GENERAL NOTES
This map sheet is No. 7 of a 12-sheet series covering the entire surface of Enceladus. The nominal scale is 1:500,000. The source of map data was the Cassini Imaging Science Subsystem (Porco et al., 2004).

Cassini-Huygens is a joint NASA/ESA/ASI mission to explore the Saturnian system. The Cassini spacecraft, the first interplanetary mission of its kind, was launched on October 15, 1997. The mission includes the Cassini orbiter, which will orbit Saturn for four years to investigate the planet, its rings, and moons, and a lander named Huygens, which will descend to the surface of Titan.

REFERENCES
2. Thomas, P.C. and Williams, I.P., 2007, Report of the IAU/IAG Working Group on cartographic Coordinates and Rotational Elements as standard (Porco et al., 2004) and the IAU/IAG Working Group on cartographic Coordinates and Rotational Elements as standard (Porco et al., 2004). This work was supported by the Cassini orbiter project (JPL), managed by NASA’s Goddard Space Flight Center under contract with the Jet Propulsion Laboratory.
4. Thomas, P.C. and Williams, I.P., 2007, Report of the IAU/IAG Working Group on cartographic Coordinates and Rotational Elements as standard (Porco et al., 2004). This work was supported by the Cassini orbiter project (JPL), managed by NASA’s Goddard Space Flight Center under contract with the Jet Propulsion Laboratory.

SPATIAL COORDINATES
Mean radius: 252.1 km

MAP PROJECTION
The Cassini orbiter has 12 instruments. One of them is the Cassini Imaging Science Subsystem (ISS), consisting of two framing cameras. The narrow angle camera is a reflecting telescope with a focal length of 2000 mm and a field of view of 0.35 degrees. The wide angle camera is a refractor telescope with a focal length of 4000 mm and a field of view of 1.5 degrees. Each camera is equipped with a detector consisting of a charge-coupled device (CCD) detector and a filter wheel. The filter wheel contains four filters: blue (0.4 to 0.5 micrometers), green (0.5 to 0.6 micrometers), red (0.6 to 0.7 micrometers), and infrared (0.7 to 0.8 micrometers). Photometric correction using the Hapke bidirectional reflectance function

IMAGE PROCESSING
- Photometric correction
- Photogrammetric adjustment using least-square and limb-fitting techniques
- Map projection
- Proportioning of the mosaic

CONTROL
All the Cassini mosaic, mapped points and central mapping data are available in the form of SPHERE format. SPHERE is a data transfer format available at http://speical.gsfc.nasa.gov for Cassini Imaging Science Subsystem (ISS) mapping data. The source of the ISS controlled mosaic to improve its global accuracy and feature definition.

Cartographic production and design: Kersten, E., Wählisch, M.

Map projection: Cassini Orbiter's cartographic project

Scale 1:500 000

U.S. National Geospatial Agency

Se 500K 0/108 CMN, 2010