MANUALE D’ISTRUZIONI

SKY PRODIGY
TELESCOPIO COMPUTERIZZATO

ARTICOLO N. 31153
TELESCOPIO COMPUTERIZZATO

ARTICOLO N. 22091
SKYPRODIGY 90

ARTICOLO N. 22089
SKYPRODIGY 70

ARTICOLO N. 22091
SKYPRODIGY 90
<table>
<thead>
<tr>
<th>Voci del menu di livello base</th>
<th>17</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allineamento di SkyProdigy</td>
<td>17</td>
</tr>
<tr>
<td>Affinare l'allineamento</td>
<td>17</td>
</tr>
<tr>
<td>Catalogo degli oggetti</td>
<td>17</td>
</tr>
<tr>
<td>Contrasto LCD</td>
<td>17</td>
</tr>
<tr>
<td>Controlli di utilità</td>
<td>17</td>
</tr>
<tr>
<td>Livello del menu</td>
<td>17</td>
</tr>
<tr>
<td>Modelli SkyProdigy</td>
<td>16</td>
</tr>
<tr>
<td>Ripristina impostazioni predefinite</td>
<td>17</td>
</tr>
<tr>
<td>Retroilluminazione</td>
<td>17</td>
</tr>
<tr>
<td>Ottieni informazioni di versione</td>
<td>17</td>
</tr>
<tr>
<td>Funzioni di utilità</td>
<td>17</td>
</tr>
<tr>
<td>Vedi/VAI A luogo</td>
<td>17</td>
</tr>
<tr>
<td>Ruotare verso un oggetto</td>
<td>17</td>
</tr>
<tr>
<td>Selezione un oggetto</td>
<td>17</td>
</tr>
<tr>
<td>Tasto Help (Aiuto)</td>
<td>17</td>
</tr>
<tr>
<td>Tasto Identiificare (Identifica)</td>
<td>16</td>
</tr>
<tr>
<td>Tasti direzionali</td>
<td>16</td>
</tr>
<tr>
<td>Tasto Motor speed (velocità motore)</td>
<td>16</td>
</tr>
<tr>
<td>Tasto SkyTour</td>
<td>15</td>
</tr>
<tr>
<td>Affinare l'allineamento</td>
<td>15</td>
</tr>
<tr>
<td>Catalogo degli oggetti</td>
<td>15</td>
</tr>
<tr>
<td>Selezionare un oggetto</td>
<td>15</td>
</tr>
<tr>
<td>Ruotare verso un oggetto</td>
<td>15</td>
</tr>
<tr>
<td>Tasto SkyTour</td>
<td>15</td>
</tr>
<tr>
<td>Tasto Identify (identifica)</td>
<td>16</td>
</tr>
<tr>
<td>Tasti direzionali</td>
<td>16</td>
</tr>
<tr>
<td>Tasto Motor speed (velocità motore)</td>
<td>16</td>
</tr>
<tr>
<td>Tasto Help (Aiuto)</td>
<td>16</td>
</tr>
<tr>
<td>Tasto menu</td>
<td>16</td>
</tr>
<tr>
<td>Voci del menu di livello base</td>
<td>17</td>
</tr>
<tr>
<td>Ora e luogo</td>
<td>17</td>
</tr>
<tr>
<td>Vedi/VAI A luogo</td>
<td>17</td>
</tr>
<tr>
<td>Funzioni di utilità</td>
<td>17</td>
</tr>
<tr>
<td>Retroilluminazione</td>
<td>17</td>
</tr>
<tr>
<td>Contrasto LCD</td>
<td>17</td>
</tr>
<tr>
<td>Ottieni informazioni di versione</td>
<td>17</td>
</tr>
<tr>
<td>Ripristina impostazioni predefinite</td>
<td>17</td>
</tr>
<tr>
<td>Livello del menu</td>
<td>17</td>
</tr>
<tr>
<td>Allineamento di StarSense</td>
<td>14</td>
</tr>
<tr>
<td>Allineamento del Sistema Solare</td>
<td>14</td>
</tr>
<tr>
<td>Affinare l'allineamento</td>
<td>15</td>
</tr>
<tr>
<td>Catalogo degli oggetti</td>
<td>15</td>
</tr>
<tr>
<td>Selezionare un oggetto</td>
<td>15</td>
</tr>
<tr>
<td>Ruotare verso un oggetto</td>
<td>15</td>
</tr>
<tr>
<td>Tasto SkyTour</td>
<td>15</td>
</tr>
<tr>
<td>Tasto Identify (identifica)</td>
<td>16</td>
</tr>
<tr>
<td>Tasti direzionali</td>
<td>16</td>
</tr>
<tr>
<td>Tasto Motor speed (velocità motore)</td>
<td>16</td>
</tr>
<tr>
<td>Tasto Help (Aiuto)</td>
<td>16</td>
</tr>
<tr>
<td>Tasto menu</td>
<td>16</td>
</tr>
<tr>
<td>Voci del menu di livello base</td>
<td>17</td>
</tr>
<tr>
<td>Ora e luogo</td>
<td>17</td>
</tr>
<tr>
<td>Vedi/VAI A luogo</td>
<td>17</td>
</tr>
<tr>
<td>Funzioni di utilità</td>
<td>17</td>
</tr>
<tr>
<td>Retroilluminazione</td>
<td>17</td>
</tr>
<tr>
<td>Contrasto LCD</td>
<td>17</td>
</tr>
<tr>
<td>Ottieni informazioni di versione</td>
<td>17</td>
</tr>
<tr>
<td>Ripristina impostazioni predefinite</td>
<td>17</td>
</tr>
<tr>
<td>Livello del menu</td>
<td>17</td>
</tr>
</tbody>
</table>
APPENDICE B - GLOSSARIO DEI TERMINI

APPENDICE A - SPECIFICHE TECNICHE

APPENDICE B - GLOSSARIO DEI TERMINI

Manopole .. 24

Manopole .. 24
Cokjgratulazioni per l’acquisto del telescopio SkyProdigy di Celestron ! SkyProdigy inaugura una nuova generazione di tecnologia virtuale. Combina motori elettronici, una fotocamera digitale e una tecnologia StarSense™ interna per la creazione di un telescopio automatico, ad allineamento istantaneo che non rischioda alcun tipo di input da parte dell’utente. Semplice da accendere, premi un tasto e goditi la vista! È così semplice. In caso non si sia esperti di astronomia, è possibile iniziare utilizzando la funzionalità Tour integrata in SkyProdigy, la quale comanda SkyProdigy a trovare gli oggetti più interessanti nel cielo e si ruota automaticamente verso ognuno di essi. O in caso si abbia una maggiore esperienza, si può apprezzare il database completo con oltre 4.000 oggetti, compresi elenchi personalizzati di tutti gli oggetti del profondo cielo, pianeti e luminose stelle doppie. Non importa quale sia il livello di partenza, SkyProdigy scoprirà per te e i tuoi amici tutte le meraviglie dell’Universo.

Alcune delle molte funzionalità standard di SkyProdigy comprendono:
- Velocità massima di rotazione di 3,5°/secondo
- Motori completamente coperti e decodificatori ottici per la localizzazione di posizione
- Fotocamera digitale di allineamento del cielo StarSense™ per la mappatura del cielo
- Controllo manuale computerizzato con un database di 4.000 oggetti
- Memoria per oggetti definiti programmati dall’utente; e
- Molte altre funzionalità ad elevate prestazioni!

Le caratteristiche di lusso di SkyProdigy combinate con gli standard ottici leggendari di Celestron forniscono agli astronomia amatortiali uno dei telescopi più sofisticati e facili da utilizzare disponibili oggi sul mercato.

Il controllo manuale computerizzato di SkyProdigy dispone di istruzioni integrate per guidare l’utente attraverso tutte le funzionalità necessarie per preparare il telescopio e metterlo in funzione in pochi minuti. Utilizzare il presente manuale assieme alle istruzioni a schermo fornite dal controllo manuale. Il manuale fornisce informazioni dettagliate in merito a ciascuna fase nonché il materiale di riferimento necessario e suggerimenti utili garantiti per rendere l’osservazione il più semplice e piacevole possibile.

Il telescopio SkyProdigy è stato progettato per offrire molti anni di osservazioni divertenti e interessanti. Tuttavia, vi sono alcune cose da considerare prima di utilizzare il telescopio che garantiranno sicurezza e proteggeranno l’apparecchiatura. Vedere le avvertenze qui di seguito.

*SkyProdigy di Celestron utilizza una fotocamera di imaging integrata e una tecnologia StarSense brevettata per allinearsi automaticamente con il cielo notturno e determinare la posizione verso la quale il telescopio sta attualmente puntando. La fotocamera acquisisce automaticamente un’immagine del cielo, la quale viene elaborata internamente per identificare positivamente le stelle presenti nell’immagine. Una volta individuata una corrispondenza positiva, SkyProdigy determina le coordinate del centro dell’immagine acquisita. Il processo viene ripetuto automaticamente altre due volte in modo che il sistema disponga di tre punti di allineamento noti che possono essere utilizzati per la creazione di un modello accurato del cielo notturno. Da queste informazioni l’utente può selezionare qualsiasi oggetto celeste nel database del controllo manuale e SkyProdigy si sposterà automaticamente nella posizione corretta.

*La fotocamera interna di SkyProdigy non dispone di un’uscita esterna che permetta agli utenti di visualizzare o salvare le immagini acquisite. Le immagini acquisite sono utilizzate internamente esclusivamente allo scopo di auto-allineare il telescopio SkyProdigy.

ATTENZIONE

- Mai guardare direttamente il Sole a occhio nudo o con un telescopio (a meno che non si disponga di un filtro solare adeguato). Ciò potrebbe comportare danni permanenti e irreversibili agli occhi.
- Mai utilizzare il telescopio per progettare un’immagine del Sole su qualsiasi superficie. L’accumulo di calore interno può danneggiare il telescopio e qualsiasi accessorio ad esso collegato
- Mai utilizzare un filtro solare dell’oculare o un prisma di Herschel. L’accumulo di calore interno al telescopio può causare l’incrinatura o la rottura di questi dispositivi, consentendo alla luce solare non filtrata di passare attraverso l’occhio
- Mai lasciare il telescopio incustodito, sia in presenza di bambini sia di adulti che potrebbero non avere familiarità con le corrette procedure di funzionamento del telescopio
TELESCOPIO SkyProdigy 70

1. Lenti obiettivo
2. Braccio a forcella
3. Interruttore On/Off
4. Controllo manuale computerizzato
5. Treppiede
6. Morsetto di estensione delle gambe del treppiede
7. Vassoio portaccessori
8. Vite di accoppiamento del treppiede
9. Manopola di messa a fuoco
10. Diagonale stellare
11. Oculare
12. Cercatore StarPointer (non mostrato)
13. Fotocamera StarSense
14. Tubo del telescopio
1. Lenti del correttore
2. Fotocamera StarSense
3. Braccio a forcella
4. Interruttorre On/Off
5. Vite di accoppiamento del treppiede
6. Controllo manuale computerizzato
7. Treppiede
8. Vassoio portaccessori
9. Diagonale stellare
10. Oculare
11. Cercatore StarPointer
12. Tubo del telescopio
TELESCOPIO SkyProdigy 130

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Oculare</td>
</tr>
<tr>
<td>2</td>
<td>Specchio secondario</td>
</tr>
<tr>
<td>3</td>
<td>Braccio a forcella</td>
</tr>
<tr>
<td>4</td>
<td>Interruttore On/Off</td>
</tr>
<tr>
<td>5</td>
<td>Controllo manuale computerizzato</td>
</tr>
<tr>
<td>6</td>
<td>Treppiede</td>
</tr>
<tr>
<td>7</td>
<td>Morsetto di estensione delle gambe del treppiede</td>
</tr>
<tr>
<td>8</td>
<td>Vassoio portaccessori</td>
</tr>
<tr>
<td>9</td>
<td>Vite di accoppiamento del treppiede</td>
</tr>
<tr>
<td>10</td>
<td>Fotocamera StarSense</td>
</tr>
<tr>
<td>11</td>
<td>Tubo del telescopio</td>
</tr>
<tr>
<td>12</td>
<td>Cercatore StarPointer</td>
</tr>
</tbody>
</table>
MONTAGGIO

SkyProdigy è fornito parzialmente montato e può essere funzionante in pochi minuti. SkyProdigy è comodamente confezionato in un cartone di spedizione riutilizzabile che contiene i seguenti accessori:

- Oculari da 25 mm e 9 mm – 1¼"
- Diagonale stellare da 1¼” (solo SkyProdigy 70 e 90)
- Cercatore StarPointer e staffa di montaggio
- Vassoio portaccessori di lusso
- Software per l’astronomia SkyX First Light
- Controllo manuale computerizzato

Montaggio di SkyProdigy

Lo SkyProdigy viene fornito in tre sezioni principali: il tubo ottico, il braccio a forcella e il treppiede. Tali sezioni possono essere collegate in qualche secondo utilizzando la vite di accoppiamento ad attacco rapido situata al di sotto della piattagomma di montaggio del treppiede e il morsetto di montaggio a coda di rondine posto all’interno del braccio a forcella. Pre iniziare, rimuovere tutti gli accessori dalle relative confezioni. Ricordare di conservare tutti i contenitori in modo da poterli utilizzare per trasportare il telescopio.

Prima di collegare gli accessori visivi, il tubo del telescopio e il braccio a forcella, è necessario montare il treppiede. Prima di tutto, installare il vassoio portaccessori sulle gambe del treppiede:

1. Rimuovere il treppiede dalla confezione e allargarne le gambe fino a quanto il supporto centrale delle gambe non sarà completamente esteso.

2. Posizionare il vassoio portaccessori e posizionarlo sul supporto centrale del treppiede tra le gambe dello stesso (vedere figura 2-1).

3. Ruotare il vassoio portaccessori in modo che il foro centrale del vassoio scivoli sulla flangia posta al centro della staffa del supporto.

4. Da ultimo, ruotare il vassoio in modo che la linguetta di bloccaggio scivoli al di sotto delle pinze di bloccaggio sul supporto. Si udirá il vassoio scattare in posizione.

Collegamento del supporto per il Controllo manuale

Lo SkyProdigy viene fornito con un supporto a scatto per il controllo manuale che si collega comodamente a una qualsiasi delle gambe del treppiede. Per collegare il supporto per il controllo manuale, posizionare semplicemente il supporto con la scheda di plastica quadrata rivolta verso l’alto e spingerlo contro la gamba del treppiede fino allo scatto in posizione (vedere figura 2-3).

Collegamento del braccio a forcella al treppiede

Con il treppiede montato correttamente, il tubo del telescopio e il braccio a forcella possono essere collegati facilmente utilizzando la vite di accoppiamento ad attacco rapido posizionata sotto la piattaforma di montaggio del treppiede:

1. Posizionare la base del braccio a forcella nella piattaforma di montaggio del treppiede.

2. Avvitare la vite di montaggio nel foro posto sulla parte inferiore della base del braccio a forcella e serrare manualmente (vedere figura 2-4).
Collegamento del telescopio al braccio a forcella

Il tubo ottico del telescopio dispone di una barra di montaggio a cosa di rondine utilizzata per collegare il tubo al braccio a forcella. Per collegare il tubo del telescopio (Vedere figura 2-5).

1. Allentare la manopola di serraggio del morsetto del tubo.
2. Far scorrere la barra di montaggio a coda di rondine del tubo del telescopio nel morsetto del braccio a forcella fino a quando tocca l’arresto di posizionamento. Assicurarsi che il logo sul lato del tubo sia posizionato a destra quando il tubo viene allineato con il braccio a forcella.
3. Serrare la manopola del morsetto del tubo manualmente per fissare il tubo al braccio a forcella.

Lo SkyProdigy è ora completamente montato ed è pronto per collegarvi gli accessori.

La diagonale stellare

(solo per i modelli da 70 mm e 90 mm)

La diagonale stellare devia la luce a un angolo retto dal percorso di luce del telescopio. Per le osservazioni astronomiche, ciò consente di effettuare osservazioni in posizioni più comode rispetto se si dovesse guardare dritto. Per collegare la diagonale stellare:

1. Girare la vite di fissaggio sull’adattatore oculare posto all’estremità del focalizzatore fino a quando non si estenderà più all’interno (cioè ostruirà) il diametro interno del focalizzatore. Rimuovere il tappo di protezione per la polvere dal focalizzatore.
2. Far scorrere la porzione cromata della diagonale stellare nell’adattatore oculare.
3. Serrare la vite di fissaggio sull’adattatore oculare per mantenere la diagonale stellare in posizione.

In caso si desideri modificare l’orientamento della diagonale stellare, allentare la vite di fissaggio sull’adattatore oculare fino a quando la diagonale stellare ruoterà liberamente. Ruotare la diagonale nella posizione desiderata e serrare la vite di fissaggio.

L’oculare

L’oculare è l’elemento ottico che ingrandisce l’immagine messa a fuoco dal telescopio. L’oculare si inserisce sia direttamente nel focalizzatore (modello da 130 mm) sia nella diagonale stellare (modelli da 70 mm e 90 mm). Per installare l’oculare:

Per i modelli da 70 mm e 90 mm:

1. Allentare la vite di fissaggio sulla diagonale stellare in modo che non ostruisca il diametro interno dell’estremità oculare della diagonale.

2. Rimuovere il tappo di protezione per la polvere dalla canna della diagonale stellare.
3.Far scorrere la porzione cromata dell’oculare a bassa potenza da 25 mm nella diagonale stellare.
4. Serrare la vite di fissaggio per mantenere l’oculare in posizione.

Per rimuovere l’oculare, allentare la vite di fissaggio sulla diagonale stellare e far scorrere l’oculare verso l’esterno.
Agli oculari ci si riferisce comunemente mediante la lunghezza focale e il diametro della canna. La lunghezza focale di ciascun oculare è stampata sulla canna dell'oculare stesso. Maggiore è la lunghezza focale (cioè, più alto è il numero) minore sarà la potenza o l'ingrandimento dell'oculare; quindi, minore sarà la lunghezza focale (cioè, più basso è il numero) maggiore sarà l'ingrandimento. Normalmente, durante l'osservazione si utilizzerà una potenza da bassa a moderata. Per maggiori informazioni sulle modalità di determinazione della potenza, vedere la sezione "Calcolo dell'ingrandimento".

Il diametro della canna è il diametro della canna che scorre nella diagonale stellare o focalizzatore. SkyProdigy utilizza oculari con un diametro di canna standard di 1-1/4".

Messaggio a fuoco

Figura 2-9
ACCESSORI VISIVI PER SKY PRODIGY

Per l'osservazione astronomica, le immagini di stelle sfocate sono molto diffuse, rendendo difficoltosa la visualizzazione. Se si ruota la manopola di messa a fuoco troppo velocemente, è possibile non riuscire a vedere l'immagine. Per evitare questo problema, il primo obiettivo astronomico deve essere un oggetto luminoso (come la Luna o un pianeta) in modo che l'immagine sia visibile anche se sfocata. Per ottenere la messa a fuoco, mettere a fuoco un oggetto diurno distante almeno un quarto di miglio.

Per il modello da 70 mm e 130 mm:
Per la messa a fuoco del telescopio, girare semplicemente entrambe le manopole della messa a fuoco posti all'estremità dell'oculare del tubo ottico (vedere figure 2-6 e 2-8). Girare la manopola della messa a fuoco fintanto che l'immagine sarà nitida. Una volta ottenuta un'immagine nitida, girare la manopola verso di sé per mettere a fuoco un oggetto più vicino rispetto a quello che si sta correntemente osservando. Girare la manopola in senso contrario per mettere a fuoco un oggetto più distante rispetto a quello che si sta correntemente osservando. I modelli da 70 mm e da 130 mm dispongono di una vite di tensione argentata della messa a fuoco utilizzata per bloccare il focalizzatore in posizione.

Per il modello da 90 mm:
La manopola della messa a fuoco, la quale sposta lo specchio principale, è situata sul retro del telescopio accanto alla diagonale stellare. Girare la manopola della messa a fuoco fintanto che l'immagine sarà nitida. Una volta messa a fuoco l'immagine, girare la manopola in senso orario per mettere a fuoco un oggetto più vicino e in senso antiorario per un oggetto più distante. In caso la manopola non giri, significa che è stato raggiunto il termine della rotazione sul meccanismo di messa a fuoco. Girare la manopola in direzione opposta fintanto che l'immagine sarà nitida.

Collegamento del Controllo manuale computerizzato

Il controllo manuale di SkyProdigy dispone di un connettore tipo jack del telefono all'estremità del cavo. Collegare il connettore jack del telefono nella presa alla base del braccio a forcella del telescopio. Spingere il connettore nella presa fino a che non scatta in posizione e posizionare il controllo manuale nel relativo supporto come descritto in precedenza nella sezione Montaggio del manuale.

Alimentazione di SkyProdigy

SkyProdigy può essere alimentato da 8 batterie alcaline di dimensione D fornite dall'utente oppure da un adattatore AC opzionale da 12v.

1. Inserire le 8 batterie di tipo D nell'apposito vano.
2. Collegare il connettore cilindrico del vano batteria alla presa da 12v posta sulla base del telescopio.
3. Far scorrere l'interruttore di accensione sulla posizione "On". La luce sul tasto di accensione e sul display del controllo manuale si accenderà.

In caso di perdita di potenza, il tubo ottico può essere spostato manualmente solamente in altezza (su e giù). Tuttavia, una volta acceso, il telescopio può essere controllato utilizzando il controllo manuale. SkyProdigy perderà l'allineamento stellare se spostato manualmente una volta acceso.

Il cercatore StarPointer

Lo StarPointer è uno strumento di puntamento privo di ingrandimento che utilizza una finestra di vetro rivestita per sovrapporre l'immagine di un puntino rosso sull'oggetto in corso di osservazione. Lo StarPointer è molto utile per trovare oggetti terrestri durante il giorno, e vedere dove sta puntando il telescopio nel cielo notturno.

Mentre si tengono aperti entrambi gli occhi durante l'osservazione attraverso lo StarPointer, spostare semplicemente il telescopio fino a che il puntino rosso, visto mediante lo StarPointer, si fonde con l'oggetto come osservato a occhio nudo. Il puntino rosso è prodotto da un diodo ad emissione di luce (LED); non è un fascio laser e non.
danneggerà né il vetro né l’occhio. Lo StarPointer è fornito in dotazione con un controllo di luminosità variabile, un controllo di allineamento a due assi e staffe di montaggio. Prima che lo StarPointer sia pronto da utilizzare, deve essere collegato al tubo del telescopio e allineato correttamente.

Installazione dello StarPointer (SkyProdigy 70)

1. Rimuovere le due viti argentate dalle filettature presenti sulla parte superiore del gruppo tubo (Vedere figura 2-13).
2. Posizionare i fori della staffa dello StarPointer sulle filettature in modo che il vetro sia rivolto verso la parte frontale del cercatore.
3. Ricollegare le viti argentate per mantenere lo StarPointer fisso in posizione.

Installazione dello StarPointer (SkyProdigy 90 e 130)

1. Far scorrere la staffa dello StarPointer nella piattaforma di montaggio a coda di rondine posta sulla parte superiore del gruppo focalizzatore (vedere figura 2-14).
2. Orientare lo StarPointer in modo che il tubo di osservazione sia rivolto verso la parte frontale del tubo.

Funzionamento di StarPointer

1. Prima di utilizzare lo StarPointer, è necessario prima rimuovere la copertura protettiva di plastica sopra la batteria (vedere figura 2-15).
2. Per accendere lo StarPointer, ruotare il controllo della luminosità variabile (vedere figura 2-12) in senso orario fino a quando si udà un "click". Per aumentare il livello di luminosità del puntino rosso, continuare a girare la manopola di controllo di circa 180° fino a quando si arresterà.
3. Localizzare un oggetto distante e centrarlo con un oculare a bassa potenza nel telescopio principale. In caso di allineamento diurno, scegliere un oggetto distante almeno un quarto di miglio. In caso di allineamento notturno, scegliere la Luna o una stella luminosa facile da vedere. Utilizzare i quattro tasti con le frecce direzionali sul controllo manuale per spostare il telescopio da un lato all’altro e su e giù.
4. Con entrambi gli occhi aperti, guardare attraverso il vetro alla stella di allineamento. Se lo StarPointer è perfettamente allineato, si vedranno il LED rosso sovrapporsi alla stella di allineamento. Se lo StarPointer non è allineato, annotare il punto in cui si trova il puntino rosso relativo alla stella luminosa.
5. Senza spostare il telescopio principale, girare i controlli di allineamento dell’altezza e dell’azimut dello StarPointer (vedere figura 2-12) fino a quando il puntino rosso non sarà perfettamente allineato sopra l’oggetto di allineamento.

In caso il puntino LED sia più luminoso della stella di allineamento, potrebbe essere difficile vedere la stella stessa. Ruotare il controllo della luminosità in senso antiorario, fino a quando il puntino rosso raggiunge la stessa luminosità della stella di allineamento. Ciò renderà più semplice l’ottenimento di un allineamento preciso. Lo StarPointer è ora pronto per l’uso.
CONTROLLO MANUALE

Controllo manuale computerizzato

Il controllo manuale di SkyProdigy è progettato per dare all’utente un accesso istantaneo a tutte le funzioni offerte da SkyProdigy. Con una rotazione automatica a oltre 4.000 oggetti e descrizioni del menu semplici, persino un principiante può padroneggiare la varietà di funzioni in solo poche sessioni di osservazione. Qui di seguito si trova una breve descrizione dei singoli componenti del controllo manuale di SkyProdigy:

1. **Finestra del display a cristalli liquidi (LCD):** Dispone di uno schermo di visualizzazione a quattro linee, 18 caratteri con retroilluminazione di colore rosso per una comoda visualizzazione delle informazioni del telescopio e scorrimento del testo.

2. **Align (Allinea):** Fornisce istruzioni a SkyProdigy per iniziare l’allineamento del telescopio.

3. **Tasti direzionali:** Consentono un controllo completo di SkyProdigy in qualsiasi direzione. Utilizzare i tasti direzionali per centrare oggetti nell’oculare o per ruotare manualmente il telescopio.

4. **Tasti catalogo:** SkyProdigy dispone di un tasto sul controllo manuale per consentire un accesso diretto a ciascuno dei cataloghi principali presenti nel database con più di 4.000 oggetti. SkyProdigy contiene nel proprio database i seguenti cataloghi:
 - **Sistema solare** - Tutti i 7 pianeti presenti nel Sistema solare più la Luna, il Sole e Plutone.
 - **Stelle** – Elenchi personalizzati di tutte le stelle più luminose, le doppie stelle, le stelle variabili e asterismi.

5. **Identify (Identifica):** Cerca nel database di SkyProdigy e visualizza il nome e le distanze agli oggetti corrispondenti più vicini.

6. **Menu:** Visualizza le molte funzioni di impostazione e utilità, come la velocità di tracciabilità e gli oggetti definiti dall’utente, e molte altre.

7. **Option (Opzione) (Logo Celestron):** Può essere utilizzato in combinazione con altri tasti per accedere alle funzionalità e alle funzioni più avanzate.

8. **Enter (Invio):** Premere **ENTER** (INVIO) consente di selezionare una delle funzioni di SkyProdigy, accettare i parametri inseriti e ruotare il telescopio per visualizzare gli oggetti.

9. **Back (Indietro):** Premere **BACK** (Indietro) comporterà l’uscita dal menu corrente e la visualizzazione del livello precedente nel percorso del menu. Premere **BACK** ripetutamente per tornare indietro al menu principale o utilizzare il presente tasto per cancellare dati inseriti per errore.

10. **Sky Tour:** Attiva la modalità tour, la quale cerca tutti i migliori oggetti nel cielo e ruota automaticamente SkyProdigy verso tali oggetti.

11. **Tasti di scorrimento:** Utilizzati per scorrere verso l’alto o il basso entro uno qualsiasi degli elenchi del menu. Il simbolo con una doppia freccia sul lato destro dello schermo LCD indica che i tasti di scorrimento possono essere utilizzati per visualizzare informazioni aggiuntive.

12. **Motor Speed (Velocità del motore):** Modifica istantaneamente il tasso di velocità del motore una volta premuti i tasti direzionali.

13. **Object Info (Info oggetto):** Visualizza le coordinate e informazioni utili in merito agli oggetti selezionati dal database SkyProdigy.

14. **Jack RS-232:** Per l’utilizzo con un computer, programmi software per puntare e cliccare la capacità di rotazione e per aggiornare il firmware mediante il PC.

Allineamento di SkyProdigy

Allineamento di StarSense

Affinché lo SkyProdigy possa puntare precisamente gli oggetti nel cielo, esso deve prima allinearsi con modelli di stelle noti nel cielo. Una volta allineato, il telescopio può creare un modello del cielo, che utilizzerà per posizionare qualsiasi oggetto con coordinate note.

Prima di iniziare l’allineamento, SkyProdigy deve essere configurato (come descritto nella sezione precedente) in un luogo all’esterno. Posizionare il telescopio in un’area ampia aperta, lontana da grandi alberi o edifici che potrebbero ostruire la vista del cielo da parte di SkyProdigy. Preferibilmente, il luogo di osservazione dovrebbe disporre di una vista il più vicino possibile all’orizzonte con nessuna luce luminosa in prossimità del telescopio.
1. Iniziare rivolgendo la parte frontale del telescopio verso una parte del cielo non ostruite, priva di qualsiasi luce luminosa.

2. Assicurarsi che il tappo sia stato rimosso dalle lenti della fotocamera.

3. Premere il tasto ALIGN (ALLINEA) sul controllo manuale per iniziare il processo di allineamento.

Sebbene SkyProdigy si allineerà essenzialmente da sé dopo aver premuto il tasto ALIGN (ALLINEA), quanto segue è una panoramica del processo di allineamento del StarSense:

- SkyProdigy inizierà automaticamente a spostarsi alla propria "posizione iniziale". Con il telescopio puntato verso una parte libera del cielo, esso si ruoterà (sposterà) verso l'alto, lontano dall'orizzonte di circa 25 gradi.
- SkyProdigy scatcerà un'immagine del cielo e visualizzerà il messaggio "Acquisizione dell'immagine in corso" sul display del controllo manuale. Una volta iniziato il processo di allineamento, SkyProdigy si sposterà automaticamente a un'altra posizione del cielo.
- Dopo aver scattato la prima immagine, il controllo manuale visualizzerà la dicitura "Rilevamento in corso". In questo momento l'immagine acquistata viene elaborata internamente e visualizzerà il numero di stelle mappate.
- Una volta elaborata, il controllo manuale visualizzerà il messaggio "Risoluzione in corso" mentre tenterà di identificare positivamente le stelle presenti nell'immagine.
 1. Una volta identificata una corrispondenza positiva, il controllo manuale visualizzerà il messaggio "Risolto".
 2. Il controllo manuale visualizzerà il messaggio "Non risolto" in caso di incapacità a trovare una corrispondenza. Vedere la sezione "Suggerimenti per l'utilizzo di SkyProdigy" per le modalità con cui incrementare le corrispondenze positive di allineamento.
- Una volta risolta l'immagine, SkyProdigy ripeterà il processo e visualizzerà il messaggio "Allineamento completato" una volta acquisite con successo tre immagini.

SkyProdigy è ora pronto per iniziare a cercare e tracciare un qualsiasi oggetto presente nel database con oltre 4.000 oggetti.

Suggerimenti per l'allineamento di SkyProdigy

Ricordare di seguire le linee guida per l'allineamento per rendere l'utilizzo di SkyProdigy il più semplice e preciso possibile.

- Assicurarsi che il treppiede sia stato allineato prima di iniziare l'allineamento. A treppiede allineato aiuterà il telescopio a meglio corrispondere le immagini scattate con il cielo attuale e a fornire una determinazione più precisa della posizione.
- Assicurarsi che le gambe del treppiede siano sufficientemente fisse. In caso vi sia un qualsiasi movimento avvertibile nel treppiede durante l'allineamento del telescopio, ciò potrebbe influenzare i risultati. Potrebbe essere necessario serrare entrambi i dadi di bloccaggio delle estensioni delle gambe e i bulloni di cerniera posti sulla parte superiore del treppiede.
- Assicurarsi che la parte inferiore della barra di montaggio sul tubo del telescopio sia montata a filo contro la parte inferiore del morsetto di montaggio. In caso il tubo del telescopio sia collegato a un angolo, non sarà precisamente allineato con la fotocamera.
- In caso il telescopio SkyProdigy 130 sia fuori collimazione, le ottiche potrebbero non essere più allineate con le assi ottiche della fotocamera provocando errati allineamento o scarsa precisione di puntamento.
- Una volta collimato lo SkyProdigy 130, si consiglia di calibrare la fotocamera in modo da corrispondere con le ottiche. Per informazioni sulla calibrazione della fotocamera, vedere l'opzione di calibrazione alla sezione Fotocamera StarSense del manuale.
- In caso si noti che la precisione di puntamento del telescopio è notevolmente peggiore su oggetti del sistema solare (pianeti e la Luna) rispetto alle stelle, potrebbe essere necessario azzerare le informazioni relative all’ora/posizione per aumentare la precisione. Utilizzare il menu Ora e Posizione nel controllo manuale per aggiornare le informazioni relative all’ora/posizione.

Per ottimi risultati di allineamento, assicurarsi che il telescopio sia puntato verso un'area di cielo aperto che abbia un chiaro orizzonte alla destra (senso orario) della posizione di partenza. Una volta effettuato il primo allineamento dell’immagine, SkyProdigy si sposterà in senso orario almeno di 90° per effettuare la seconda immagine in qualche punto tra la posizione a ore 4 e 6. In caso l’orizzonte sia bloccato tra la posizione a ore 3 e 6, SkyProdigy continuerà a spostarsi in senso orario fino a quando troverà una visuale non ostruita del cielo. La terza immagine sarà effettuata nella posizione tra le ore 7 e 9. La posizione tra le ore 10 e 12 sarà utilizzata solamente se il cielo della precedente posizione è ostruito.
STAR PRODIGY

MANUALE D’ISTRUZIONI

StarSense

Allineamento manuale di StarSense

Pronto all’uso. Una volta elaborata la terza immagine, SkyProdigy è allineato e pronto all’uso. Una volta centrato, allineamento manuale di StarSense non fornisce un allineamento preciso quanto l’allineamento automatico sopra descritto. Tuttavia, fornisce una buona precisione di puntamento in tutta la regione visibile del cielo utilizzata per l’allineamento. Per utilizzare l’allineamento manuale di StarSense:

1. Con il telescopio acceso, premere e tenere premuto il tasto **OPTION** (OPZIONE) e premere il tasto **ALIGN** (ALLINEA). Ciò consentirà di vedere le opzioni di allineamento aggiuntive disponibili.

2. Utilizzare i tasti di scorrimento **SU/GIÚ** per selezionare l’opzione manuale di StarSense e premere **ENTER** (INVIO).

3. Il telescopio si sposterà automaticamente alla posizione iniziale e deve essere puntato circa a 25° sopra l’orizzonte.

4. Assicurarsi che il tappo sia stato rimosso dalle lenti della fotocamera.

5. In caso il telescopio non sia puntato verso una porzione vuota del cielo, utilizzare i tasti direzionali per rivolgere il telescopio verso una parte di cielo vuoto e premere **ENTER** (INVIO).

6. **Durante lo spostamento del telescopio, ricordarsi di porre fine alla rotazione utilizzando i tasti direzionali SU e DEstra sul controllo manuale.** Sarà visualizzato un segno di spunta alla destra dello schermo del controllo manuale a conferma dell’utilizzo dei tasti direzionali SU e DEstra. Ciò contribuirà a eliminare la maggior parte dei contraccolpi meccanici nelle marce e a garantire il miglior allineamento possibile.

7. SkyProdigy comincerà quindi a scattare la prima immagine del cielo e visualizzerà il messaggio "Acquisizione dell’immagine in corso" sullo schermo del controllo manuale.

8. Una volta acquisita ed elaborata l’immagine, illo schermo chiederà di selezionare il punto di allineamento successivo. Utilizzare i tasti direzionali per ruotare il telescopio verso un’altra porzione vuota del cielo. Ancora una volta, utilizzare i tasti direzionali SU e DEstra per terminare la rotazione del telescopio. Premere **ENTER** (INVIO).

9. Una volta acquisita ed elaborata la seconda immagine, utilizzare i tasti direzionali per ruotare il telescopio verso una porzione finale di cielo vuoto, il più lontano possibile dalla prima posizione di allineamento. Premere **ENTER** (INVIO).

Una volta elaborata la terza immagine, SkyProdigy è allineato e pronto all’uso.

Suggerimenti per l’utilizzo dell’allineamento manuale StarSense

In caso SkyProdigy manchi oggetti luminosi o non li posizioni in prossimità del centro di un oculare a bassa potenza, premere il tasto **HELP** (AIUTO) per accedere all’utilità “Impossibile vedere gli oggetti”. Vedere la funzionalità del menu Help (Aiuto) per maggiori informazioni.

Allineamento del Sistema Solare

L’allineamento del Sistema solare è progettato per fornire una buona tracciabilità e prestazioni GoTo (VaiA) utilizzando gli oggetti presenti nel sistema solare (Sole, Luna e pianeti) per allineare il telescopio al cielo. L’allineamento del Sistema solare è un ottimo modo per allineare il telescopio per l’osservazione diurna e un rapido modo per allineare il telescopio per le osservazioni notturne. Durante l’utilizzo di StarSense non rileva gli oggetti celesti durante il giorno, l’allineamento del Sistema solare viene effettuato utilizzando l’oculare.

ATTENZIONE

- **Posizionare un tappo sulle lenti della fotocamera!**

 Dal momento che si potrebbe voler usare il Sole per l’allineamento, ricordarsi di posizionare il tappo sulle lenti della fotocamera per proteggere il sensore di mappatura.

- **Mai guardare direttamente il Sole a occhio nudo o** con un telescopio (a meno che non si disponga di un filtro solare adeguato). Ciò potrebbe comportare danni permanenti e irreversibili agli occhi.

1. Per accedere all’allineamento del Sistema solare, tenere premuto il tasto **OPTION** (OPZIONE) mentre si preme il tasto **ALIGN** (ALLINEA). Ciò consentirà di vedere le opzioni di allineamento aggiuntive disponibili.

2. Utilizzare i tasti di scorrimento **SU/GIÚ** per selezionare l’allineamento del Sistema solare dalle opzioni di allineamento. Premere **ENTER** (INVIO) per accettare le informazioni relative all’ora/posizione visualizzate sul controllo manuale oppure premere **BACK** (INDIETRO) per accettare i valori visualizzati.

3. Utilizzare il tastierino numerico per digitare le informazioni aggiornate.

4. Utilizzare i tasti di scorrimento **SU/GIÚ** per commutare tra le selette come Nord/Sud e le informazioni relative ai fusi orari.

5. Utilizzare i tasti di scorrimento **SU/GIÚ** per selezionare l’oggetto diurno (pianeti, Luna o Sole) che si intende allineare. Premere **ENTER** (INVIO). Il controllo manuale visualizzerà solamente gli oggetti del sistema solare che sono sopra l’orizzonte per il giorno e l’ora selezionata.

 - SkyProdigy quindi chiederà di centrare nell’oculare l’oggetto desiderato per l’allineamento. Utilizzare i tasti con le frecce direzionali per ruotare il telescopio verso l’oggetto dell’allineamento e centrarlo con attenzione nel cercatore StarPointer. Premere **ENTER** (INVIO) una volta centrato.
 - Quindi, centrare l’oggetto nell’oculare e premere **ALIGN** (ALLINEA).

Una volta in posizione, SkyProdigy modellerà il cielo sulla base di queste informazioni e visualizzerà il messaggio **Allineamento Completato**.

Suggerimenti per l’utilizzo dell’allineamento del Sistema solare

Durante l’utilizzo dell’allineamento del Sistema solare per visualizzare la Luna o il Sole, è possibile modificare la velocità di tracciabilità all’impostazione appropriata per tali oggetti. È possibile accedere al menu tracciabilità premendo : **MENU**> Impostazione Telescopio-Tracciabilità
Affinare l'allineamento
Una volta allineato il telescopio utilizzando l'Allineamento con il Sistema Solare, vi è la possibilità di aggiungere ulteriori oggetti all'allineamento (altri pianeti o stelle dal catalogo delle stelle identificate) al fine di migliorare la precisione di puntamento.
Per aggiungere un oggetto all'allineamento:

1. Selezionare l'oggetto desiderato dal database delle stelle identificate o del Sistema solare e far ruotare ad esso il telescopio.
2. Premere il tasto ALIGN (ALLINEA) sul controllo manuale.
3. Lo schermo chiederà quindi se si desidera aggiungere un oggetto all'allineamento o se si desidera sostituire l'oggetto esistente.
4. Selezionare ADDI (AGGIUNGI) per aggiungere l'oggetto aggiuntivo all'allineamento. In caso si sia già aggiunto un oggetto aggiuntivo, si ha l'opzione di sostituire uno degli oggetti esistenti con il nuovo oggetto.
5. Centrare con attenzione l'oggetto nell'oculare utilizzando i tasti SU e DESTRA per il centramento finale.
6. Premere ALIGN (ALLINEA) per aggiungere l'oggetto all'allineamento.

Suggerimenti per utilizzare l'allineamento del Sistema solare
Per ragioni di sicurezza, il Sole non sarà visualizzato in nessun elenco di oggetti del controllo manuale a meno che esso non sia stato abilitato dal menu d'impostazione del Database. Per far sì che il Sole di oggetti del controllo manuale a meno che esso non sia stato visualizzato in nessun elenco di oggetti del controllo manuale a meno che esso non sia stato abilitato dal menu d'impostazione del Database. Per ragioni di sicurezza, il Sole non sarà visualizzato in nessun elenco di oggetti del controllo manuale a meno che esso non sia stato abilitato dal menu d'impostazione del Database. Per far sì che il Sole di oggetti del controllo manuale a meno che esso non sia stato abilitato dal menu d'impostazione del Database.

1. Premere il tasto UNDO (ANNULLA) fino a quanto sullo schermo comparirà il messaggio "SkyProdigy Pronto".
2. Premere il tasto MENU e utilizzare i tasti SU e GIÚ per selezionare il tasto utilità. Premere ENTER (INVIO).
3. Utilizzare i tasti SU e GIÚ per selezionare il livello del Menu e premere ENTER (INVIO).
4. Utilizzare i tasti SU e GIÚ per selezionare avanzato e premere ENTER (INVIO). Ciò consentirà il passaggio al menu dell'impostazione del Database che servirà per rendere visualizzabile il Sole.
5. Premere BACK (INDIETRO) fino a quando non sarà visualizzata l'opzione del Menu.
6. Utilizzare i tasti SU e GIÚ per selezionare impostazione database e premere ENTER (INVIO).
7. Utilizzare i tasti SU e GIÚ per selezionare consenti sole e premere ENTER (INVIO).
8. Utilizzare i tasti SU e GIÚ per commutare l'opzione sullo schermo su SI e premere ENTER (INVIO).

Il Sole può essere rimosso dalla visualizzazione utilizzando la stessa procedura di cui sopra.

Catalogo degli oggetti
Selezione un oggetto
Ora che il telescopio è allineato correttamente, è possibile scegliere un oggetto da uno qualsiasi dei cataloghi presenti nel database SkyProdigy. Il controllo manuale dispone di un tasto dedicato per ciascuna categoria di oggetti nel database: oggetti del Sistema solare, Stelle e oggetti del profondo cielo.

- **Sistema solare** - Il catalogo del Sistema Solare visualizzerà tutti i pianeti (e la Luna) presenti nel Sistema solare e attualmente visibili nel cielo. Per consentire che il Sole sia visualizzato come un'opzione nel database, vedere Opzione Consente Sole nella sezione impostazione database del manuale.
- **Stelle** – Il catalogo delle stelle visualizza un elenco personalizzato di tutte le stelle più luminose, stelle doppie (Binarie), stelle variabili e asterismi selezionati.

- **Profondo cielo** – Il catalogo del profondo cielo visualizza un elenco di tutte le migliori Galassie, Nebulose e ammassi stellari, nonché gli oggetti Messier e NGC selezionati completi. Vi è inoltre un elenco in ordine alfabetico del nome comune di tutti gli oggetti del profondo cielo.

I cataloghi Messier e NGC richiedono l'inserimento di una designazione numerica da parte dell'utente. La selezione di questi cataloghi visualizzerà un cursore lampeggiante accanto al nome del catalogo scelto. Utilizzare il tasterificio numerico per digitare il numero di un oggetto all'interno di questi cataloghi standardizzati. Per esempio, per trovare la Nebulosa di Orione, premere il tasto "M" e digitare "042".

Al momento dello scorrimento di un luogo elenco di oggetti, tenere premuti i SU o GIÚ consentirà di scorrere il catalogo a una velocità maggiore. Tenere premuto il tasto di opzione contemporaneamente ai tasti SU/GIÚ consentirà di scorrere il database tre oggetti alla volta.

Rutore verso un oggetto
Una volta che l'oggetto desiderato sarà visualizzato sullo schermo del controllo manuale, vi sono due opzioni:

- **Premere il tasto OBJECT INFO (INFO OGGETTO).** Ciò fornirà informazioni utili merito all’oggetto selezionato come magnitudo, costellazione e informazioni estese circa gli oggetti più popolari.
 - Utilizzare i tasti freccia SU/GIÚ per scorrere le informazioni visualizzate dell’oggetto.
 - Utilizzare il tasto BACK (INDIETRO) o OBJECT INFO (INFO OGGETTO) per ritornare al database degli oggetti.
- **Premere il tasto ENTER (INVIO).** Ciò farà ruotare automaticamente il telescopio alle coordinate dell’oggetto visualizzato sul controllo manuale. Durante la rotazione del telescopio verso l'oggetto, l'utente può ancora avere accesso a molte delle funzioni del controllo manuale (come la visualizzazione di informazioni circa l'oggetto).

Attenzione: Mai far ruotare il telescopio mentre qualcuno sta guardando nell’oculare. Il telescopio può spostarsi a velocità di rotazione elevate e può colpire un osservatore nell’occhio.

Tasto SkyTour
Lo SkyProdigy include una funzionalità tour la quale consente automaticamente all’utente di scegliere da un elenco di oggetti interessanti in base alla data e all’ora di osservazione. Il tour automatico visualizzerà solamente quegli oggetti che si trovano entro i limiti di fitro impostati per il catalogo. Per attivare la funzionalità tour, premere il tasto SKY TOUR sul controllo manuale.

- **Premere il tasto SKY TOUR sul controllo manuale.**
- **Utilizzare i tasti di SCORRIMENTO per selezionare il Meglio di Stanotte.**
- **SkyProdigy ruoterà automaticamente in azimuth alla posizione iniziale la quale contribuirà a minimizzare la possibilità di attorcigliare il cavetto di alimentazione durante il tour.**
- **SkyProdigy visualizzerà gli oggetti migliori da osservare attualmente presenti nel cielo.**
 - Per visualizzare le informazioni e i dati circa l'oggetto visualizzato, premere il tasto OBJECT INFO (INFO OGGETTO). Premere una volta per visualizzare le coordinate dell'oggetto.
 - SkyProdigy nuovamente per visualizzare le coordinate dell'oggetto. Premere nuovamente per visualizzare il testo di descrizione. Premere BACK (INDIETRO) per ritornare alla schermata precedente.
- Per ruotare verso l'oggetto visualizzato, premere ENTER (INVIO).
- Per vedere l'oggetto successivo del tour, premere il tasto GIÚ.

Tasto Identify (identifica)

Premere il tasto IDENTIFY (IDENTIFICA) cercherà nei cataloghi del database di SkyProdigy e visualizzerà il nome e la distanza angolare agli oggetti corrispondenti più vicini alla posizione corrente del telescopio. Questa funzionalità può essere utilizzata per due scopi. Per prima cosa, può essere utilizzata per identificare un oggetto sconosciuto nel campo di visualizzazione dell'oculare. Inoltre, la modalità Identify può essere utilizzata per trovare altri oggetti celesti che sono visini agli oggetti attualmente in corso di osservazione.

Per esempio, se il telescopio è puntato verso la stella più luminosa nella costellazione di Lira, scegliere il tasto Identify ritornerà senza dubbio alla stella Vega come stella di osservazione. Tuttavia, la funzionalità Identify cercherà inoltre nei database NGC e del Sistema solare e visualizzerà eventuali pianeti oppure oggetti del profondo cielo che sono vicini. In questo esempio, la Nebulosa Anello (M57) sarà mostrata come distante 6° circa.

La luminosità e la vicinanza degli oggetti visualizzati può essere definita dall’utente utilizzando il filtro di identificazione nelle impostazioni del telescopio.

Tasti direzionali

Lo SkyProdigy dispone di quattro tasti direzionali posti al centro del controllo manuale, i quali controllano il movimento del telescopio in altezza (su e giù) e in azimut (sinistra e destra). Il telescopio può essere controllato a nove diverse velocità.

<table>
<thead>
<tr>
<th>Numero</th>
<th>Velocità di rotazione</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 = 2x</td>
<td>6 = 3° / sec</td>
</tr>
<tr>
<td>2 = 4x</td>
<td>7 = 1° / sec</td>
</tr>
<tr>
<td>3 = 8x</td>
<td>8 = 2° / sec</td>
</tr>
<tr>
<td>4 = 16x</td>
<td>9 = 3,5° / sec</td>
</tr>
<tr>
<td>5 = 32x</td>
<td></td>
</tr>
</tbody>
</table>

Sono visualizzate nove velocità di rotazione disponibili

Tasto Motor speed (velocità motore)

Premere il tasto MOTOR SPEED (VELOCITÀ MOTORE) (12) consente di modificare istantaneamente la velocità dei motori da alta velocità di rotazione a velocità di guida precisa o in qualsiasi punto intermedio. Ciascuna velocità corrisponde a un numero sul tastierino del controllo manuale. Il numero 9 è la velocità maggiore (circa 3,5° al secondo, a seconda della fonte di alimentazione) ed è utilizzata per la rotazione tra oggetti e il posizionamento dell'allineamento di stelle. Il numero 1 sul controllo manuale è la velocità più bassa (2x più lenta) e può essere utilizzata per il centramento preciso di oggetti nell'oculare. Per modificare la velocità dei motori:

- Premere il tasto MOTOR SPEED (VELOCITÀ MOTORE) sul controllo manuale. Lo schermo LCD visualizzerà la velocità attuale.
- Premere il numero sul controllo manuale corrispondente alla velocità desiderata.

Il controllo manuale dispone di una funzionalità a “doppio tasto” che consente di aumentare istantaneamente la velocità dei motori senza dover scegliere una velocità specifica. Per utilizzare questa funzionalità, premere semplicemente il tasto con la freccia che corrisponde alla direzione verso la quale si intende spostare il telescopio. Mentre si preme tale tasto, premere il tasto direzionale opposto. Ciò aumenterà la velocità alla massima velocità di rotazione.

Durante l’utilizzo dei tasti SU e GIÚ sul controllo manuale, le velocità di rotazione inferiori (6 e inferiori) spostano i motori nella direzione opposta rispetto alle velocità di rotazione superiori (7-9). Ciò viene fatto in modo che un oggetto si sposti nella direzione appropriata mentre si guarda nell’oculare (ad es., premere la freccia in alto sposterà la stella nella parte superiore del campo di visualizzazione dell’oculare). Tuttavia, se qualsiasi velocità di rotazione inferiore (velocità 6 e inferiori) è utilizzata per centrare un oggetto nello StarPointer, è possibile che sia necessario premere il tasto direzionale opposto per far sì che il telescopio si sposti nella direzione corretta.

Tasto Help (Aiuto)

Il tasto HELP (AIUTO) offre un accesso istantaneo a informazioni di aiuto e a utilità utili che possono contribuire a migliorare la precisione di puntamento del telescopio.

- FAQ (Domande frequenti) generali - È un riferimento rapido a molte delle funzionalità e funzioni del telescopio.
- Glossario - Fornisce definizioni a molti termini astronomici che si potrebbero incontrare durante l’utilizzo del telescopio.
- Il tasto HELP (AIUTO) può inoltre essere utilizzato per effettuare una diagnosi e migliorare la precisione di puntamento in caso si dovesse notare che gli oggetti luminosi non sono ben centrati (o completamente mancanti) nell’oculare. Ciò è particolarmente utile durante l’utilizzo del processo di allineamento manuale di StarSense, nel quale è utilizzata solamente una piccola porzione di cielo per allineare il telescopio. Per utilizzare il tasto HELP (AIUTO) per migliorare la precisione:
 1. Ruotare verso un oggetto del database non visibile (o non ben centrato) nell’oculare.
 2. Una volta completata la rotazione, premere il tasto HELP (AIUTO). Non tentare di utilizzare i tasti direzionali per cercare manualmente l’oggetto.

Tasto menu

SkyProdigy contiene molte funzioni di impostazione definite dall’utente progettate per dare controllo all’utente su molte funzionalità del telescopio. A tutte le impostazioni e le funzionalità di utilità è possibile accedere premendo il tasto MENU e scorrendo le opzioni sottostanti.

Al fine di rendere la navigazione tra i menu del controllo manuale il più semplice possibile, i livelli del menu sono divisi in funzioni Base e Avanzate.

Le Funzioni di base, che sono visualizzate sul controllo manuale una volta acceso, sono le funzioni più comunemente utilizzate che potrebbe essere necessario utilizzare ogni volta che si usa il telescopio. Queste funzionalità comprendono l’aggiornamento delle informazioni relative all’ora e alla posizione e molte altre funzioni di utilità quali il cambiamento della retroilluminazione e del contrasto dello schermo del controllo manuale.
Le **Funzioni avanzate** offrono la possibilità di personalizzare le molte funzionalità del telescopio e il database degli oggetti, così come le funzioni di impostazione del telescopio necessario per migliorare le prestazioni complessive.
Per accedere alle voci del menu Avanzato, vedere Livelli del menu alla sezione Utilità del manuale.

Voci del menu di livello base

Ora e luogo

Vedi / Modifica posizione – Consente di visualizzare e apportare modifiche alla longitudine e latitudine della posizione corrente.

Nota: la modifica della posizione corrente comporterà una perdita dell’allineamento. Sarà necessario allineare nuovamente il telescopio in seguito alla modifica della posizione.

Vedi / Modifica ora – Consente di visualizzare e apportare modifiche a data, ora, fuso orario e ora legale.

Per modificare le informazioni relative a ora e posizione:
- Utilizzare il tastierino numerico per digitare le informazioni aggiornate.
- L’ora deve essere inserita secondo l’orario universale, che in alcuni casi potrebbe impostare la data avanti o indietro di un giorno.
- Utilizzare i tasti di scorrimento **SU**/**GIÙ** per commutare le scelte come Nord/Sud e le informazioni del fuso orario.
- Premere **ENTER** (INVIO) per ruotare il telescopio verso le nuove coordinate.

Funzioni di utilità

Lo scorrimento tra le opzioni del **MENU** fornirà inoltre accesso alle varie funzioni di utilità avanzate come la regolazione della luminosità del controllo manuale e il ripristino alle impostazioni di fabbrica predefinite.

Retroilluminazione – Questa funzionalità consente di regolare la luminosità sia della luce rossa del tastierino sia dello schermo LCD per l’uso diurno al fine di risparmiare energia e contribuire al risparmio per l’osservazione notturna. Utilizzare i tasti di scorrimento **SU**/**GIÙ** per aumentare o diminuire il valore numerico da 0 (spento) a 31 (più scuro). Premere **ENTER** (INVIO) per accettare i valori. Premere **BACK** (INDIETRO) per uscire dal menu.

Contrasto LCD – Consente di regolare il contrasto dello schermo LCD. Ciò è utile in varie condizioni di luce e temperature che possono influenzare l’aspetto del LCD. Utilizzare i tasti di scorrimento **SU**/**GIÜ** per aumentare o diminuire il valore numerico da 0 (più chiaro) a 31 (più scuro).

Ottieni info di versione – Selezionare quest’opzione consentirà di vedere la versione attuale e il numero build del controllo manuale, della fotocamera e del software di controllo del motore. La prima serie di numeri indica la versione del software del controllo manuale. Per il controllo del motore, il controllo manuale visualizzerà due serie di numeri: la prima serie di numeri è per l’azimut mentre la seconda è per l’altitudine. Utilizzare i tasti di scorrimento **SU**/**GIÜ** per visualizzare tutte le informazioni.

Ripristina impostazioni predefinite – Riporta il controllo manuale SkyProdigy alle impostazioni di fabbrica originali. Premere **ENTER** (INVIO) per ripristinare le impostazioni predefinite oppure premere **BACK** (INDIETRO) per uscire.

Livello del menu – Al fine di rendere la navigazione tra i menu del controllo manuale il più semplice possibile, i livelli del menu sono divisi in funzioni Base e Avanzate. Per visualizzare le funzionalità Avanzate, selezionare l’opzione di livello del menu. Al Livello del Menu selezionare l’opzione avanzata e premere **ENTER** (INVIO).

- **Le Funzioni di base**, che sono visualizzate sul controllo manuale una volta acceso, sono le funzioni più comunemente utilizzate che potrebbero essere necessario utilizzare ogni volta che si usa il telescopio. Queste funzionalità comprendono l’aggiornamento delle informazioni relative all’ora e alla posizione e molte altre funzioni di utilità quali il cambiamento della retroilluminazione e del contrasto dello schermo del controllo manuale.
- **Le Funzioni avanzate** offrono la possibilità di personalizzare le molte funzionalità del telescopio e il database degli oggetti, così come le funzioni di impostazione del telescopio necessarie per migliorare le prestazioni complessive.

Voci del menu di livello avanzato

Impostazione del database

Filtro SkyTour – Consentono di impostare il limite minimo di grandezza (luminosità) per gli oggetti che saranno visualizzati una volta premuto il tasto **SKY TOUR**. Durante l’utilizzo del telescopio da una posizione di cielo scuro, impostare la grandezza a un numero più elevato. Durante l’utilizzo del telescopio da una posizione urbana o in situazioni di Luna piena, impostare la grandezza minima a un numero inferiore. Il limite di filtro può essere impostato tra 0 (oggetti molto luminosi) e 25,5 (oggetti estremamente impercettibili). Premere **ENTER** (INVIO) per accettare il valore.

Una volta impostato il limite di filtro, il controllo manuale visualizzerà un elenco di tutti i cataloghi di oggetti che sono stati cercati durante la creazione dello SkyTour personalizzato. Per circoscrivere la ricerca, è possibile selezionare solamente i cataloghi che si desidera includere nella ricerca:

1. Utilizzare i tasti di scorrimento **SU** e **GIÜ** per selezionare il catalogo desiderato.
2. Premere **ENTER** (INVIO) per selezionare o deselezionare il catalogo.
 - Un catalogo selezionato avrà accanto un piccolo segno di spunta
 - Un catalogo deselezionato avrà accanto una piccola “x”

Filtri di catalogo – Consente di impostare il limite minimo di grandezza (luminosità) per oggetti che saranno visuallizzati durante la visualizzazione di qualsiasi catalogo del database. Ciò filtrerà qualsiasi oggetto troppo impercettibile per essere visualizzato per le condizioni del cielo del punto di osservazione.

Filtri di identificazione – Consente di impostare il limite minimo di grandezza (luminosità) e il raggio di ricerca per oggetti che saranno le meno di premere il tasto **IDENTY**. Ciò non solo consentirà di impostare la luminosità dell’oggetto da far identificare a SkyProdigy ma anche la distanza dall’attuale posizione.

- Il Filtr di identificazione può essere impostato tra 0 (oggetti molto luminosi) e 25,5 (oggetti estremamente impercettibili)
- Il filtro del raggio di ricerca può essere impostato da 0° a 25,5° Premere **ENTER** (INVIO) per accettare il valore.
Consenti Sole – Questo menu consente di abilitare il sole come oggetto da visualizzare nel catalogo degli oggetti del Sistema Solare e può essere utilizzato durante l’utilizzo dell’opzione di allineamento del Sistema solare. Utilizzare i tasti di scorrimento **SU** e **GIÚ** per commutare tra “sì” e “no” e premere **ENTER** (INVIO) per accettare.

Impostazione del telescopio

Tracciatura - Oltre ad essere in grado di spostare il telescopio con i tasti del controllo manuale, SkyProdigy traccerà continuamente un oggetto celeste durante il suo spostamento nel cielo notturno. La velocità di tracciatura può essere modificata a seconda del tipo di oggetto in corso di osservazione:

<table>
<thead>
<tr>
<th></th>
<th>Questa velocità compensa la rotazione della Terra spostando il telescopio alla stessa velocità della rotazione della Terra, ma nella direzione opposta.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sidereo</td>
<td>Utilizzata per la tracciatura della Luna durante l'osservazione del paesaggio lunare.</td>
</tr>
<tr>
<td>Lunare</td>
<td>Utilizzata per la tracciatura della Luna durante l'osservazione solare utilizzando un filtro solare adeguato.</td>
</tr>
<tr>
<td>Solare</td>
<td>Utilizzata per la tracciatura del Sole durante l'osservazione solare utilizzando un filtro solare adeguato.</td>
</tr>
<tr>
<td>Disabilita</td>
<td>Spinge completamente la tracciatura.</td>
</tr>
</tbody>
</table>

Limiti di rotazione – Imposta i limiti in altezza per la rotazione del telescopio. I limiti di rotazione evitano che il tubo del telescopio ruoti verso un oggetto sotto all’orizzonte o verso un oggetto alto abbastanza da creare il rischio che il tubo coprisca una delle gambe del treppiede. Tuttavia, i limiti di rotazione possono essere personalizzati a seconda delle esigenze. Per esempio, se si desidera ruotare verso un oggetto vicino allo zenit e si è sicuri che il tubo non colpirà le gambe del treppiede, è possibile impostare il limite di rotazione massimo a 90° in altitudine. L’impostazione dei limiti da 0 a 90° consentirà al telescopio di ruotare verso qualsiasi oggetto sopra l’orizzonte. Utilizzare i tasti di scorrimento **SU**/**GIÚ** per aumentare o diminuire il valore numerico da 0 a 90°. Premere **ENTER** (INVIO) per accettare i valori. Premere **BACK** (INDIETRO) per uscire dal menu.

Tasti direzionali – La direzione in cui una stella si sposta nell’oculare varia a seconda dell’accessorio ottico utilizzato. Questa funzionalità può essere utilizzata per modificare la direzione in cui la stella si sposta nell’oculare se si preme un particolare tasto freccia. Per invertire la logica di pulsante dei tasti direzionali, premere il tasto **MENU** e selezionare Tasti direzionali dal menu di impostazione del telescopio. Utilizzare il tasto **ENTER** (INVIO) per selezionare sia i tasti dell’Azimut (sinistra e destra) sia i tasti dell’altezza (su e giù). Premere i tasti di scorrimento **SU** e **GIÚ** per invertire la direzione dei tasti del controllo manuale rispetto al loro stato attuale. Premere **BACK** (INDIETRO) per uscire dal menu. I tasti direzionali modifieranno solamente le velocità dell’oculare (velocità 1-6) e non influenzeranno la velocità di rotazione (velocità 7-9).

Avvolgimento del cavo – L’avvolgimento del cavo salvaguardia il telescopio dal ruotare più di 360° in azimut provocando quindi il rischio di avvolgimento dei cavi attorno la base del telescopio. Ciò è utile ogni volta che il telescopio è messo in funzione utilizzando una fonte di alimentazione esterna. Per impostazione predefinita, la funzionalità di avvolgimento del cavo è accesa. Vi potrebbero essere momenti in cui il telescopio non può ruotare verso un oggetto dalla distanza più breve ma invece ruota verso l’oggetto dalla direzione opposta. Ciò è normale e necessario per evitare che il cavo di alimentazione di avvolga attorno al telescopio.

Compensazione contraccolpi – Tutti gli ingranaggi meccanici hanno una certa quantità di contraccolpi o movimenti tra gli ingranaggi stessi. Questi movimenti sono evidenti per il tempo necessario a una stella per spostarsi nell’oculare una volta premuti i tasti freccia del controllo manuale (specialmente durante i cambiamenti di direzione). La funzionalità di compensazione contraccolpi di SkyProdigy consente all’utente di compensare i contraccolpi inserendo un valore che sposta velocemente i motori solamente appena da eliminare i movimenti tra gli ingranaggi. La quantità di compensazione necessaria dipende dalla velocità di rotazione selezionata; più bassa è la velocità di rotazione più tempo ci impiegherà la stella a spostarsi nell’oculare. Pertanto, la compensazione contraccolpi deve essere impostata a un livello superiore. Sarà necessario effettuare delle prove con valori differenti; un valore tra 20 e 50 è normalmente il migliore per la maggior parte delle osservazioni visive. La compensazione contraccolpi positiva è applicata quando il telescopio modifica la sua direzione di movimento da indietro ad avanti. Analogamente, la compensazione contraccolpi negativa è applicata quando il telescopio modifica la sua direzione di movimento da avanti a indietro. Una volta abilitata la tracciatura, il telescopio si sposterà lungo uno o entrambi gli assi sia in direzione positiva sia negativa, quindi la compensazione contraccolpi sarà sempre applicata una volta rilasciato un tasto direzionale e la direzione di spostamento è opposta alla direzione di viaggio.

Per impostare il valore anti-contraccolpo, scorre all’opzione compensazione contraccolpi e premere **ENTER** (INVIO). Immettere un valore da 0-99 sia per la direzione dell’azimut sia per l’altezza e premere **ENTER** (INVIO) dopo ciascuna per salvare tali valori. SkyProdigy si ricorderà tali valori e li utilizzerà ogni volta che sarà acceso fino al loro cambiamento.

Fotocamera StarSense

Le impostazioni della fotocamera StarSense sono funzionalità di livello avanzato che consentono di calibrare la fotocamera del telescopio e personalizzare le impostazioni di controllo della fotocamera stessa.

Calibrazione – La fotocamera del telescopio potrebbe necessitare di essere calibrata in caso il telescopio non sia in grado di trovare oggetti dopo essere stato allineato con successo. Per calibrare la fotocamera:

1. Far ruotare il telescopio verso la stella luminosa che si sta cercando di trovare.
2. Selezionare Calibrazione dall’opzione del menu StarSense.
3. Il controllo manuale visualizzerà la posizione attuale dei pixel del centro del sensore della fotocamera.
4. Utilizzare i tasti direzionali per centrare manualmente la stella luminosa nell’oculare. Premere **ENTER** (INVIO).

SkyProdigy scatterà quindi un’immagine del cielo e calibrerà il centro del sensore della fotocamera con la stella visualizzata nell’oculare.
SkyProdigy scatterà quindi un’immagine del cielo e calibrerà il centro del sensore della fotocamera con la stella visualizzata nell’oculare.

Nota: Al fine di far ruotare manualmente il telescopio e centrare una stella luminosa nell’oculare, potrebbe essere necessario prima allineare il cercatore StarPointer con l’oculare. Per le istruzioni sull’allineamento del cercatore, vedere il funzionamento dello StarPointer nella sezione Montaggio del presente manuale.

Impostazioni di acquisizione – Consente all’utente di impostare diverse impostazioni di acquisizione e tempo di esposizione per la fotocamera da utilizzare in diverse condizioni del cielo. Le impostazioni di acquisizione possono essere modificate solamente se si riscontrano difficoltà nell’allineamento del telescopio utilizzando il metodo di allineamento StarSense. Le opzioni di seguito rappresentano varie condizioni che potrebbero comportare un fallimento nell’allineamento con normali impostazioni di acquisizione.

- **Luna piena** - Anche nei cieli più bui la Luna piena può illuminare il cielo abbastanza da influenzare l’allineamento.
- **Sole Velato/urbano** - I cieli velati combinati con l’inquinamento luminoso possono limitare la luminosità delle stelle che la fotocamera può mappare. Queste impostazioni rappresentano le impostazioni predefinite che dovrebbero funzionare nella maggior parte delle condizioni.
- **Periferia** - Le zone di periferia o residenziali possono avere molte luci cittadine che possono influenzare negativamente l’allineamento.
- **Buio** - Quanto il cielo è estremamente buio, la fotocamera potrebbe registrare troppe stelle, prolungando senza motivo il tempo di elaborazione.
- **Ventoso** - Le condizioni di vento elevato possono causare il confondimento di stelle deboli con la conseguente mancata elaborazione da parte della fotocamera.
- **Personalizzato** - Consente l’utente di immettere manualmente impostazioni personalizzate in caso che una qualsiasi delle impostazioni di cui sopra non sia del caso.

Dopo aver apportato le modifiche alle impostazioni di acquisizione, eseguire un allineamento automatico o manuale StarSense e osservare il numero di stelle acquisite per ciascuna immagine. Sono necessarie un minimo di 8 stelle, ma 20-50 stelle sarebbero un ottimo risultato. Se le immagini acquisite non registrino abbastanza stelle, andare alle impostazioni personalizzate. L’aumento dell’acquisizione o del tempo di esposizione ha il potenziale di aumentare il numero di stelle rilevate fino alla soglia del luogo di osservazione, del vento e di altri fattori.
ALBERO DEL MENU DI SKYPROMIX
La figura seguente rappresenta un albero del menu che mostra i sotto-menu associati alle funzioni del MENU.
INFORMAZIONI DI BASE DEL TELESCOPIO

Un telescopio è uno strumento che raccoglie e focalizza la luce. La natura del design ottico determina la modalità di focalizzazione della luce. Alcuni telescopi, noti come rifrattori, utilizzano lenti. Altri telescopi, noti come riflettori, utilizzano specchi. Il telescopio SkyProdigy 70 è un telescopio rifrattore che utilizza lenti obiettivo per raccogliere la luce. SkyProdigy 90 e 130 sono telecopi riflettori con uno specchio primario e secondario per raccogliere e focalizzare la luce.

Messa a fuoco

Una volta trovato un oggetto nel telescopio, girare la manopola di messa a fuoco fino a ottenere un’immagine nitida. Per mettere a fuoco un oggetto che è più vicino dell’obiettivo corrente, girare la manopola di messa a fuoco verso l’oculare (ad es., in modo che il tubo di messa a fuoco si allontani dalla parte frontale del telescopio). Per oggetti ancora più distanti, girare la manopola di messa a fuoco nella direzione opposta. Per raggiungere una messa a fuoco davvero nitida, mai guardare attraverso il vetro o attraverso oggetti che producono onde di calore, come parcheggi in asfalto.

Orientamento dell’immagine

Durante l’osservazione mediante SkyProdigy 130, un telescopio riflettente, l’immagine sarà invertita (immagine allo specchio) durante l’osservazione attraverso l’oculare.

Per l’osservazione astronomico, le immagini di stelle sfocate sono molto diffuse, rendendo difficoltosa la visualizzazione. Se si ruota la manopola di messa a fuoco troppo velocemente, è possibile non riuscire a vedere l’immagine. Per evitare questo problema, il primo obiettivo astronomico deve essere un oggetto luminoso (come la Luna o un pianeta) in modo che l’immagine sia visibile anche se sfocata.

Calcolo dell’ingrandimento

È possibile modificare la potenza del telescopio cambiando l’oculare. Per determinare l’ingrandimento del telescopio, dividere semplicemente la lunghezza focale del telescopio per la lunghezza focale dell’oculare utilizzato. Sotto forma di equazione, la formula appare come:

\[
\text{Ingrandimento} = \frac{\text{Lunghezza focale del telescopio (mm)}}{\text{Lunghezza focale dell’oculare (mm)}}
\]

Supponiamo, per esempio, che si stia utilizzando un oculare da 25 mm. Per determinare l’ingrandimento si dovrà semplicemente dividere la lunghezza focale del telescopio (per esempio, SkyProdigy 90 ha una lunghezza focale di 1250 mm) per la lunghezza focale dell’oculare, 25 mm. Dividendo 1250 per 25 si ottiene un ingrandimento di potenza 50.

Sebbene la potenza sia variabile, ciascun strumento sotto cieli medi ha un limite al maggiore ingrandimento utile. La regola generale è che la potenza 60 possa essere utilizzata per ogni pollice di apertura. Per esempio, SkyProdigy 90 ha un diametro di 90 mm (3,5’’). Moltiplicando 3,5 per 60 si ottiene un ingrandimento utile massimo di potenza 210. Sebbene questo sia il massimo ingrandimento utile, la maggior parte delle osservazioni viene effettuata nell’intervallo da 20 a 35 di potenza per ciascun pollice di apertura, il quale è da 70 a 122 volte per SkyProdigy 90.

Determinazione del campo di visualizzazione

La determinazione del campo di visualizzazione è importante se si intende avere un’idea della dimensione angolare dell’oggetto che si sta osservando. Per calcolare il campo di visualizzazione attuale, dividere il campo apparente dell’oculare (fornito dal produttore dell’oculare) per l’ingrandimento. Sotto forma di equazione, la formula appare come:

\[
\text{Campo vero} = \frac{\text{Campo apparente dell’oculare}}{\text{Ingrandimento}}
\]

Per convertire i gradi in piedi a 1.000 iarde, che è più utile per le osservazioni terrestri, si dovrà semplicemente moltiplicare per 52,5. Continuando con l’esempio, moltiplicare il campo angolare 1° per 52,5. Ciò produce una profondità campo lineare di 52,5 piedi a una distanza di mille iarde. Il campo apparente di ciascun oculare prodotto da Celestron si può trovare nel Catalogo degli accessori Celestron (n. 93685-11).

Suggerimenti per l’osservazione generale

Quando si lavora con qualsiasi strumento ottico, vi sono un paio di cose da ricordare per garantire di ottenere la miglior immagine possibile:

• Mai guardare attraverso vetri. Il vetro che si trova nelle finestre domestiche è imperfetto a livello ottico e, di conseguenza, potrebbe variare di spessore da una parte di una finestra alla successiva. Questa mancanza di uniformità può influenzare e influenzerà la capacità di messa a fuoco del telescopio. In molti casi non sarà possibile raggiungere un’immagine davvero nitida, mentre in alcuni casi, si potrebbe addirittura vedere una doppia immagine.

• Mai guardare attraverso o sopra oggetti che producono onde di calore. Ciò include parcheggi in cemento durante i giorni estivi o tetti di edifici.

• Cieli velati, nebbia e umidità possono altresì rendere difficile la messa a fuoco durante le visualizzazioni terrestri. La quantità di dettagli visualizzati in tali condizioni è largamente ridotta. Inoltre, in caso si scattino delle foto in queste condizioni, la pellicola elaborata potrebbe uscire un po’ più sgranata del normale con un contrasto inferiore e sottoesposta.

• Se si indossano lenti correttive (specificatamente occhiali), si potrebbe voler toglierseli durante l’osservazione con l’oculare collegato al telescopio. Durante l’utilizzo della fotocamera, tuttavia, è necessario indossare sempre le lenti correttive per garantire una messa a fuoco il più nitida possibile. In caso si soffra di astigmatismo, le lenti correttive devono essere sempre indossate.
OSSERVAZIONE CELESTE

Una volta impostato il telescopio, è possibile utilizzarlo per l’osservazione. Questa sezione copre suggerimenti per l’osservazione visiva sia per il sistema solare sia per oggetti del profondo cielo nonché condizioni di osservazione generale che influenzeranno la capacità di osservazione.

Osservazione della Luna

Spesso, si tenta di guardare la Luna quando è piena. In quel periodo, la faccia visibile è completamente illuminata e la sua luce può essere prepotente. Inoltre, in questa fase è possibile vedere poco o nessun contrasto.

Uno dei momenti migliori per l’osservazione della Luna è durante le sue fasi parziali (intorno al periodo del primo o terzo quarto). Le lunghe ombre rivelano una grande quantità di dettagli sulla superficie lunare. A una bassa potenza si potrà vedere molte dei crateri lunari in una volta. Cambiare a una potenza maggiore (ingrandimento) per mettere a fuoco un’area piccola. Scegliere la velocità di tracciatura lunare dalle opzioni del MENU di velocità di tracciatura di SkyProdigy per mantenere la Luna centrata nell’oculare anche a ingrandimenti elevati.

Suggerimenti per l’osservazione lunare

• Per aumentare il contrasto e ottenere dettagli della superficie lunare, utilizzare i filtri dell’oculare. Un filtro giallo funziona bene nell’aumentare il contrasto mentre un filtro polarizzante o a densità neutra ridurrà la luminosità complessiva e il bagliore della superficie.

Osservazione dei pianeti

Altri obiettivi affascinanti includono i cinque pianeti visibili a occhio nudo. È possibile vedere Venere passare attraverso le sue fasi lunari. Marte può rivelare una miriade di dettagli della superficie e una, se non entrambe, le sue calotte polari. Sarà possibile vedere gli anelli di nubi di Giove e la Grande Macchia Rossa (se visibile al momento dell’osservazione). Inoltre, sarà inoltre possibile vedere le lune di Giove mentre orbitano attorno al pianeta gigante. Saturno, con i suoi magnifici anelli, è facilmente visibile a potenze moderate.

Suggerimenti per l’osservazione planetaria

• Ricordare che le condizioni atmosferiche sono spesso il fattore limitante la quantità di dettagli planetari visibili. Quindi, evitare di osservare i pianeti quando sono bassi sull’orizzonte o quando sono direttamente sopra una fonte di calore radiante, come tetti o camini. Fare riferimento alle “Condizioni di osservazione” più avanti in questa sezione.
• Per aumentare il contrasto e ottenere i dettagli della superficie planetaria, provare a utilizzare i filtri dell’oculare Celestron.

Osservazione del Sole

Sebbene sovra-osservato da molti astronomi amatoriali, l’osservazione solare è sia gratificante sia divertente. Tuttavia, a causa dell’eccessiva luminosità del Sole, devono essere prese speciali precauzioni durante l’osservazione della stella più vicina in modo da non danneggiare gli occhi o il telescopio.

Mai proiettare un’immagine del Sole attraverso il telescopio. Potrebbe risultare in un tremendo accumulo di calore all’interno del tubo ottico. Ciò può danneggiare il telescopio e/o eventuali accessori collegati al telescopio.

Per un’osservazione solare sicura, utilizzare un filtro solare Celestron (vedere la sezione Accessori Opzionali del manuale) che riduce l’intensità della luce del Sole, rendendolo sicuro da osservare. Con un filtro è possibile osservare le macchie solari mentre si spostano attraverso il disco solare e le facole, che sono zone luminose visibili vicino ai margini del Sole.

Suggerimenti per l’osservazione solare

• Il periodo migliore per l’osservazione del Sole è il primo mattino o il tardo pomeriggio quando l’aria è più fresca.
• Per centrare il Sole senza guardare nell’oculare, guardare l’ombra del tubo del telescopio fino a quando non formerà un ombra circolare.
• Per garantire una precisa tracciatura del Sole, assicurarsi di selezionare la velocità di tracciatura solare.

Osservazione di oggetti del profondo cielo

Gli oggetti del profondo cielo sono semplicemente quegli oggetti al di fuori dei confini del sistema solare. Includono ammassi di stelle, nebulose planetarie, nebulose diffuse, stelle doppie e altre galassie al di fuori della Via Lattea. La maggior parte degli oggetti del profondo cielo hanno una grande dimensione angolare. Pertanto, per vederli sarà necessaria solamente una potenza da bassa a moderata. A livello visivo, sono troppo deboli per rivelare uno qualsiasi dei colori visti nelle fotografie a esposizione lunga. Invece, appaiono in bianco e nero. E, a causa della loro scarsa luminosità di superficie, devono essere osservati da una posizione con cielo buio. L’inquinamento luminoso nelle grandi aree urbane toglie la maggior parte delle nebulose rendendole difficili, se non impossibili, da osservare. I filtri di riduzione dell’inquinamento luminoso aiutano a ridurre la luminosità di sfondo del cielo, aumentandone il contrasto.
Condizioni di visibilità

Le condizioni di visibilità influenzano ciò che è possibile vedere mediante il telescopio durante una sessione di osservazione. Le condizioni includono la trasparenza, l’illuminazione del cielo e la visibilità. Comprendere le condizioni di visualizzazione e l’effetto che queste possono avere sull’osservazione contribuirà ad ottenere i migliori risultati dal telescopio.

Trasparenza

La trasparenza è la chiarezza dell’atmosfera influenzata da nuvole, umidità e altre particelle sospese nell’aria. Le spesse nuvole cumuliformi sono completamente opache mentre i cirri possono essere sottili, consenzendo il passaggio della luce delle stelle più luminose. I cieli velati assorbono più luce rispetto ai cieli tersi rendendo gli oggetti più deboli più difficilissimi da vedere e riducendo il contrasto sugli oggetti più luminosi. Gli aerosol lanciati nell’atmosfera superiore dalle eruzioni vulcaniche influenzano allo stesso modo la trasparenza. Le condizioni ideali sono un cielo notturno nero come l’inchiostro.

Illuminazione del cielo

L’illuminazione del cielo generale causata dalla Luna, dall’aurora, dal naturale riverbero notturno e dall’inquinamento luminoso influenza molto la trasparenza. Mentre ciò non è un problema per le stelle più luminose e i pianeti, i cieli luminosi riducono il contrasto di nebulose estese rendendole difficili, se non impossibili, da vedere. Per massimizzare l’osservazione, limitare l’osservazione del profondo cielo a notti prive di luna lontano da cieli con inquinamento luminoso che si possono trovare attorno alle principali aree urbane. I filtri di riduzione dell’inquinamento luminoso migliorano l’osservazione del cielo profondo dalle aree con inquinamento luminoso bloccando la luce indesiderata trasmettendo contemporaneamente la luce da determinati oggetti del profondo cielo. È possibile, dall’altro lato, osservare pianeti e stelle dalle aree con inquinamento luminoso o quando non vi è la Luna.

Visibilità

Le condizioni di visibilità fanno riferimento alla stabilità dell’atmosfera e influenzano direttamente la quantità di dettagli definiti osservati negli oggetti estesi. L’aria nell’atmosfera agisce come una lente che curva e distorge i raggi luminosi entrambi. La quantità di curvatura dipende dalla densità dell’aria. I vari strati di temperatura hanno diverse densità e, pertanto, curvano la luce in modo differente. I raggi di luce dallo stesso oggetto arrivano leggermente spostati creando un’immagine imperfetta o indistinta. Tali disturbi atmosferici variano di ora in ora e di luogo in luogo. La dimensione delle particelle dell’aria comparata all’apertura determina la qualità di “osservazione”. In buone condizioni di visibilità, sono visibili dettagli definiti sui pianeti più luminosi come Giove e Marte e le stelle sono immagini nitide di punti. In condizioni di scarsa visibilità, le immagini sono sfocate e le stelle appaiono come chiazze.

Le condizioni qui descritte si applicano sia alle osservazioni visive sia fotografiche.
MANUTENZIONE DEL TELESCOPIO

Sebbene il telescopio SkyProdigy necessiti di poca manutenzione, vi sono poche cose da ricordare che garantiranno prestazioni ottime del telescopio.

Cura e pulizia delle ottiche

A volte, polvere e/o umidità possono accumularsi sulle lenti del telescopio. Deve essere prestata particolare attenzione durante la pulizia di qualsiasi strumento in modo da non danneggiarne l’ottica.

In caso di accumulo di polvere nelle ottiche, rimuoverla con un pennello (fatto di peli di cammello) o una canna di aria presurizzata. Spruzzare in un angolo delle lenti per circa due quattro secondi. Quindi utilizzare una soluzione di pulizia ottica e carta bianca per rimuovere eventuali detriti rimanenti. Applicare la soluzione al tessuto e quindi applicare il tessuto alle lenti. Colpi a bassa pressione devono andare dal centro del correttore verso l’esterno. NON strofinare in modo circolare!

È possibile utilizzare un detergente per lenti disponibile in commercio o utilizzare la propria miscela. Una buona soluzione di pulizia è alcol isopropilico mescolato ad acqua distillata. La soluzione deve essere composta da 60% di alcol isopropilico e 40% di acqua distillata. Oppure, può essere utilizzato detergente per piatti liquido diluito con acqua (un paio di gocce per un quarto d’acqua).

Per minimizzare la necessità di pulire il telescopio, riposizionare tutti tappi delle lenti una volta terminato l’utilizzo del telescopio. Ciò eviterà l’ingresso di contaminanti nel tubo ottico.

Collimazione (Per SkyProdigy 130)

Per controllare se il telescopio è collimato, il seguente diagramma potrebbe essere d’aiuto. Se si guarda nell’adattatore dell’oculare (senza un oculare) alla parte superiore del focalizzatore, questo è ciò che si vedrà. (Vedere figura 6-1) Se la riflessione dell’occhio è fuori centro, la collimazione è quindi necessaria.

Le regolazioni alla collimazione (Vedere figura 6-2) del telescopio possono essere effettuate ruotando le manopole di regolazione della collimazione situate sul retro del tubo ottico. Prima allentare le tre viti di sicurezza sulla cella posteriore del tubo. Girare ciascuna manopola di collimazione, una alla volta, fino a quando l’immagine riflessa dell’occhio nello specchio secondario sia centratata nello specchio principale. Una volta collimato il telescopio, serrare le viti di sicurezza fino ad avvertire una leggera resistenza. Non serrare troppo la vite.

In caso il telescopio sia fuori collimazione, il miglior modo per collimarla nuovamente è quello di utilizzare un buon strumento di collimazione. Celestron offre uno Strumento di collimazione Newtoniano (n. 94182) con istruzioni dettagliate che rendono la collimazione un compito facile.

NOTA: Una volta collimato lo SkyProdigy 130, le ottiche potrebbero non essere più allineate con le assi ottiche della fotocamera comportando un fallimento negli allineamenti o scarsa precisione di puntamento. Pertanto, si consiglia di calibrare la fotocamera dopo la collimazione. Per informazioni in merito alla calibrazione della fotocamera, vedere le opzioni di calibrazione alla sezione Fotocamera StarSense del manuale.
APPENDICE A - SPECIFICHE TECNICHE

Specifiche ottiche

<table>
<thead>
<tr>
<th></th>
<th>SkyProdigy 70 mm</th>
<th>SkyProdigy 90 mm</th>
<th>SkyProdigy 130 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design</td>
<td>Refrattore</td>
<td>Maksutov-Cassegrain</td>
<td>Riflettore</td>
</tr>
<tr>
<td>Apertura</td>
<td>70 mm</td>
<td>90 mm</td>
<td>130 mm</td>
</tr>
<tr>
<td>Lunghezza focale</td>
<td>700 mm</td>
<td>1250 mm</td>
<td>650 mm</td>
</tr>
<tr>
<td>Rapporto focale del sistema ottico</td>
<td>10</td>
<td>14</td>
<td>5</td>
</tr>
<tr>
<td>Rivestimenti ottici</td>
<td>Interamente rivestito</td>
<td>Interamente rivestito</td>
<td>Alluminio</td>
</tr>
<tr>
<td>Massimo ingrandimento utile</td>
<td>165x</td>
<td>213x</td>
<td>307x</td>
</tr>
<tr>
<td>Risoluzione: Criterio di Rayleigh Limite di Dawes</td>
<td>1,99 secondi d’arco</td>
<td>1,55 secondi d’arco</td>
<td>1,07 secondi d’arco</td>
</tr>
<tr>
<td></td>
<td>1,66 secondi d’arco</td>
<td>1,29 secondi d’arco</td>
<td>0,89 secondi d’arco</td>
</tr>
<tr>
<td>Potenza di raccolta di luce</td>
<td>100x occhio nudo</td>
<td>165x occhio nudo</td>
<td>345x occhio nudo</td>
</tr>
<tr>
<td>Campo di visualizzazione: Oculare Standard</td>
<td>1,7º</td>
<td>1 º</td>
<td>1,9 º</td>
</tr>
<tr>
<td>Campo di visualizzazione lineare (a 1000 yarda)</td>
<td>91 piedi</td>
<td>53,5 piedi</td>
<td>103 piedi</td>
</tr>
<tr>
<td>Ingrandimento dell’oculare:</td>
<td>28x (25 mm)</td>
<td>50x (25 mm)</td>
<td>26x (25 mm)</td>
</tr>
<tr>
<td></td>
<td>78x (9 mm)</td>
<td>139x (9 mm)</td>
<td>72x (9 mm)</td>
</tr>
<tr>
<td>Lunghezza del tubo ottico</td>
<td>27 pollici</td>
<td>13 pollici</td>
<td>24 pollici</td>
</tr>
</tbody>
</table>

Specifiche elettroniche

<table>
<thead>
<tr>
<th></th>
<th>12v DC Nominale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tensione in entrata</td>
<td>12v DC Nominale</td>
</tr>
<tr>
<td>Batterie richieste</td>
<td>8 batteria alcaline di tipo D-Cell</td>
</tr>
</tbody>
</table>

Specifiche meccaniche

<table>
<thead>
<tr>
<th></th>
<th>Servo motori DC con encoder, entrambi gli assi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tipo di motore</td>
<td>Servo motori DC con encoder, entrambi gli assi</td>
</tr>
<tr>
<td>Velocità di rotazione</td>
<td>Nove velocità di rotazione: 3,5º /sec, 2º /sec, 1º/sec, 0,3 /sec, 32x, 16x, 8x, 4x, 2x</td>
</tr>
<tr>
<td>Controllo manuale</td>
<td>Schermo a cristalli liquidi a quattro linee, 18 caratteri Tasti LED retroilluminati a 19 fibre ottiche</td>
</tr>
<tr>
<td>Braccio a forcella</td>
<td>Alluminio pressofuso</td>
</tr>
</tbody>
</table>

Specifiche del sofware

<table>
<thead>
<tr>
<th></th>
<th>Porta di comunicazione RS-232 sul controllo manuale: Porta ausiliaria sulla base</th>
</tr>
</thead>
<tbody>
<tr>
<td>Porte</td>
<td>Porta di comunicazione RS-232 sul controllo manuale: Porta ausiliaria sulla base</td>
</tr>
<tr>
<td>Velocità di tracciatura</td>
<td>Sidereo, Solare e Lunare</td>
</tr>
<tr>
<td>Procedure di allineamento</td>
<td>Allineamento StarSense Automatico, StarSense Manuale, Allineamento del Sistema Solare</td>
</tr>
</tbody>
</table>
APPENDICE B - GLOSSARIO DEI TERMINI

<table>
<thead>
<tr>
<th>A</th>
<th>Altezza</th>
<th>In astronomia, l'altezza di un oggetto celeste è la sua Distanza Angolare sopra o sotto l'orizzonte celeste.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apertura</td>
<td>Il diametro delle lenti o dello specchio principali di un telescopio, più grande è l'apertura, maggiore sarà la potenza di raccolta di luce del telescopio.</td>
<td></td>
</tr>
<tr>
<td>Ammasso aperto</td>
<td>Uno dei gruppi di stelle che sono concentrati lungo il piano della Via Lattea. Molti hanno un aspetto asimmetrico e sono assemblati liberamente. Contengono da dozzine a molte centinaia di stelle.</td>
<td></td>
</tr>
<tr>
<td>Anno luce (al)</td>
<td>Un anno luce è la distanza che la luce attraversa il vuoto in un anno alla velocità di 299.792 km/sec. Con 31.557.600 secondi in un anno, l'anno luce equivale alla distanza di 9,46 x 10^{12} km (5,87 x 1 trilione mi).</td>
<td></td>
</tr>
<tr>
<td>Ascensione Retta (RA)</td>
<td>La distanza angolare di un oggetto celeste misurata in ore, minuti e secondi lungo l'Equatore celeste verso est rispetto all'Equinozio di primavera.</td>
<td></td>
</tr>
<tr>
<td>Asterismo</td>
<td>Un piccolo gruppo non ufficiale di stelle nel cielo notturno.</td>
<td></td>
</tr>
<tr>
<td>Astroide</td>
<td>Un piccolo corpo roccioso che orbita attorno a una stella.</td>
<td></td>
</tr>
<tr>
<td>Astrologia</td>
<td>La credenza pseudoscientifica che le posizioni di stelle e pianeti esercitino un'influenza sulle attività umane; l'astrologia non ha nulla a che vedere con l'astronomia.</td>
<td></td>
</tr>
<tr>
<td>Aurora</td>
<td>L'emissione di luce quando le particelle cariche del vento solare sbattono ed eccitano gli atomi e le molecole nell'atmosfera superiore di un pianeta.</td>
<td></td>
</tr>
<tr>
<td>Azimut</td>
<td>La distanza angolare di un oggetto verso est lungo l'orizzonte, misurata dal nord, tra il meridiano astronomico (la linea verticale che passa attraverso il centro del cielo e i punti nord e sud dell'orizzonte) e la linea verticale contenente il corpo celeste la cui posizione è in corso di misurazione.</td>
<td></td>
</tr>
<tr>
<td>C Collimazione</td>
<td>L'azione di posizionare le ottiche di un telescopio in allineamento perfetto.</td>
<td></td>
</tr>
<tr>
<td>D Declinazione (DEC)</td>
<td>La distanza angolare di un corpo celeste a nord o sud dell'equatore celeste. Può essere corrisposto alla latitudine sulla superficie terrestre.</td>
<td></td>
</tr>
<tr>
<td>Disco di Airy</td>
<td>La dimensione apparente del disco di una stella prodotto anche da un difetto nel sistema ottico. Dal momento che la stella non può mai essere messa a fuoco perfettamente, l'84 percento della luce si concentrerà in un singolo disco e il 16 percento in un sistema di anelli adiacenti.</td>
<td></td>
</tr>
<tr>
<td>E Eclittico</td>
<td>La proiezione dell'orbita terrestre sulla sfera celeste. Può anche essere definito come “il percorso annuale apparente del Sole rispetto alle stelle”. Un telescopio che utilizza due assi di rotazione indipendenti consentendo il movimento dello strumento sia in altezza sia in azimut.</td>
<td></td>
</tr>
<tr>
<td>Equatore celeste</td>
<td>La proiezione dell'equatore terrestre sulla sfera celeste. Divide il cielo in due emisferi equivalenti.</td>
<td></td>
</tr>
<tr>
<td>Fascia di Kuiper</td>
<td>Una regione oltre l'orbita di Nettuno che si estende fino a circa 1000 AU, la quale è la fonte di molte comete di breve periodo.</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>[\text{Ingrandimento apparente}] Una misurazione della luminosità relativa di una stella o di un altro oggetto celeste come percepita da un osservatore sulla Terra.</td>
<td></td>
</tr>
<tr>
<td>Ingrandimento assoluto</td>
<td>La grandezza apparente che una stella avrebbe se osservata da una distanza standard di 10 parsec, o 32,6 anni luce. La grandezza assoluta del Sole è 4,8 a una distanza di 10 parsec e sarebbe visibile dalla Terra in una notte tersa priva di luna lontano dalle luci di superficie.</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>Luna Calante</td>
<td>Il periodo del ciclo lunare tra le fasi di luna piena e nuova, quando la porzione illuminata diminuisce.</td>
</tr>
<tr>
<td>Luna Crescente</td>
<td>Il periodo del ciclo lunare tra le fasi di luna nuova e piena, quando la porzione illuminata aumenta.</td>
<td></td>
</tr>
</tbody>
</table>
Lunghezza focale
La distanza tra una lente (o specchio) e il punto in cui l'immagine di un oggetto all'infinito è portata alla messa a fuoco. La lunghezza focale divisa per apertura dello specchio o della lente è denominata rapporto focale.

M
Magnitudine
Il magnitudo è la misurazione della luminosità di un corpo celeste. Alle stelle più luminose è assegnato un magnitudo 1 e a quelle sempre più deboli è assegnato un magnitudo da 2 a 5. Le stelle più deboli che possono essere osservate senza l'aiuto di un telescopio sono circa di magnitudo 6. Ciascun magnitudo corrisponde a un tasso di 2,5 di luminosità. Perciò, una stella di magnitudo 1 è 2,5 volte più luminosa di una stella di magnitudo 2 e 100 volte più luminosa di una stella di magnitudo 5. La stella più luminosa, Sirio, ha un magnitudo apparente di -1,6, la Luna piena di -12,7 e la luminosità del Sole, espressa su una scala grandezza, è -26,78. Il punto zero della scala di magnitudo apparente è arbitrario.

Meridiano
Una linea di riferimento nel cielo che inizia dal Polo Nord celeste e termina al Polo Sud celeste passando attraverso lo zenith. Se si è rivolti verso sud, il meridiano inizia dall'orizzonte sud e passa direttamente sopra la testa fino al Polo Nord celeste.

Messier
Un astronomo francese della fine del 1700 che ha osservato per primo le comete. Le comete sono oggetti nebulosi diffusi, quindi Messier ha catalogato oggetti che non erano comete per aiutare la sua ricerca. Questo catalogo è diventato il Catalogo Messier, da M1 a M110.

Minuto d'arco
Un'unità di dimensione angolare pari a 1/60 di un grado.

Montaggio altezza-Azimut
Un telescopio che utilizza due assi di rotazione indipendenti consentendo il movimento dello strumento sia in altezza sia in azimut.

Montatura equatoriale
Un telescopio nel quale lo strumento è impostato su un asse parallelo all'asse terrestre; l'angolo dell'asse deve essere pari alla latitudine dell'osservatore.

N
Nebulosa
Nuvola interstellare di gas e polvere. Si riferisce inoltre a qualsiasi oggetto celeste dall'aspetto nuvoloso.

Nova
Sebbene sia la parola Latina che indica “nuovo”, denota una stella che diventa improvvisamente molto luminosa alla fine del suo ciclo di vita.

P
Parallasse
Il parallasse è la differenza nella posizione apparente di un oggetto rispetto a uno sfondo dove osservato da un osservatore da due diverse posizioni. Tali posizioni e l'angolare posizione dell'oggetto formano un triangolo dal quale l'apice dell'angolo (il parallasse) e la distanza dell'oggetto possono essere determinati se la lunghezza della base tra le posizioni di osservazione è nota e la direzione angolare dell'oggetto da ciascuna posizione alla fine della base è stata misurata. Il metodo tradizionale in astronomia di determinazione della distanza da un oggetto celeste è quello di misurare il parallasse.

Parafocale
Si riferisce a un gruppo di oculari che richiedono tutti la stessa distanza dal piano focale del telescopio per essere messi a fuoco. Ciò significa che quando si mette a fuoco un oculare parafocale, tutti gli altri oculari parafocali, in una linea particolare di oculare, saranno messi a fuoco.

Parsec
La distanza alla quale una stella mostrerebbe un parallasse di un secondo d'arco. È pari a 3,26 anni luce, 206.265 unità astronomiche, oppure 30.800.000.000.000 km. (Tranne il Sole, nessuna stella è posizionata entro un parsec dalla terra).

Pianeti di Giove
Uno qualsiasi dei quattro grandi pianeti gassosi che sono a una distanza maggiore dal Sole rispetto ai pianeti terrestri.

Polo celeste
La proiezione immaginaria dell'asse di rotazione del polo nord o sud della terra sulla sfera celeste.

Polo Nord celeste
Il punto nell'emisfero settentrionale attorno al quale le stelle sembrano orbitare. Ciò è causato dal fatto che la Terra ruota su un asse che passa attraverso i Poli Nord e Sud celesti. La stella Polare si trova a meno di un grado da questo punto ed è per questo denominata "Stella Polare".

Punto di origine
Un oggetto che non può essere risolto in un'immagine in quanto troppo distante o troppo piccolo dal punto di origine. Un pianeta è distante, ma può essere risolto come un disco. La maggior parte delle stelle non possono essere risolte come dischi in quanto troppo lontane.
<table>
<thead>
<tr>
<th>Lettre</th>
<th>Parola/Sisto</th>
<th>Definizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>Riflettore</td>
<td>Un telescopio in cui la luce è raccolta mediante uno specchio.</td>
</tr>
<tr>
<td>S</td>
<td>Secondo d’arco</td>
<td>Un'unità di dimensione angolare pari a 1/3.600 di un grado (o 1/60 di un minuto d’arco).</td>
</tr>
<tr>
<td></td>
<td>Sfera celeste</td>
<td>Una sfera immaginaria che circonda la Terra, concentrica con il centro della Terra.</td>
</tr>
<tr>
<td></td>
<td>Stelle binarie</td>
<td>Le stelle binarie (doppie) sono coppie di stelle che, a causa della loro attrazione gravitazionale reciproca, orbitano attorno a un centro di massa comune. Se un gruppo di tre o più stelle ruotano una attorno all'altra, è denominato sistema multiplo. Si ritiene che circa il 50 percento di tutte le stelle appartengano a sistemi binari o multipli. I sistemi con componenti individuali visibili separatamente mediante un telescopio sono denominati binari visivi o multipli visivi. La “stella” più vicina del sistema solare, Alpha Centauri, è attualmente l'esempio più vicino di un sistema multiplo di stelle; consiste di tre stelle, due molto simili al Sole e una debole e piccola stella rossa che orbita l'una attorno all'altra.</td>
</tr>
<tr>
<td></td>
<td>Stella variabile</td>
<td>Una stella la cui luminosità varia nel tempo a causa sia di proprietà inerti della stella sia a di qualcosa che eclissa o ostacola la luminosità della stella.</td>
</tr>
<tr>
<td>T</td>
<td>Tasso siderale</td>
<td>È la velocità angolare alla quale ruota la Terra. I motori di tracciatura del telescopio guidano lo stesso a questa velocità. La velocità è di 15 secondi d’arco al secondo o 15 gradi all’ora.</td>
</tr>
<tr>
<td></td>
<td>Terminatore</td>
<td>La linea di confine tra la porzione luminosa e buia della Luna o di un pianeta.</td>
</tr>
<tr>
<td>U</td>
<td>Unità Astronomica (UA)</td>
<td>La distanza tra la Terra e il Sole. È pari a 149.597.900 km, di solito arrotondata per eccesso a 150.000.000 km.</td>
</tr>
<tr>
<td></td>
<td>Universo</td>
<td>La totalità delle cose, eventi, relazioni ed energie astronomiche in grado di essere descritte obiettivamente.</td>
</tr>
<tr>
<td>V</td>
<td>VaiA</td>
<td>Termine utilizzato per fare riferimento a un telescopio computerizzato o all’azione di rotazione (spostamento) di un telescopio computerizzato. Un’unità di dimensione angolare pari a 1/60 di un grado.</td>
</tr>
<tr>
<td>Z</td>
<td>Zenit</td>
<td>Il punto sulla Sfera celeste direttamente sopra l’osservatore.</td>
</tr>
<tr>
<td></td>
<td>Zodiaco</td>
<td>Lo zodiaco è la porzione di Sfera Celeste posizionata entro 8 gradi su entrambi i lati dell’Eclittico. Il percorso apparente del Sole, della Luna e dei pianeti con l’eccezione di alcune porzioni del percorso di Plutone, risiede in questa fascia. Dodici divisioni, o segni, ciascuna di 30 gradi in ampiezza, comprendono lo zodiaco. Questi segni hanno coinciso con le costellazioni dello zodiaco circa 2.000 anni fa. A causa della precessione dell’asse terrestre, l’Equinozio di primavera si è spostato verso overs di circa 30 gradi da allora; i segni si sono spostati con esso e pertanto non coincidono più con le costellazioni.</td>
</tr>
</tbody>
</table>
APPENDICE C - MAPPA DEI FUSI ORARI
Celestron
2835 Columbia Street
Torrance, CA 90503
Tel. (310) 328-9560
Fax. (310) 212-5835
Sito internet all'indirizzo http://www.celestron.com

Copyright 2011 Celestron
Tutti i diritti riservati.

(I prodotti o le istruzioni possono cambiare senza previa notifica o obbligo).

Il presente dispositivo è conforme alla Parte 15 della Normativa FCC. Il funzionamento è soggetto
alle seguenti due condizioni: 1) Il presente dispositivo può non causare interferenze dannose, e 2) Il
presente dispositivo deve accettare qualsiasi interferenza ricevuta, incluse interferenze che potrebbero
causare un funzionamento non desiderato.

22089-INST
08-11
Stampato in Cina
$10.00