 1000

aggregatewordcount: An Aggregate based map/reduce program that counts the words in the input files.
aggregatewordhist: An Aggregate based map/reduce program that computes the histogram of the words in the input files.
bbp: A map/reduce program that uses Bailey-Borwein-Plouffe to compute exact digits of Pi.
dbcount: An example job that count the pageview counts from a database.
distbbp: A map/reduce program that uses a BBP-type formula to compute exact bits of Pi.
grep: A map/reduce program that counts the matches of a regex in the input.
join: A job that effects a join over sorted, equally partitioned datasets
multifilewc: A job that counts words from several files.
pentomino: A map/reduce tile laying program to find solutions to pentomino problems.
pi: A map/reduce program that estimates Pi using a quasi-Monte Carlo method.
randomtextwriter: A map/reduce program that writes 10GB of random textual data per node.
randomwriter: A map/reduce program that writes 10GB of random data per node.
secondarysort: An example defining a secondary sort to the reduce.
sort: A map/reduce program that sorts the data written by the random writer.
sudoku: A sudoku solver.
teragen: Generate data for the terasort
terasort: Run the terasort
teravalidate: Checking results of terasort
wordcount: A map/reduce program that counts the words in the input files.
wordmean: A map/reduce program that counts the average length of the words in the input files.
wordmedian: A map/reduce program that counts the median length of the words in the input files.
wordstandarddeviation: A map/reduce program that counts the standard deviation of the length of the words in the input files.

$ hadoop jar $HADOOP_HOME/share/hadoop/mapreduce/hadoop-mapreduce-examples-2.2.0.jar

$ hadoop jar $HADOOP_HOME/share/hadoop/mapreduce/hadoop-mapreduce-examples-2.2.0.jar pi
Usage: org.apache.hadoop.examples.QuasiMonteCarlo <nMaps> <nSamples>

Lab 1

1. Create Hadoop user and group

2. Install Hadoop

3. Run example Hadoop job such as pi

• Local Standalone mode

• Pseudo-distributed mode

• Fully distributed mode

HADOOP
Pseudo-Distributed

$ sudo vim etc/hadoop/yarn-site.xml

Configure YARN

<?xml version="1.0"?>
<configuration>

 <property>
 <name>yarn.nodemanager.aux-services</name>
 <value>mapreduce_shuffle</value>
 </property>
 <property>
 <name>yarn.nodemanager.aux-services.mapreduce.shuffle.class</name>
 <value>org.apache.hadoop.mapred.ShuffleHandler</value>
 </property>

</configuration>

$ sudo mv etc/hadoop/mapred-site.xml.template etc/hadoop/mapred-site.xml
$ sudo vim etc/hadoop/mapred-site.xml

Configure Map Reduce

<configuration>
 <property>
 <name>mapreduce.framework.name</name>
 <value>yarn</value>
 </property>
</configuration>

$ ssh-keygen -t rsa -P ''
$ cat ~/.ssh/id_rsa.pub >> ~/.ssh/authorized_keys
$ ssh localhost
$ exit

Configure passwordless login

$ vim etc/hadoop/hadoop-env.sh

other stuff

export JAVA_HOME=/usr/lib/jvm/java-7-openjdk-amd64

more stuff

Configure JAVA_HOME

$ start-yarn.sh

Start YARN

$ jps
8355 Jps
8318 NodeManager
8090 ResourceManager

Run Hadoop Job

$ hadoop jar $HADOOP_HOME/share/hadoop/mapreduce/hadoop-mapreduce-examples-2.2.0.jar pi 4 1000

http://localhost:8042/node

http://localhost:8042/node

Lab 2

1. Configure YARN

2. Configure Map Reduce

3. Configure passwordless login

4. Configure JAVA_HOME

5. Start YARN

6. Run pi job

HDFS

POSIX
portable operating system interface

Writing Data

Reading Data

$ sudo mkdir -p /opt/hdfs/namenode
$ sudo mkdir -p /opt/hdfs/datanode
$ sudo chmod -R 777 /opt/hdfs
$ sudo chown -R hduser:hadoop /opt/hdfs
$ cd /opt/hadoop/hadoop-2.2.0
$ sudo vim etc/hadoop/hdfs-site.xml

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>

<configuration>
 <property>
 <name>dfs.replication</name>
 <value>1</value>
 </property>
 <property>
 <name>dfs.namenode.name.dir</name>
 <value>file:/opt/hdfs/namenode</value>
 </property>
 <property>
 <name>dfs.datanode.data.dir</name>
 <value>file:/opt/hdfs/datanode</value>
 </property>
</configuration>

Configure HDFS

$ hdfs namenode -format

Format HDFS

$ sudo vim etc/hadoop/core-site.xml

<configuration>
 <property>
 <name>fs.default.name</name>
 <value>hdfs://localhost:9000</value>
 </property>
</configuration>

Configure Core

$ start-dfs.sh

Start HDFS

$ jps
6433 DataNode
6844 Jps
6206 NameNode
6714 SecondaryNameNode

http://hadoop.apache.org/docs/r2.2.0/hadoop-project-dist/hadoop-common/FileSystemShell.html

$ hdfs dfs -ls /
$ hdfs dfs -mkdir /books
$ hdfs dfs -ls /
$ hdfs dfs -ls /books
$ hdfs dfs -copyFromLocal /opt/data/moby_dick.txt /books
$ hdfs dfs -cat /books/moby_dick.txt

Use HDFS commands

• appendToFile
• cat
• chgrp
• chmod
• chown
• copyFromLocal
• copyToLocal
• count
• cp
• du
• get

• ls
• lsr
• mkdir
• moveFromLocal
• moveToLocal
• mv
• put
• rm
• rmr
• stat
• tail

• test
• text
• touchz

http://localhost:50070/dfshealth.jsp

http://localhost:50070/dfshealth.jsp

Lab 3

1. Configure HDFS

2. Format HDFS

3. Configure Core

4. Start HDFS

5. Experiment HDFS commands
(ls, mkdir, copyFromLocal, cat)

Combine
Hadoop & HDFS

$ hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-examples-2.2.0.jar wordcount /books out
$ hdfs dfs -ls out
$ hdfs dfs -cat out/_SUCCESS
$ hdfs dfs -cat out/part-r-00000

Run Hadoop Job

young-armed 1
young; 2
younger 2
youngest 1
youngish 1
your 251
your@login 1
yours 5
yours? 1
yourselbs 1
yourself 14
yourself, 5
yourself," 1
yourself.' 1
yourself; 4
yourself? 1
yourselves 1
yourselves! 3
yourselves, 1
yourselves," 1
yourselves; 1
youth 5
youth, 2
youth. 1
youth; 1
youthful 1

Lab 4

1. Run wordcount job

2. Review output

3. Run wordcount job again with same parameters

Writing
Map Reduce

Jobs

we write we writeoptionally write

{K1,V1}

{K1,V1}

{K2, List<V2>} {K3,V3}

MOBY DICK; OR THE WHALE

By Herman Melville

CHAPTER 1. Loomings.

Call me Ishmael. Some years ago--never mind how long precisely--having
little or no money in my purse, and nothing particular to interest me on
shore, I thought I would sail about a little and see the watery part of
the world. It is a way I have of driving off the spleen and regulating
the circulation. Whenever I find myself growing grim about the mouth;
whenever it is a damp, drizzly November in my soul; whenever I find
myself involuntarily pausing before coffin warehouses, and bringing up
the rear of every funeral I meet; and especially whenever my hypos get
such an upper hand of me, that it requires a strong moral principle to
prevent me from deliberately stepping into the street, and methodically
knocking people's hats off--then, I account it high time to get to sea
as soon as I can. This is my substitute for pistol and ball. With a
philosophical flourish Cato throws himself upon his sword; I quietly
take to the ship. There is nothing surprising in this. If they but knew
it, almost all men in their degree, some time or other, cherish very
nearly the same feelings towards the ocean with me.

There now is your insular city of the Manhattoes, belted round by
wharves as Indian isles by coral reefs--commerce surrounds it with
her surf. Right and left, the streets take you waterward. Its extreme
downtown is the battery, where that noble mole is washed by waves, and
cooled by breezes, which a few hours previous were out of sight of land.
Look at the crowds of water-gazers there.

1 Call me Ishmael. Some years ago--never mind how long precisely--having
2 little or no money in my purse, and nothing particular to interest me on
3 shore, I thought I would sail about a little and see the watery part of
4 the world. It is a way I have of driving off the spleen and regulating
5 the circulation.

K V

{K1,V1} {K2, List<V2>} {K3,V3}

package com.manifestcorp.hadoop.wc;

import java.io.IOException;

import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;

public class WordCountMapper extends Mapper<LongWritable, Text, Text, IntWritable> {

private static final String SPACE = " ";

private static final IntWritable ONE = new IntWritable(1);
private Text word = new Text();

public void map(LongWritable key, Text value, Context context)
 throws IOException, InterruptedException {

String[] words = value.toString().split(SPACE);

for (String str: words) {
word.set(str);
context.write(word, ONE);

}

}
}

Mapper

K1 V1 K2 V2

K1 V1

K2 V2

1 Call me Ishmael. Some years ago--never mind how long precisely--having
2 little or no money in my purse, and nothing particular to interest me on
3 shore, I thought I would sail about a little and see the watery part of
4 the world. It is a way I have of driving off the spleen and regulating
5 the circulation.

K V

Call 1
me 1
Ishmael. 1
Some 1
years 1
ago--never 1
mind 1
how 1
of 1
long 1
little 1
of 1
or 1
of 1

K V
ago--never 1
Call 1
how 1
Ishmael. 1
me 1
little 1
long 1
mind 1
of 1
of 1
of 1
or 1
Some 1
years 1

K V

map
sort

ago--never 1
Call 1
how 1
Ishmael. 1
me 1
little 1
long 1
mind 1
of 1,1,1
or 1
Some 1
years 1

K V

group

{K1,V1} {K2, List<V2>} {K3,V3}

Reducer

package com.manifestcorp.hadoop.wc;

import java.io.IOException;

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

public class WordCountReducer extends Reducer<Text, IntWritable, Text, IntWritable> {

public void reduce(Text key, Iterable<IntWritable> values, Context context)
throws IOException, InterruptedException {

int total = 0;

for (IntWritable value : values) {
total++;

}

context.write(key, new IntWritable(total));
}

}

K2 V2 K3 V3

K2 V2

K3 V3

1 Call me Ishmael. Some years ago--never mind how long precisely--having
2 little or no money in my purse, and nothing particular to interest me on
3 shore, I thought I would sail about a little and see the watery part of
4 the world. It is a way I have of driving off the spleen and regulating
5 the circulation.

K V

Call 1
me 1
Ishmael. 1
Some 1
years 1
ago--never 1
mind 1
how 1
of 1
long 1
little 1
of 1
or 1
of 1

K V
ago--never 1
Call 1
how 1
Ishmael. 1
me 1
little 1
long 1
mind 1
of 1
of 1
of 1
or 1
Some 1
years 1

K V

map
sort

ago--never 1
Call 1
how 1
Ishmael. 1
me 1
little 1
long 1
mind 1
of 3
or 1
Some 1
years 1

K V

reduce

ago--never 1
Call 1
how 1
Ishmael. 1
me 1
little 1
long 1
mind 1
of 1,1,1
or 1
Some 1
years 1

K V

group

{K1,V1} {K2, List<V2>} {K3,V3}

Driver
package com.manifestcorp.hadoop.wc;

import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class MyWordCount {

public static void main(String[] args) throws Exception {

Job job = new Job();
job.setJobName("my word count");
job.setJarByClass(MyWordCount.class);

FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));

job.setMapperClass(WordCountMapper.class);
job.setReducerClass(WordCountReducer.class);

job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);

System.exit(job.waitForCompletion(true) ? 0 : 1);
}

}

<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <groupId>com.manifestcorp.hadoop</groupId>
 <artifactId>hadoop-mywordcount</artifactId>
 <version>0.0.1-SNAPSHOT</version>
 <packaging>jar</packaging>

 <properties>
 <hadoop.version>2.2.0</hadoop.version>
 </properties>

 <build>
 <plugins>
 <plugin>
 <artifactId>maven-compiler-plugin</artifactId>
 <version>2.3.2</version>
 <configuration>
 <source>1.7</source>
 <target>1.7</target>
 </configuration>
 </plugin>
 </plugins>
 </build>

 <dependencies>
 <dependency>
 <groupId>org.apache.hadoop</groupId>
 <artifactId>hadoop-client</artifactId>
 <version>${hadoop.version}</version>
 <scope>provided</scope>
 </dependency>
 </dependencies>
</project>

pom.xml

$ hadoop jar target/hadoop-mywordcount-0.0.1-SNAPSHOT.jar com.manifestcorp.hadoop.wc.MyWordCount /books out

Run Hadoop Job

Lab 5

1. Unzip /opt/data/hadoop-mywordcount-start.zip

2. Write Mapper class

3. Write Reducer class

4. Write Driver class

5. Build (mvn clean package)

6. Run mywordcount job

7. Review output

Unit Testing

https://mrunit.apache.org/

 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>4.11</version>
 <scope>test</scope>
 </dependency>

 <dependency>
 <groupId>org.apache.mrunit</groupId>
 <artifactId>mrunit</artifactId>
 <version>1.1.0</version>
 <scope>test</scope>
 <classifier>hadoop2</classifier>
 </dependency>

package com.manifestcorp.hadoop.wc;

import java.io.IOException;
import java.util.ArrayList;
import java.util.List;

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mrunit.mapreduce.MapDriver;
import org.apache.hadoop.mrunit.mapreduce.MapReduceDriver;
import org.apache.hadoop.mrunit.mapreduce.ReduceDriver;
import org.junit.Before;
import org.junit.Test;

public class WordCountTest {

 MapReduceDriver<LongWritable, Text, Text, IntWritable, Text, IntWritable> mapReduceDriver;
 MapDriver<LongWritable, Text, Text, IntWritable> mapDriver;
 ReduceDriver<Text, IntWritable, Text, IntWritable> reduceDriver;

 @Before
 public void setUp() {
 WordCountMapper mapper = new WordCountMapper();
 WordCountReducer reducer = new WordCountReducer();

 mapDriver = new MapDriver<>(mapper);
 reduceDriver = new ReduceDriver<>(reducer);

 mapReduceDriver = new MapReduceDriver<>(mapper, reducer);
 }

 @Test
 public void testMapper() throws IOException {
 mapDriver.withInput(new LongWritable(1), new Text("java hadoop java"));
 mapDriver.withOutput(new Text("java"), new IntWritable(1));
 mapDriver.withOutput(new Text("hadoop"), new IntWritable(1));
 mapDriver.withOutput(new Text("java"), new IntWritable(1));
 mapDriver.runTest();
 }
 // ...
}

public class WordCountTest {

 MapReduceDriver<LongWritable, Text, Text, IntWritable, Text, IntWritable> mapReduceDriver;
 MapDriver<LongWritable, Text, Text, IntWritable> mapDriver;
 ReduceDriver<Text, IntWritable, Text, IntWritable> reduceDriver;

 @Before
 public void setUp() {
 WordCountMapper mapper = new WordCountMapper();
 WordCountReducer reducer = new WordCountReducer();

 mapDriver = new MapDriver<>(mapper);
 reduceDriver = new ReduceDriver<>(reducer);

 mapReduceDriver = new MapReduceDriver<>(mapper, reducer);
 }

 @Test
 public void testMapper() throws IOException {
 mapDriver.withInput(new LongWritable(1), new Text("java hadoop java"));
 mapDriver.withOutput(new Text("java"), new IntWritable(1));
 mapDriver.withOutput(new Text("hadoop"), new IntWritable(1));
 mapDriver.withOutput(new Text("java"), new IntWritable(1));
 mapDriver.runTest();
 }

 @Test
 public void testReducer() throws IOException {
 List<IntWritable> values = new ArrayList<>();
 values.add(new IntWritable(1));
 values.add(new IntWritable(1));

 reduceDriver.withInput(new Text("java"), values);
 reduceDriver.withOutput(new Text("java"), new IntWritable(2));
 reduceDriver.runTest();
 }

 @Test
 public void testMapReduce() throws IOException {
 mapReduceDriver.withInput(new LongWritable(1), new Text("java hadoop java"));
 mapReduceDriver.withInput(new LongWritable(2), new Text("java spring java"));
 mapReduceDriver.addOutput(new Text("hadoop"), new IntWritable(1));
 mapReduceDriver.addOutput(new Text("java"), new IntWritable(4));
 mapReduceDriver.addOutput(new Text("spring"), new IntWritable(1));
 mapReduceDriver.runTest();
 }

}

Hadoop in the Cloud

http://aws.amazon.com/elasticmapreduce/

jar
input

logs
output

Making it more Real

http://aws.amazon.com/architecture/

http://aws.amazon.com/architecture/

http://aws.amazon.com/architecture/

http://aws.amazon.com/architecture/

Resources

DZone, Inc. | www.dzone.com

By Eugene Ciurana and Masoud Kalali

INTRODUCTION

G
et

ti
ng

 S
ta

rt
ed

 w
it

h
A

p
ac

he
 H

ad
o

o
p

 w

w
w

.d
zo

ne
.c

o
m

G
et

 M
o

re
 R

ef
ca

rd
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#117

CONTENTS INCLUDE:
Q� Introduction
Q� Apache Hadoop
Q� Hadoop Quick Reference
Q� Hadoop Quick How-To
Q� Staying Current
Q� Hot Tips and more...

This Refcard presents a basic blueprint for applying
MapReduce to solving large-scale, unstructured data
processing problems by showing how to deploy and use an
Apache Hadoop computational cluster. It complements DZone
Refcardz #43 and #103, which provide introductions to high-
performance computational scalability and high-volume data
handling techniques, including MapReduce.

What Is MapReduce?
MapReduce refers to a framework that runs on a computational
cluster to mine large datasets. The name derives from the
application of map() and reduce() functions repurposed from
functional programming languages.

returns a list of results

more mapping operations executed in parallel

the same results as if it were executed against the larger
dataset before turning it into splits

processing logic

dispatching, locking, and logic flow

without worrying about infrastructure or scalability issues

Implementation patterns
The Map(k1, v1) -> list(k2, v2) function is applied to every
item in the split. It produces a list of (k2, v2) pairs for each call.
The framework groups all the results with the same key
together in a new split.

The Reduce(k2, list(v2)) -> list(v3) function is applied
to each intermediate results split to produce a collection
of values v3 in the same domain. This collection may have
zero or more values. The desired result consists of all the v3
collections, often aggregated into one result file.

Get over 90 DZone Refcardz
FREE from Refcardz.com!

Getting Started with
Apache Hadoop

Hot
Tip

MapReduce frameworks produce lists of values.
Users familiar with functional programming
mistakenly expect a single result from the
mapping operations.

�
APACHE HADOOP

Apache Hadoop is an open source, Java framework for
implementing reliable and scalable computational networks.
Hadoop includes several subprojects:

This Refcard presents how to deploy and use the common

after a brief overview of all of Hadoop’s components.

DZone, Inc. | www.dzone.com

G
et

 M
o

re
 R

ef
ca

rd
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#133

A
p

ac
he

 H
ad

o
o

p
 D

ep
lo

ym
en

t

CONTENTS INCLUDE:
Q� Introduction
Q� Which Hadoop Distribution?
Q� Apache Hadoop Installation
Q� Hadoop Monitoring Ports
Q� Apache Hadoop Production Deployment
Q� Hot Tips and more...

By Eugene Ciurana

Apache Hadoop Deployment:
A Blueprint for Reliable Distributed Computing

INTRODUCTION

This Refcard presents a basic blueprint for deploying
Apache Hadoop HDFS and MapReduce in development and
production environments. Check out Refcard #117, Getting
Started with Apache Hadoop, for basic terminology and for an
overview of the tools available in the Hadoop Project.

WHICH HADOOP DISTRIBUTION?

Apache Hadoop is a scalable framework for implementing
reliable and scalable computational networks. This Refcard
presents how to deploy and use development and production
computational networks. HDFS, MapReduce, and Pig are the
foundational tools for developing Hadoop applications.

There are two basic Hadoop distributions:
Apache Hadoop is the main open-source, bleeding-edge
distribution from the Apache foundation.

The Cloudera Distribution for Apache Hadoop (CDH) is an
open-source, enterprise-class distribution for production-
ready environments.

The decision of using one or the other distributions depends
on the organization’s desired objective.

The Apache distribution is fine for experimental learning
exercises and for becoming familiar with how Hadoop is
put together.

CDH removes the guesswork and offers an almost turnkey
product for robustness and stability; it also offers some
tools not available in the Apache distribution.

Hot
Tip

Cloudera offers professional services and puts
out an enterprise distribution of Apache
Hadoop. Their toolset complements Apache’s.
Documentation about Cloudera’s CDH is available
from http://docs.cloudera.com.

The Apache Hadoop distribution assumes that the person
installing it is comfortable with configuring a system manually.
CDH, on the other hand, is designed as a drop-in component for
all major Linux distributions.

Hot
Tip

Linux is the supported platform for production
systems. Windows is adequate but is not
supported as a development platform.

Minimum Prerequisites
Java 1.6 from Oracle, version 1.6 update 8 or later; identify
your current JAVA_HOME

sshd and ssh for managing Hadoop daemons across
multiple systems

rsync for file and directory synchronization across the nodes
in the cluster

Create a service account for user hadoop where $HOME=/
home/hadoop

SSH Access
Every system in a Hadoop deployment must provide SSH
access for data exchange between nodes. Log in to the node
as the Hadoop user and run the commands in Listing 1 to
validate or create the required SSH configuration.

Listing 1 - Hadoop SSH Prerequisits

keyFile=$HOME/.ssh/id_rsa.pub
pKeyFile=$HOME/.ssh/id_rsa
authKeys=$HOME/.ssh/authorized_keys
if ! ssh localhost -C true ; then \
 if [! -e “$keyFile”]; then \
 ssh-keygen -t rsa -b 2048 -P ‘’ \
 -f “$pKeyFile”; \
��À��?
 cat “$keyFile” >> “$authKeys”; \
 chmod 0640 “$authKeys”; \
��HFKR�´+DGRRS�66+�FRQÀJXUHGµ��?
HOVH�HFKR�´+DGRRS�66+�2.µ��À

The public key for this example is left blank. If this were to run
on a public network it could be a security hole. Distribute the
public key from the master node to all other nodes for data
exchange. All nodes are assumed to run in a secure network
behind the firewall.

Find out how Cloudera’s
Distribution for Apache
Hadoop makes it easier
to run Hadoop in your
enterprise.

www.cloudera.com/downloads/

Comprehensive Apache
Hadoop Training and
Certification

brought to you by..

DZone, Inc. | www.dzone.com

G
et

 M
or

e
R

ef
ca

rd
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#159

A
pa

ch
e

H
B

as
e

By Alex Baranau and Otis Gospodnetic

ABOUT HBASE

HBase is the Hadoop database. Think of it as a distributed, scalable Big
Data store.

Use HBase when you need random, real-time read/write access to your
Big Data. The goal of the HBase project is to host very large tables —
billions of rows multiplied by millions of columns — on clusters built with
commodity hardware. HBase is an open-source, distributed, versioned,
column-oriented store modeled after Google’s Bigtable. Just as Bigtable
leverages the distributed data storage provided by the Google File System,
HBase provides Bigtable-like capabilities on top of Hadoop and HDFS.

CONFIGURATION

OS & Other Pre-requisites
HBase uses the local hostname to self-report its IP address. Both forward-
and reverse-DNS resolving should work.

HBase uses many files simultaneously. The default maximum number
of allowed open-file descriptors (1024 on most *nix systems) is often
insufficient. Increase this setting for any Hbase user.

The nproc setting for a user running HBase also often needs to be
increased — when under a load, a low nproc setting can result in the
OutOfMemoryError.

Because HBase depends on Hadoop, it bundles an instance of the
Hadoop jar under its /lib directory. The bundled jar is ONLY for use in
standalone mode. In the distributed mode, it is critical that the version
of Hadoop on your cluster matches what is under HBase. If the versions
do not match, replace the Hadoop jar in the HBase /lib directory with the
Hadoop jar from your cluster.

To increase the maximum number of files HDFS DataNode can serve at
one time in hadoop/conf/hdfs-site.xml, just do this:

<property>
 <name>dfs.datanode.max.xcievers</name>
 <value>4096</value>
</property>

hbase-env.sh
<RX�FDQ�VHW�+%DVH�HQYLURQPHQW�YDULDEOHV�LQ�WKLV�ͤOH�

Env Variable Description
HBASE_HEAPSIZE Shows the maximum amount of heap to use, in

MB. Default is 1000. It is essential to give HBase
as much memory as you can (avoid swapping!) to
achieve good performance.

HBASE_OPTS Shows extra Java run-time options. You can also
add the following to watch for GC:

export HBASE_OPTS="$HBASE_OPTS -verbose:gc
-XX:+PrintGCDetails -XX:+PrintGCDateStamps
$HBASE_GC_OPTS"

hbase-site.xml
6SHFLͤF�FXVWRPL]DWLRQV�JR�LQWR�WKLV�ͤOH�LQ�WKH�IROORZLQJ�ͤOH�IRUPDW�

�DPOଖHVSBUJPO�
 <property>
 <name>property_name</name>
 <value>property_value</value>
 </property>
 …
��DPOଖHVSBUJPO�

)RU�WKH�OLVW�RI�FRQͤJXUDEOH�SURSHUWLHV��UHIHU�WR�KWWS���KEDVH�DSDFKH�RUJ�
ERRN�KWPO�KEDVHBGHIDXOWBFRQͤJXUDWLRQV (or view the raw /conf/hbase-
GHIDXOW�[PO�VRXUFH�ͤOH��

7KHVH�DUH�WKH�PRVW�LPSRUWDQW�SURSHUWLHV�

Property Value Description
hbase.cluster.
distributed

true Set value to true when running in
distributed mode.

hbase.zookeeper.
quorum

my.zk.
server1,my.
zk.server2,

HBase depends on a running
ZooKeeper cluster. Configure
using external ZK. (If not
configured, internal instance of ZK
is started.)

hbase.rootdir hdfs://my.hdfs.
server/hbase

The directory shared by region
servers and where HBase
persists. The URL should be 'fully
qualified' to include the filesystem
scheme.

START/STOP

Running Modes

CONTENTS INCLUDE:
Q�Configuration
Q�Start/Stop
Q�HBase Shell
Q�Java API
Q�Web UI: Master & Slaves
Q�and More!

Apache HBase
The NoSQL Database for Hadoop and Big Data

Resources

© DZone, Inc. | DZone.com

Getting Started with Apache Hadoop
By Adam Kawa and Piotr Krewski

» Design concepts

» Hadoop components

» HDFS

» YARn

» YARn Applications

» mapReduce

» And more...

C
O

N
T
E
N
T
S

Ja
v

a
 E

n
t

E
r

p
r

is
E

 E
d

it
io

n
 7

introduction

This Refcard presents Apache Hadoop, a software framework that
enables distributed storage and processing of large datasets using
simple high-level programming models. We cover the most important
concepts of Hadoop, describe its architecture, guide how to start using it
as well as write and execute various applications on Hadoop.

In the nutshell, Hadoop is an open-source project of the Apache
Software Foundation that can be installed on a set of standard machines,
so that these machines can communicate and work together to store
and process large datasets. Hadoop has become very successful in
.!�!*0�5!�./�0$�*'/�0+�%0/���%(%05�0+�!û!�0%2!(5��.1*�$��%#� �0�ċ�	0��((+3/�
companies to store all of their data in one system and perform analysis
on this data that would be otherwise impossible or very expensive to do
with traditional solutions.

�*5��+),�*%+*�0++(/��1%(0��.+1* ��� ++,�+û!.���3% !�2�.%!05�+"�
processing techniques. Integration with ancillary systems and utilities
is excellent, making real-world work with Hadoop easier and more
productive. These tools together form the Hadoop Ecosystem.

Visit http://hadoop.apache.org to get more information about
the project and access detailed documentation.

HOT
TIP

note: By a standard machine, we mean typical servers that are available
from many vendors and have components that are expected to fail and
be replaced on a regular base. Because Hadoop scales nicely and
provides many fault-tolerance mechanisms, you do not need to break
the bank to purchase expensive top-end servers to minimize the risk of
hardware failure and increase storage capacity and processing power.

dEsign concEpts

To solve the challenge of processing and storing large datasets, Hadoop
was built according to the following core characteristics:

đ� Distribution - instead of building one big supercomputer, storage
and processing are spread across a cluster of smaller machines
that communicate and work together.

đ� Horizontal scalability - it is easy to extend a Hadoop cluster by
just adding new machines. Every new machine increases total
storage and processing power of the Hadoop cluster.

đ� Fault-tolerance - Hadoop continues to operate even when a few
hardware or software components fail to work properly.

đ� Cost-optimization - Hadoop runs on standard hardware; it does
not require expensive servers.

đ� Programming abstraction - Hadoop takes care of all messy
details related to distributed computing. Thanks to a high-level
API, users can focus on implementing business logic that solves
their real-world problems.

đ� Data locality – don’t move large datasets to where application is
running, but run the application where the data already is.

Hadoop componEnts

Hadoop is divided into two core components

đ� �����ġ��� %/0.%�10! �ü(!�/5/0!)

đ� YARN - a cluster resource management technology

Ge
t M

or
e R

ef
ca

rd
z!

 V
isi

t R
ef

ca
rd

z.c
om

BrougHt to You BY:

117

a
p

a
c

H
E

 H
a

d
o

o
p

Many execution frameworks run on top of YARN, each tuned for a
specific use-case. The most important are discussed under ‘YARN
Applications’ below.

HOT
TIP

Let’s take a closer look on their architecture and describe how they
cooperate.

Note: YARN is the new framework that replaces the former
%),(!)!*0�0%+*�+"�0$!�,.+�!//%*#�(�5!.�%*��� ++,ċ��+1���*�ü* �$+3�
YARN addresses shortcomings of previous version on the Yahoo blog:
https://developer.yahoo.com/blogs/hadoop/next-generation-apache-
hadoop-mapreduce-3061.html.

HdFs

�����%/����� ++,� %/0.%�10! �ü(!�/5/0!)ċ�	0���*��!�%*/0�((! �+*�
commodity servers and run on as many servers as you need - HDFS
easily scales to thousands of nodes and petabytes of data.

The larger HDFS setup is, the bigger probability that some disks, servers
or network switches will fail. HDFS survives these types of failures by
replicating data on multiple servers. HDFS automatically detects that a
given component has failed and takes necessary recovery actions that
happen transparently to the user.

�����%/� !/%#*! �"+.�/0+.%*#�(�.#!�ü(!/�+"�0$!�)�#*%01 !�+"�$1* .! /�+"�
megabytes or gigabytes and provides high-throughput streaming data
access to them. Last but not least, HDFS supports the write-once-read-
many model. For this use case HDFS works like a charm. If you need,
$+3!2!.Č�0+�/0+.!���(�.#!�*1)�!.�+"�/)�((�ü(!/�3%0$���.�* +)�.!� ġ3.%0!�
access, then other systems like RDBMS and Apache HBase can do a
better job.

note: ����� +!/�*+0��((+3�5+1�0+�)+ %"5���ü(!Ě/��+*0!*0ċ��$!.!�%/�+*(5�
/1,,+.0�"+.��,,!* %*#� �0���0�0$!�!* �+"�0$!�ü(!ċ��+3!2!.Č��� ++,�3�/�
designed with HDFS to be one of many pluggable storage options – for
!4�),(!Č�3%0$��,�ġ�/Č���,.+,.%!0�.5�ü(!/5/0!)Č�ü(!/��.!�"1((5�.!� ġ
write. Other HDFS alternatives include Amazon S3 and IBM GPFS.

arcHitEcturE oF HdFs

HDFS consists of following daemons that are installed and run on
selected cluster nodes:

CTO and Partner
email: cjudd@juddsolutions.com
web: www.juddsolutions.com
blog: juddsolutions.blogspot.com
twitter: javajudd

Christopher M. Judd

mailto:cjudd@juddsolutions.com
mailto:cjudd@juddsolutions.com
mailto:cjudd@juddsolutions.com
mailto:cjudd@juddsolutions.com

