Society for Maternal-Fetal Medicine (SMFM) Consult Series #52: Diagnosis and Management of Fetal Growth Restriction

Society for Maternal-Fetal Medicine (SMFM); Juliana Gevaerd Martins, MD; Joseph R. Biggio MD, MS; and Alfred Abuhamad, MD

Address all correspondence to:
The Society for Maternal-Fetal Medicine: Publications Committee
409 12th St, SW
Washington, DC 20024
Phone: 202-863-2476
Fax: 202-554-1132
e-mail: pubs@smfm.org

Condensation: This Consult revises existing guidelines on fetal growth restriction and provides recommendations based on the available evidence.

Abstract
Fetal growth restriction (FGR) is the final manifestation of a variety of maternal, fetal, and placental conditions. Fetal growth restriction occurs in up to 10% of pregnancies and is second to premature birth as a cause of infant morbidity and mortality. In addition to its significant perinatal impact, FGR also has an impact on long-term health outcomes. Fetal growth restriction
remains a complex obstetric problem with disparate published diagnostic criteria, poor detection rates, and limited preventative and treatment options. The purpose of this document is to outline an evidence-based, standardized approach for the prenatal diagnosis and management of FGR. The following are Society for Maternal-Fetal Medicine (SMFM) recommendations: (1) we recommend that FGR be defined as a sonographic estimated fetal weight (EFW) or abdominal circumference (AC) below the 10th percentile for gestational age (GRADE 1B); (2) we recommend the use of population-based fetal growth references (such as Hadlock) in determining fetal weight percentiles (GRADE 1B); (3) we recommend against the use of low-molecular-weight heparin for the sole indication of prevention of recurrent FGR (GRADE 1B) and (4) we recommend against the use of sildenafil or activity restriction for in-utero treatment of FGR (GRADE 1B); (5) we recommend that a detailed obstetric ultrasound examination (CPT code 76811) be performed with early-onset FGR (less than 32 weeks of gestation) since up to 20% of cases are associated with fetal or chromosomal abnormalities (GRADE 1B); (6) we recommend that women be offered fetal diagnostic testing, including chromosomal microarray analysis (CMA), when FGR is detected and a fetal malformation, polyhydramnios, or both are also present, regardless of gestational age (GRADE 1B); (7) we recommend that pregnant women be offered prenatal diagnostic testing with CMA when unexplained isolated FGR is diagnosed at less than 32 weeks of gestation (GRADE 1C); (8) we recommend against screening for toxoplasmosis, rubella, or herpes in pregnancies with FGR in the absence of other risk factors and recommend polymerase chain reaction (PCR) for CMV in women with unexplained FGR who elect diagnostic testing with amniocentesis (GRADE 1C); (9) we recommend that once FGR is diagnosed, umbilical artery Doppler assessment should be performed every 1 to 2 weeks to assess for deterioration (GRADE 1C); (10) with decreased end-diastolic velocity, ie, flow
ratios greater than the 95th percentile, or in pregnancies with severe FGR (EFW less than the 3rd percentile), we suggest weekly umbilical artery Doppler evaluation (GRADE 2C); (11) we recommend Doppler assessment up to 2 to 3 times per week when umbilical artery absent end-diastolic velocity (AEDV) is detected due to the potential for deterioration and development of reversed end-diastolic velocity (REDV) (GRADE 1C); (12) in the setting of REDV, we recommend hospitalization, administration of antenatal corticosteroids, heightened surveillance with cardiotocography (CTG) at least 1 to 2 times per day, and consideration of delivery depending on the entire clinical picture and results of additional evaluation of fetal well-being (Best Practice); (13) we suggest against the use of Doppler assessment of the ductus venosus, middle cerebral artery, or uterine artery for routine clinical management of early- or late-onset FGR (GRADE 2A); (14) we recommend weekly CTG testing after viability for FGR without A/REDV, and that the frequency be increased when FGR is complicated by A/REDV or other comorbidities or risk factors (Best Practice); (15) we recommend delivery at 37 weeks of gestation in pregnancies with FGR and an umbilical artery Doppler waveform with decreased diastolic flow but without A/REDV or with severe FGR with EFW less than the 3rd percentile (GRADE 1B); (16) we recommend delivery at 33 to 34 weeks of gestation for pregnancies with FGR and AEDV (GRADE 1B); (17) we recommend delivery at 30 to 32 weeks of gestation for pregnancies with FGR and REDV (GRADE 1B); (18) we recommend delivery at 38 to 39 weeks of gestation with FGR when the EFW is between the 3rd and 10th percentile and the umbilical artery Doppler is normal (Best Practice); (19) we recommend that for pregnancies with FGR complicated by A/REDV, cesarean delivery should be considered based on the entire clinical scenario (Best Practice); (20) we recommend antenatal corticosteroids if delivery is anticipated before 33 6/7 weeks of gestation or for pregnancies between 34 0/7 and 36 6/7 weeks of
gestation in women without contraindications who are at risk of preterm delivery within 7 days and who have not received a prior course of antenatal corticosteroids (GRADE 1A); (21) we recommend magnesium sulfate for fetal and neonatal neuroprotection for women with pregnancies that are less than 32 weeks of gestation in whom delivery is likely (GRADE 1A).

Introduction

Fetal growth restriction (FGR) is the final manifestation of a variety of maternal, fetal, and placental conditions. Although the primary underlying mechanisms for FGR are varied, they often share the same final common pathway of suboptimal fetal nutrition and uteroplacental perfusion. Chromosomal disorders and congenital malformations are responsible for approximately 20% of FGR cases. Suboptimal perfusion of the maternal placental circulation is the most common cause of FGR and accounts for 30% to 40% of all cases.

Fetal growth restriction occurs in up to 10% of pregnancies and is second to premature birth as the most common cause of infant morbidity and mortality. In fetuses at all gestational ages with weights below the 10th percentile, the stillbirth rate is approximately 1.5%, which is twice the rate in fetuses with normal growth. With fetal weights below the 5th percentile, the stillbirth rate can be as high as 2.5%. Furthermore, infants with birth weights below the 10th percentile are more likely to have severe acidosis at birth, low 5-minute Apgar scores, and neonatal intensive care unit admissions. Prematurity further compounds the risk of adverse outcomes in FGR. Studies report a 5- to 10-fold increased rate of perinatal death among preterm FGR fetuses compared with term FGR fetuses. Perinatal outcomes are largely dependent on the severity of
FGR, with the worst outcomes noted in fetuses with estimated fetal weights (EFWs) at less than the 3rd percentile or in association with fetal Doppler abnormalities.9-11

In addition to its significant perinatal impact, FGR also has an impact on long-term health outcomes. Fetal growth restriction has been associated with metabolic programming that increases the risk of future development of metabolic syndrome and consequent cardiovascular and endocrine diseases.12-14 It also can contribute to cardiac remodeling, leading to cardiovascular dysfunction that can persist into childhood and adolescence.15,16 In addition, studies have shown an association between FGR and long-term neurologic impairment,17,18 with rates of cognitive and learning disabilities as high as 20\% to 40\% by school age.19-23

Fetal growth restriction remains a complex obstetric problem with disparate published diagnostic criteria, poor detection rates, and limited preventative and treatment options.6,24-27 Antenatal care of FGR is often complicated by the presence of maternal disease, such as hypertension, and optimal management involves balancing maternal, fetal, and neonatal risks. The purpose of this document is to outline an evidence-based, standardized approach for the prenatal diagnosis and management of FGR.

Terminology and Diagnostic Criteria

Fetal growth restriction and small for gestational age (SGA) are terms sometimes used interchangeably in the literature and clinical practice. To avoid confusion and to standardize terminology, the American College of Obstetricians and Gynecologists suggests the use of the term FGR to describe a fetus with an EFW below the 10th percentile and SGA to describe a newborn whose birth weight is less than the 10th percentile for gestational age.6 We agree with abandoning the use of the term intrauterine growth restriction (IUGR) in favor of FGR.
Fetuses with FGR are not always SGA at birth, and SGA neonates have often not been diagnosed as growth-restricted on prenatal ultrasound. Of fetuses diagnosed with FGR, approximately 18% to 22% will be neonates who are constitutionally small but healthy with a normal outcome. A significant challenge in the prenatal management of FGR is differentiating the constitutionally small fetus with a normal neonatal outcome from one who is pathologically growth restricted and at risk for postnatal complications.

Fetal growth restriction is commonly defined as sonographic EFW below the 10th percentile for gestational age. A review of national guidelines for the diagnostic criteria for FGR from six countries (United States, United Kingdom, France, Ireland, Canada, and New Zealand) reveals a broad consensus on this definition of FGR. However, there is significant variation in the diagnostic criteria used for FGR. Some diagnostic criteria are limited to fetal biometric measurements, while others incorporate abnormal Doppler findings. Moreover, the biometric component of the FGR diagnostic criteria differ according to the choice of population versus customized reference growth standards, whether EFW is used alone or alongside the AC, and which critical cut-off is used to define abnormal growth. For example, three of the six countries also include the AC as a diagnostic criterion, with the United Kingdom and Canada using an AC cut-off of less than the 10th percentile and New Zealand using an AC cut-off of less than the 5th percentile.

Evidence supports the use of the AC as a diagnostic criterion for FGR. In a prospective study in 1000 low-risk pregnancies, an AC of less than the 10th percentile was found to have diagnostic accuracy similar to EFW less than the 10th percentile for the prediction of SGA. And in a meta-analysis published in 2017, an AC of less than the 10th percentile predicted SGA as well as sonographic EFW less than the 10th percentile, with comparable sensitivity and specificity.
Compared with other cut-offs, an AC of less than the 5th percentile has significantly lower sensitivity but higher specificity in predicting SGA.32 Another systematic review and meta-analysis reported that the AC and EFW performed similarly, and for a 10\% fixed false-positive rate, AC had higher sensitivity.33

An alternate approach to the diagnosis of FGR includes the determination of fetal growth trajectory, generated from multiple ultrasound examinations, and the identification of the fetus that drops off its own growth trajectory. Theoretically, this approach takes into consideration the dynamic aspect of growth and the individualized growth potential of each fetus.34 However, this approach requires multiple ultrasound examinations, and prospective studies fail to demonstrate the superiority of this approach in improving clinical outcomes.35 \textbf{We recommend that FGR be defined as a sonographic EFW or AC below the 10th percentile for gestational age.} (GRADE 1B)

\textbf{Sonographic Estimation of Fetal Weight}

Accurate pregnancy dating is an important prerequisite to diagnosing FGR. Parameters for assigning gestational age by ultrasound have been recently updated.36 Pregnancy dating is best established when first-trimester crown-rump length is used to either confirm menstrual dates or to assign new dates.36 Sonographic fetal weight estimation is generated by the use of regression equations that combine biometric measurements of the fetal biparietal diameter, head circumference, abdominal circumference, and femur length; a multisociety task force has recently standardized criteria for the images obtained for fetal biometry.37 The sonographic EFW is then compared to a reference chart to generate a weight percentile.
The first sonographic equation used to estimate fetal weight was published by Warsof et al. in 1977, and since then, many others have been developed. Considerable variation in accuracy was noted in a retrospective review of 26 formulas for sonographic fetal weight estimation. For birth weights in the range of 1000 to 4500 grams, formulas based on 3 or 4 fetal biometric indices were significantly more accurate in estimating fetal weights than formulas based on 1 or 2 indices. In a review of the literature relating to methods and sources of inaccuracies in the estimation of fetal weight, the authors concluded that averaging of multiple measurements, improvements in image quality, uniform calibration of equipment, and regular audits may help to improve fetal weight estimation and reduce errors.

Fetal growth nomograms generally represent either unadjusted population standards or customized standards that adjust for constitutional or physiologic variations of fetal size based on sex and race. The most widely used method for estimating fetal weight and calculating weight percentile in the United States is based on the Hadlock formula, which was generated from a study involving 392 pregnancies in predominantly white, middle-class women conducted at a single institution in Texas. In some studies, the use of customized growth standards has been shown to improve the ability to distinguish growth-restricted fetuses from those that are constitutionally small.

Whether the use of customized growth standards translates to improved pregnancy outcomes was the subject of several recent studies: the INTERGROWTH-21st standard, the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) standards, and the World Health Organization (WHO) standard. The INTERGROWTH-21st study included healthy pregnant women with no maternal or fetal risk factors from eight countries and created a single universal standard for fetal growth without adjusting for ethnic
The NICHD study, performed at 12 sites in the United States, developed racial/ethnic-specific standards of fetal growth. Finally, the WHO study developed one overall growth standard based on data collected in 10 countries.

While both the NICHD and WHO studies identified racial/ethnic differences in fetal growth, evidence to date indicates that the use of these new formulas in clinical practice does not improve the detection and outcome of FGR. In a preterm population in France, the INTERGROWTH-21st formula was associated with a higher mean percentage error and a higher underestimation of birth weight at greater than 28 weeks of gestation when compared to Hadlock. The Hadlock formula classified more infants within 10% of actual birth weight and was more accurate than INTERGROWTH-21st in the overall estimation of weight for fetuses delivered between 22 and 34 weeks of gestation. The diagnostic accuracy for estimating fetal weight and the prediction of neonatal morbidity was compared using the NICHD standard and Hadlock in 1514 pregnant women with different ethnicities. The Hadlock formula better predicted SGA and composite neonatal morbidity at birth and had a lower ultrasound-to-birth weight percentile discrepancy than the NICHD growth standard. Fetuses classified as growth restricted by Hadlock, but not by the NICHD growth standard, had significantly higher composite morbidity than fetuses of normal growth. In view of these findings, we recommend the use of population-based fetal growth references (such as Hadlock) in determining fetal weight percentiles. (GRADE 1B)

Classification of Fetal Growth Restriction

Timing of Diagnosis
Fetal growth restriction has been categorized as early- or late-onset based on gestational age at prenatal ultrasound diagnosis, with early-onset FGR diagnosed before 32 weeks of gestation and late-onset FGR diagnosed at or after 32 weeks of gestation. In a cohort of 656 pregnancies with FGR, a gestational age of 32 weeks at diagnosis was identified as the optimal cut-off to maximize the differences in associated comorbidities and pregnancy outcomes between early- and late-onset FGR. The clinical spectrum of early and late-onset FGR also differs; early-onset FGR is typically more severe, tends to follow an established Doppler pattern of fetal deterioration, is more commonly associated with maternal hypertensive disorders of pregnancy, and shows more significant placental dysfunction than late-onset FGR. Fetuses with genetic abnormalities can also present with early-onset FGR, commonly in association with fetal and amniotic fluid abnormalities. Late-onset FGR represents approximately 70% to 80% of FGR cases and is typically milder in presentation. Unlike early-onset FGR, late-onset FGR is less likely to be associated with maternal hypertensive disorders and typically has less extensive placental histopathologic findings of underperfusion. In early-onset FGR, the pattern of Doppler deterioration progresses from abnormalities in the umbilical arteries and the ductus venosus to abnormal biophysical parameters. In contrast, cardiovascular adaptation of late-onset FGR is typically limited to the cerebral circulation and is commonly associated with normal Doppler of the umbilical arteries.

Severity of FGR

Studies have reviewed various sonographic parameters in order to better identify growth-restricted fetuses at increased risk for perinatal morbidity and mortality. The presence of abnormal umbilical artery Doppler indices has been found to predict adverse perinatal
outcome.

An EFW below the 3rd percentile has also been associated with an increased risk of adverse perinatal outcome irrespective of umbilical and middle cerebral artery Doppler indices. In a large retrospective cohort of over 3 million singleton pregnancies, the risk of stillbirth at birth weights of less than the 3rd percentile was increased approximately threefold over the 3rd to 5th percentile group at nearly all gestational ages, and there was an increased risk of fourfold to sevenfold over the 5th to 10th percentile group. These results are consistent with neonatal data showing a significantly increased risk of morbidity and mortality in infants born at term with birth weights below the 3rd percentile. An EFW below the 3rd percentile has therefore been found to represent a more severe form of FGR.

Symmetric and Asymmetric FGR

FGR has been classified as symmetric or asymmetric based on the ratio between the head circumference and the abdominal circumference (HC/AC). In the past, such classification was thought to provide valuable information about the timing of pregnancy insult and the etiology and prognosis of FGR. More recently, growth and developmental delay have been evaluated from birth to 4 years of age and shown to be similar in symmetric and asymmetric growth-restricted preterm newborns. Furthermore, HC/AC was not found to be an independent predictor of adverse pregnancy outcomes.

Management of Fetal Growth Restriction

General Considerations

There are currently no preventative strategies or treatments for FGR that have been proved to be effective. There is no consistent evidence that nutritional and dietary supplements or bed rest
prevents FGR or reduces the incidence of SGA births. The use of prophylactic low-dose aspirin was shown to provide a modest risk reduction in FGR and SGA in two meta-analyses. However, this finding was not confirmed in the Aspirin for Evidence-Based Preeclampsia Prevention Trial (ASPRE), which was primarily designed for preterm preeclampsia prevention. Due to the conflicting evidence on the role of low-dose aspirin in the prevention of recurrent FGR in otherwise low-risk women, the American College of Obstetricians and Gynecologists recommends against low-dose aspirin for the sole indication of FGR prevention. Furthermore, the use of low-molecular-weight heparin has not been shown to reduce the risk of recurrent placenta-mediated pregnancy complications in at-risk women. At present, there is no evidence that therapeutic interventions, including sildenafil to augment uteroplacental perfusion through vasodilation, improve placental perfusion and outcome in pregnancies with FGR. We recommend against the use of low-molecular-weight heparin for the sole indication of prevention of recurrent FGR. (GRADE 1B) We also recommend against sildenafil or activity restriction for in-utero treatment of FGR. (GRADE 1B)

Management of FGR is based on early diagnosis, optimal fetal surveillance, and timely delivery that reduces perinatal mortality and minimizes short- and long-term morbidity. In pregnancies with FGR, delivery decisions require balancing the risk of prematurity against that of stillbirth. The decision to deliver is typically guided by maternal factors, such as the presence of maternal hypertension, and by fetal comorbidities, such as the degree of growth restriction and the severity of abnormal fetal surveillance results. There is currently no consensus on the best approach to the management of FGR, despite a large body of literature on the subject. This lack of agreement is primarily due to the paucity of randomized trials and the heterogeneity of study populations.
Despite these limitations, accumulating evidence suggests a benefit to the use of umbilical artery Doppler in the surveillance of FGR. Furthermore, the presence of a standardized protocol for diagnosis and management appears to be associated with more favorable outcomes, as evidenced in the better-than-expected perinatal morbidity and mortality in the Trial of Umbilical and Fetal Flow in Europe (TRUFFLE).76 Results of this trial, which standardized the approach to care and criteria for delivery, are in contrast to those of the Growth Restriction Intervention Trial (GRIT),77,78 which left management to the discretion of the managing providers. The single most important prognostic factor in preterm fetuses with growth restriction is the gestational age at delivery.76,79 A large longitudinal cohort study on FGR showed an increase of 1\% to 2\% in intact survival for every additional day spent in utero up until 32 weeks of gestation.79

Maternal hypertensive disease is common in early-onset FGR and plays an important role in pregnancy outcomes. In the TRUFFLE trial, maternal hypertension was present in 50\% of pregnancies during the study and 70\% of pregnancies at the time of delivery. The presence of maternal hypertension was one of the most important independent determinants of poor outcomes.18,76 Pregnant women with hypertension had a significantly shorter median interval from study enrollment to delivery, and newborns of mothers with hypertension were delivered at an earlier gestational age and had lower birth weights.76 Women with early-onset FGR should be closely monitored for the development of hypertensive disorders of pregnancy.

\textit{Initial Diagnosis}

With the initial diagnosis of FGR and if not previously performed, we recommend that a detailed obstetric ultrasound examination (CPT code 76811) be performed with early-onset FGR since up to 20\% of cases are associated with fetal or chromosomal
abnormalities.2,3,80,81 (GRADE 1B) The combination of FGR with a fetal malformation or polyhydramnios should prompt genetic counseling and consideration of prenatal diagnostic testing.6,82 We recommend that women be offered fetal diagnostic testing, including chromosomal microarray analysis (CMA), when FGR is detected and a fetal malformation, polyhydramnios, or both are also present, regardless of gestational age. (GRADE 1B)

While chromosome abnormalities are more frequent in pregnancies with structural anomalies and FGR, in a systematic review that included fetuses with no structural malformations, the mean rate of chromosomal abnormalities was 6.4%. Only a fraction of the studies included women in the third trimester with apparently isolated FGR, but in those women, no karyotype abnormalities were identified. Due to substantial heterogeneity of the selected studies in the systemic review, meta-analytic methods, such as calculating the effect estimates, could not be applied.83 More recent studies have evaluated the role of CMA in fetuses with early-onset growth restriction and no structural malformations; such studies have identified a 4% to 10% incremental yield of CMA over karyotype.84-86 We recommend that pregnant women be offered prenatal diagnostic testing with CMA when unexplained isolated FGR is diagnosed at less than 32 weeks of gestation. (GRADE 1C)

The association of maternal infections with FGR was recently evaluated in a study that included 319 pregnancies. No cases of maternal or congenital infection with toxoplasma, rubella, or herpes were found, while 6 (1.8%) fetuses were diagnosed with congenital CMV. Two (0.6%) of the fetuses with congenital CMV had no sonographic findings other than FGR.87 In another prospective cohort study of 48 pregnancies with FGR, one newborn (2.1%) was diagnosed with congenital CMV.88 We recommend against screening for toxoplasmosis, rubella, or herpes in pregnancies with FGR in the absence of other risk factors and recommend PCR for
CMV in women with unexplained FGR who elect diagnostic testing with amniocentesis.

(GRADE 1C) However, given the low incidence of CMV in cases of FGR, the lack of effective antenatal interventions, and the limited utility of serologic testing for CMV in the third trimester, in the absence of risk factors or sonographic markers of fetal infection, routine infectious serologies may not be warranted.87-90 Polymerase chain reaction is the preferred testing approach for CMV and should be performed in women with unexplained FGR who undergo diagnostic testing with amniocentesis.

Umbilical Artery Doppler

Doppler of the umbilical artery assesses the impedance to blood flow along the fetal component of the placental unit. As early as 14 weeks of gestation, low impedance of the fetal placental circulation permits continuous forward flow in the umbilical artery throughout the cardiac cycle.91 Doppler waveforms of the umbilical artery can be obtained from any segment along the umbilical cord. Waveforms obtained near the placental end of the cord reflect downstream impedance and show higher end-diastolic blood flow velocity than waveforms obtained near the fetal cord insertion.91 In general, this variation in umbilical artery Doppler end-diastolic flow along the umbilical cord is minimal and not significant enough to impact clinical decision-making. To optimize reproducibility, however, we suggest interrogating the umbilical artery at the fetal cord insertion when technically possible.

The pulsatility index (PI), resistance index (RI), or systolic/diastolic (S/D) ratio can be used for quantification of the Doppler waveform in the umbilical artery, although recent studies have generally used either the PI or RI.9,11,18,30,76,79 An abnormal umbilical artery Doppler is defined as a PI, RI, or S/D ratio greater than the 95th percentile for gestational age or an absent or reversed
end-diastolic velocity (AEDV or REDV). The progression from an abnormal umbilical artery Doppler with a decreased diastolic flow to A/REDV can take several days to weeks, especially in the absence of maternal disease. In a large study on FGR, the mean time-to-delivery interval for umbilical artery PI greater than the 95th percentile, AEDV, and REDV was 26, 12, and 4 days, respectively.\(^9,30\)

An abnormal umbilical artery Doppler waveform reflects the presence of placental insufficiency and can help differentiate the growth-restricted fetus from the fetus that is constitutionally small. Incorporation of umbilical artery Doppler evaluation in the management of high-risk pregnancies has been shown to significantly reduce the risk of perinatal death, induction of labor, and cesarean delivery. As such, it is an essential component of fetal surveillance in FGR.\(^92,93\) In contrast, a systematic review of five trials found no evidence of maternal or neonatal benefit from the routine use of umbilical artery Doppler in low-risk pregnancies.\(^93\)

Absent or reduced end-diastolic velocity in the umbilical artery reflects the presence of significant placental deterioration and is associated with high perinatal mortality. The finding of A/REDV of the umbilical artery can be intermittent; this likely represents the continuum of Doppler deterioration that occurs before the absent or reversed flow becomes persistent.\(^94\) A meta-analysis of 31 studies on the risk of fetal death in FGR before 34 weeks of gestation reported odds ratios for fetal death of 3.59 (95% CI, 2.3–5.6) and 7.27 (95% CI, 4.6–11.4) for AEDV and REDV, respectively. Pooled data from this meta-analysis also revealed a risk of stillbirth of 6.8% for AEDV and 19% for REDV in the umbilical artery or ductus venosus.\(^95\) These risks of stillbirth are higher than the risk of infant mortality or severe morbidity at 33 to 34 weeks for AEDV and at 30 to 32 weeks for REDV as reported in the TRUFFLE trial.\(^18\)
Evidence suggests that umbilical artery Doppler does not reliably predict adverse pregnancy outcome in late-onset FGR.96,97 This result is probably related to the lower frequency of placental pathologic findings in late-onset FGR when compared with early-onset FGR.98-100 Experimental modeling suggests that a threshold of placental vascular obliteration is required before umbilical artery Doppler abnormalities are seen; therefore, the presence of a normal umbilical artery Doppler in late-onset FGR does not rule out placental disease.101,102

There are currently no randomized trials with adequate sample size to inform recommendations regarding the optimal frequency of umbilical artery Doppler for FGR surveillance.103 Protocols vary from weekly umbilical artery Doppler to a 2- to 4-week interval.92 A prospective observational study of the progression of Doppler abnormalities in FGR suggests that rapid progression, if it is going to occur, is typically noted within the first 2 weeks after diagnosis.27,92,104 We recommend that once FGR is diagnosed, umbilical artery Doppler assessment should be performed every 1 to 2 weeks to assess for deterioration. (GRADE 1C) If the umbilical artery Doppler remains normal following this initial assessment, a less frequent interval of umbilical artery Doppler testing, eg, every 2 to 4 weeks, may be considered.92,104

With decreased end-diastolic velocity, ie, flow ratios greater than the 95th percentile, or in pregnancies with severe FGR (EFW less than the 3rd percentile), we suggest weekly umbilical artery Doppler evaluation.27,91 (GRADE 2C) We recommend Doppler assessment up to 2 to 3 times per week when umbilical artery AEDV is detected due to the potential for deterioration and development of REDV. (GRADE 1C) In the setting of REDV, we recommend hospitalization, administration of antenatal corticosteroids, heightened surveillance with cardiotocography (CTG) at least 1 to 2 times per day, and consideration
of delivery depending on the entire clinical picture and results of additional evaluation of fetal well-being. (Best Practice) Hospital admission should be considered if fetal surveillance of more often than 3 times per week is deemed necessary. Once FGR is diagnosed, assessment of fetal growth and weight should be performed at least every 3 to 4 weeks; consideration can be given for a 2-week interval in cases of severe FGR or with abnormal umbilical artery Doppler.

Ductus Venosus Doppler

Longitudinal studies have shown that Doppler abnormalities of the ductus venosus in FGR reflect an advanced stage of fetal compromise, associated with increased perinatal morbidity and mortality. A meta-analysis of FGR at less than 34 weeks of gestation reported odds ratios for stillbirth of 11.16 (95% CI, 6.31–19.73) for absent or reversed A-wave of the ductus venosus and a frequency of stillbirth of 20%; the risk of stillbirth with a reversed A-wave was 46%. In FGR, Doppler abnormalities of the ductus venosus primarily reflect increased central venous pressure, resulting from increased right ventricular end-diastolic pressure and decreased cardiac muscle compliance. Reversed A-wave of the ductus venosus in FGR signifies more significant fetal cardiac compromise. Ductus venosus Doppler abnormalities in the setting of a normal umbilical artery Doppler indicate an alternate pathophysiologic etiology, possibly related to the presence of fetal cardiac, vascular, or genetic abnormalities, and thus is most often not reflective of significant placental disease.

The TRUFFLE trial compared ductus venosus Doppler and computer-generated short-term fetal heart rate variability (cSTV) in the monitoring and timing of delivery in early-onset FGR. After correction for prematurity, survival without neurological impairment was found to be significantly higher in the group delivered according to late ductus venosus changes (95%)
compared with cSTV (85%). However, caution is urged when extrapolating the TRUFFLE trial findings to practice in the United States. The TRUFFLE trial compared cSTV to ductus venosus Doppler, and results cannot be generalized to the visual interpretation of CTG. Furthermore, absent or reversed A-wave of the ductus venosus represents an advanced stage of fetal compromise and is uncommon. Even in pregnancies with A/REDV of the umbilical artery, late ductus venosus Doppler abnormalities are noted in only about one-quarter of fetuses. After 32 weeks of gestation, abnormal CTG findings will almost invariably precede ductus venosus Doppler abnormalities. In the TRUFFLE trial, delivery decisions guided by ductus venosus Doppler findings only accounted for about 11% of pregnancies allocated to the late ductus venosus findings group because most delivered due to other fetal or maternal indications. Prospective research is needed to further elucidate the role of ductus venosus Doppler in pregnancies with early-onset FGR before its use in routine surveillance of pregnancies with FGR can be recommended.

Middle Cerebral Artery Doppler

The middle cerebral artery is the largest vessel of the fetal cerebral circulation and carries about 80% of cerebral blood flow. Fetal hypoxemia associated with growth restriction results in cerebral vasodilation, an early adaptive mechanism termed the brain-sparing effect. Measurement of flow through the middle cerebral artery using Doppler can identify cerebral vasodilation, which can be qualified using the pulsatility index (PI) or the cerebroplacental ratio (CPR). The CPR is calculated by dividing the middle cerebral artery PI by the umbilical artery PI. The role of middle cerebral artery Doppler in the management of early-onset FGR has been evaluated in several studies. In a meta-analysis of 35 studies, abnormal middle
cerebral artery Doppler had a low likelihood ratio for prediction of perinatal mortality [LR 1.36 (1.10–1.67)] and adverse perinatal outcome [LR 2.77(1.93–3.96)]. Similarly, in a secondary analysis of data from the TRUFFLE trial, middle cerebral artery Doppler did not add useful information beyond umbilical artery and ductus venosus Doppler assessments for optimizing the timing of delivery. Studies have demonstrated that 15% to 20% of late-onset growth-restricted fetuses with normal umbilical blood flow have middle cerebral artery Doppler findings of cerebral vasodilation, and CPR has also been studied for its utility in predicting adverse outcomes and guiding the timing of delivery in late-onset cases. The Prospective Observational Trial to Optimize Pediatric Health in IUGR (PORTO) Study evaluated the optimal management of fetuses with FGR at 24 0/7 to 36 6/7 weeks of gestation, including multivessel Doppler measurement and CPR. Data from this study showed that CPR evaluation had a sensitivity of 87% and specificity of 61% for the prediction of adverse outcomes. However, a large systematic review and meta-analysis on the prognostic accuracy of CPR and middle cerebral artery Doppler for adverse perinatal outcomes in FGR revealed few studies of high quality and reported large variations in sensitivity and specificity. The available evidence does not demonstrate improved accuracy of CPR over umbilical artery Doppler, and clinical trials are needed to evaluate the effectiveness of CPR in guiding clinical management, especially in late-onset FGR, before its use in routine surveillance of pregnancies with FGR can be recommended.

Uterine Artery Doppler
Uterine artery Doppler assesses the maternal component of placental blood flow and is a marker of remodeling of the spiral arteries by trophoblastic cellular invasion. In normal pregnancies, spiral artery remodeling results in a low-impedance circulation, which is reflected in the uterine arteries by the presence of high velocity and continuous forward flow in diastole. This pregnancy adaptation optimizes the intervillous placental blood flow and delivery of oxygen and nutrients to the fetus. Severe early-onset FGR is characterized by failure of trophoblastic invasion of the myometrial spiral arteries, resulting in reduced uteroplacental perfusion.

Abnormal uterine artery Doppler, defined as a PI greater than the 95th percentile for gestational age or the presence of a diastolic notch, has been associated with adverse pregnancy outcomes, including preeclampsia, FGR, and perinatal mortality. However, uterine artery Doppler has limited diagnostic accuracy and clinical utility in predicting FGR, SGA birth, and perinatal mortality. While FGR detection rates greater than 90% have been reported in first- and second-trimester prediction models that combine maternal factors, biochemical markers, and uterine artery Doppler, lack of external validation or demonstration of improved pregnancy outcomes limit their clinical applicability. Based on the available evidence, uterine artery Doppler does not add clinically valuable information for diagnosis or management. We suggest against the use of Doppler assessment of the ductus venosus, middle cerebral artery, or uterine artery for routine clinical management of early- or late-onset FGR.

Cardiotocography

Cardiotocography is currently accepted as the primary method for fetal surveillance in high-risk pregnancies in the United States. Despite the absence of large prospective studies on the role of
CTG in the management of FGR, a normal CTG in pregnancies with FGR is more likely to be associated with a normal perinatal outcome, and the presence of spontaneous repetitive late decelerations is accepted as an indication for delivery in viable pregnancies with FGR, irrespective of Doppler findings. While there is limited evidence to support the frequency of CTG in pregnancies with FGR, it is reasonable to initiate testing at diagnosis if after viability, or at viability or a gestational age at which an abnormal finding would trigger intervention. We recommend weekly CTG testing after viability for FGR without A/REDV and that the frequency be increased when FGR is complicated by A/REDV or other comorbidities or risk factors. (Best Practice)

Biophysical Profile

Observational studies have indicated that an abnormal biophysical profile (BPP) is a late manifestation of placental disease that appears to become abnormal 48 to 72 hours after ductus venosus Doppler abnormalities in 90% of cases. More recent studies have questioned the value of BPP in fetal surveillance of high-risk pregnancies, including early-onset severe FGR, due to a high prevalence of false-positive and false-negative results. A Cochrane review concluded that available evidence from randomized controlled trials does not support the use of BPP as a test of fetal well-being in high-risk pregnancies. While fetal deterioration has been reported to be independently reflected by Doppler and BPP testing, further studies are required to prove the usefulness of BPP or of combining these testing modalities.

Amniotic Fluid Volume
Oligohydramnios is defined as a single deepest vertical pocket (SDP) of amniotic fluid of less than 2 cm. The PORTO trial, which included over 1100 pregnancies with FGR, noted that amniotic fluid volume abnormalities did not independently increase the risk for adverse outcomes in FGR. There is currently a paucity of data on the role of amniotic fluid volume measurement in FGR management and delivery. However, current guidelines on medically indicated late-preterm and early-term deliveries suggest delivery at 34 0/7 to 37 6/7 weeks of gestation for FGR associated with oligohydramnios.

Neonatal Outcomes and Delivery Timing

The decision for delivery in FGR is driven by fetal and maternal factors. Fetal factors include EFW, gestational age, and findings on fetal surveillance. Maternal factors include the presence of comorbidities, such as hypertension. In the periviable period, the decision for delivery may be challenging as the rates of perinatal death, neurodevelopmental impairment, and other adverse outcomes are high in this gestational age window.

Survival of very preterm neonates gradually decreases with decreasing weight percentiles. Neonatal mortality in SGA infants born between 24 and 29 weeks of gestation is increased twofold to fourfold when compared to appropriately grown neonates. In a large European study, birth weights between the 10th and 25th percentiles were associated with a 2-fold increase in mortality when compared with the 50th to 75th percentile weight group. In early-onset FGR associated with abnormal Doppler studies, neonatal survival increased from 13% at 24 weeks to 43% at 25 weeks and 58% to 76% at 26 weeks of gestation. Intact survival was 0% at 24 weeks, 13% at 25 weeks, and 6% to 31% at 26 weeks of gestation. Given the high rate of adverse outcomes, thresholds of 26 weeks of gestation, 500 grams, or both have been suggested for the
delivery of pregnancies with severe early-onset FGR.55,76,79,157 With recent advances in neonatal care and survival of fetuses at the limits of viability, the decision for delivery before 26 weeks of gestation or 500 grams should include coordination of care between maternal-fetal medicine and neonatology services, along with comprehensive patient counseling on neonatal morbidity and mortality and shared decision-making regarding pregnancy management.

The evidence supporting the timing of delivery in pregnancies with FGR and abnormal umbilical artery Doppler but without A/REDV is limited.92,166 In a retrospective cohort study of pregnancies with FGR, no difference in composite neonatal outcome was seen between delivery at 39 weeks of gestation in fetuses with normal umbilical artery Doppler and delivery at 37 weeks of gestation in fetuses with elevated umbilical artery S/D ratio.166 A large US cohort study reported that delivery at 37 weeks of gestation results in a decrease in the stillbirth rate in the presence of risk factors, such as FGR.167 \textbf{We recommend delivery at 37 weeks of gestation in pregnancies with FGR and an umbilical artery Doppler waveform with decreased diastolic flow (S/D, RI, or PI less than the 95th percentile) but without A/REDV or with severe FGR with EFW less than the 3rd percentile. (GRADE 1B)}

As discussed above, neonatal morbidity and mortality rates associated with AEDV are higher than rates of complications of prematurity at 33 to 34 weeks of gestation.95 \textbf{Therefore, we recommend delivery at 33 to 34 weeks of gestation for pregnancies with FGR and AEDV. (GRADE 1B)} In the presence of REDV, neonatal morbidity and mortality rates are higher than complications of prematurity at 30 to 32 weeks of gestation. \textbf{Therefore, we recommend delivery at 30 to 32 weeks of gestation for pregnancies with FGR and REDV. (GRADE 1B)} \textbf{We recommend delivery at 38 to 39 weeks of gestation with FGR when the EFW is between the 3rd and 10th percentile and the umbilical artery Doppler is normal. (Best Practice)}
There are limited data to inform recommendations regarding mode of delivery in pregnancies complicated by FGR. Growth-restricted fetuses, particularly those with A/REDV, are at an increased risk for decelerations in labor, emergency cesarean delivery, and metabolic acidemia at delivery. Older studies reported rates of intrapartum fetal heart rate decelerations requiring cesarean delivery in 75% to 95% of pregnancies with FGR and A/REDV. National guidelines from four countries recommend cesarean delivery when FGR is complicated by A/REDV of the umbilical artery. In recent studies that reported outcomes of pregnancies complicated by FGR with A/REDV, the mode of delivery was primarily by cesarean, thus rendering it impossible to determine the likelihood of adverse outcomes associated with spontaneous or induced vaginal delivery. Given these data and outcomes, we recommend that for pregnancies with FGR complicated by A/REDV, cesarean delivery should be considered based on the entire clinical scenario. (Best Practice)

In accordance with other guidelines, we recommend antenatal corticosteroids if delivery is anticipated before 33 6/7 weeks of gestation or for pregnancies between 34 0/7 and 36 6/7 weeks of gestation in women without contraindications who are at risk of preterm delivery within 7 days and who have not received a prior course of antenatal corticosteroids. (GRADE 1A) We also recommend magnesium sulfate for fetal and neonatal neuroprotection for women with pregnancies that are less than 32 weeks of gestation in whom delivery is likely. (GRADE 1A)
<table>
<thead>
<tr>
<th>Number</th>
<th>Recommendations</th>
<th>GRADE</th>
</tr>
</thead>
</table>
| 1 | We recommend that FGR be defined as a sonographic estimated fetal weight (EFW) or abdominal circumference (AC) below the 10th percentile for gestational age. | 1B
Strong recommendation, moderate-quality evidence |
| 2 | We recommend the use of population-based fetal growth references (such as Hadlock) in determining fetal weight percentiles. | 1B
Strong recommendation, moderate-quality evidence |
| 3 | We recommend against the use of low-molecular-weight heparin for the sole indication of prevention of recurrent FGR. | 1B
Strong recommendation, moderate-quality evidence |
| 4 | We recommend against the use of sildenafil or activity restriction for in-utero treatment of FGR. | 1B
Strong recommendation, moderate-quality evidence |
| 5 | We recommend that a detailed obstetric ultrasound examination (CPT code 76811) be performed with early-onset FGR (less than 32 weeks of gestation) since up to 20% of cases are associated with fetal or chromosomal abnormalities. | 1B
Strong recommendation, moderate-quality evidence |
<table>
<thead>
<tr>
<th></th>
<th>Recommendation</th>
<th>Strength of Recommendation</th>
<th>Quality of Evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>We recommend that women be offered fetal diagnostic testing, including chromosomal microarray analysis (CMA), when FGR is detected and a fetal malformation, polyhydramnios, or both are also present, regardless of gestational age.</td>
<td>Strong</td>
<td>Moderate</td>
</tr>
<tr>
<td>7</td>
<td>We recommend that pregnant women be offered prenatal diagnostic testing with CMA when unexplained isolated FGR is diagnosed at less than 32 weeks of gestation.</td>
<td>Strong</td>
<td>Low</td>
</tr>
<tr>
<td>8</td>
<td>We recommend against screening for toxoplasmosis, rubella, or herpes in pregnancies with FGR in the absence of other risk factors and recommend PCR for CMV in women with unexplained FGR who elect diagnostic testing with amniocentesis.</td>
<td>Strong</td>
<td>Low</td>
</tr>
<tr>
<td>9</td>
<td>We recommend that once FGR is diagnosed, umbilical artery Doppler assessment should be performed every 1 to 2 weeks to assess for deterioration.</td>
<td>Strong</td>
<td>Low</td>
</tr>
<tr>
<td>10</td>
<td>With decreased end-diastolic velocity, ie, flow ratios greater than the 95th percentile, or in pregnancies with severe FGR (EFW less than the 3rd percentile), we suggest weekly umbilical artery Doppler evaluation.</td>
<td>Weak</td>
<td>Low</td>
</tr>
<tr>
<td>11</td>
<td>We recommend Doppler assessment up to 2 to 3</td>
<td>Strong</td>
<td>Low</td>
</tr>
<tr>
<td>Row</td>
<td>Text</td>
<td>Evidence Level</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>---</td>
<td>-------------------------------</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Times per week when umbilical artery absent end-diastolic velocity (AEDV) is detected due to the potential for deterioration and development of reversed end-diastolic velocity (REDV).</td>
<td>Strong recommendation, low-quality evidence</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>In the setting of REDV, we recommend hospitalization, administration of antenatal corticosteroids, heightened surveillance with cardiotocography (CTG) at least 1 to 2 times per day, and consideration of delivery depending on the entire clinical picture and results of additional evaluation of fetal well-being.</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>We suggest against the use of Doppler assessment of the ductus venosus, middle cerebral artery, or uterine artery for routine clinical management of early- or late-onset FGR.</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>We recommend weekly CTG testing after viability for FGR without A/REDV, and that the frequency be increased when FGR is complicated by A/REDV or other comorbidities or risk factors.</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>We recommend delivery at 37 weeks of gestation in pregnancies with FGR and an umbilical artery Doppler waveform with decreased diastolic flow but without A/REDV or with severe FGR with EFW less</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>
than the 3rd percentile.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>We recommend delivery at 33 to 34 weeks of gestation for pregnancies with FGR and AEDV.</td>
</tr>
<tr>
<td></td>
<td>1B</td>
</tr>
<tr>
<td></td>
<td>Strong recommendation, moderate-quality evidence</td>
</tr>
</tbody>
</table>

17	We recommend delivery at 30 to 32 weeks of gestation for pregnancies with FGR and REDV.
	1B
	Strong recommendation, moderate-quality evidence

| **18** | We recommend delivery at 38 to 39 weeks of gestation with FGR when the EFW is between the 3rd and 10th percentile and the umbilical artery Doppler is normal. |
| | Best Practice |

| **19** | We recommend that for pregnancies with FGR complicated by A/REDV, cesarean delivery should be considered based on the entire clinical scenario. |
| | Best Practice |

20	We recommend antenatal corticosteroids if delivery is anticipated before 33 6/7 weeks of gestation or for pregnancies between 34 0/7 and 36 6/7 weeks of gestation in women without contraindications who are at risk of preterm delivery within 7 days and who have not received a prior course of antenatal corticosteroids.
	1A
	Strong recommendation, high-quality evidence

21	We recommend magnesium sulfate for fetal and neonatal neuroprotection for women with pregnancies
	1A
	Strong recommendation, high-quality evidence
that are less than 32 weeks of gestation in whom delivery is likely.	
---	---
Society for Maternal-Fetal Medicine Grading System: Grading of Recommendations

Assessment, Development, and Evaluation (GRADE)174,a

<table>
<thead>
<tr>
<th>Grade of Recommendation</th>
<th>Clarity of Risk and Benefit</th>
<th>Quality of Supporting Evidence</th>
<th>Implications</th>
</tr>
</thead>
<tbody>
<tr>
<td>1A. Strong recommendation, high-quality evidence</td>
<td>Benefits clearly outweigh risks and burdens, or vice versa.</td>
<td>Consistent evidence from well-performed, randomized controlled trials, or overwhelming evidence of some other form. Further research is unlikely to change confidence in the estimate of benefit and risk.</td>
<td>Strong recommendation that can apply to most patients in most circumstances without reservation. Clinicians should follow a strong recommendation unless a clear and compelling rationale for an alternative approach is present.</td>
</tr>
<tr>
<td>1B. Strong recommendation,</td>
<td>Benefits clearly outweigh risks</td>
<td>Evidence from randomized</td>
<td>Strong recommendation</td>
</tr>
<tr>
<td>moderate-quality evidence and burdens, or vice versa.</td>
<td>controlled trials with important limitations (inconsistent results, methodologic flaws, indirect or imprecise), or very strong evidence of some other research design. Further research (if performed) is likely to have an impact on confidence in the estimate of benefit and risk and may change the estimate.</td>
<td>that applies to most patients. Clinicians should follow a strong recommendation unless a clear and compelling rationale for an alternative approach is present.</td>
<td></td>
</tr>
</tbody>
</table>

| 1C. Strong recommendation, low-quality evidence | Benefits appear to outweigh risks and burdens, or vice versa. | Evidence from observational studies, unsystematic | Strong recommendation that applies to most patients. |
Clinical Evidence and Randomized Controlled Trials

Some of the evidence base supporting the recommendation is, however, of low quality. Any estimate of effect is uncertain.

<table>
<thead>
<tr>
<th>Recommendation Type</th>
<th>Evidence Type</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>2A. Weak recommendation, high-quality evidence</td>
<td>Benefits closely balanced with risks and burdens.</td>
<td>Consistent evidence from well-performed randomized controlled trials or overwhelming evidence of some other form. Further research is unlikely to change confidence in the estimate of benefit and risk.</td>
</tr>
<tr>
<td>2B. Weak recommendation</td>
<td>Benefits closely</td>
<td>Evidence from</td>
</tr>
</tbody>
</table>

- "Clinical experience, or randomized controlled trials with serious flaws."
- "Any estimate of effect is uncertain."
<table>
<thead>
<tr>
<th>Recommendation, moderate-quality evidence</th>
<th>Balanced with risks and burdens; some uncertainty in the estimates of benefits, risks, and burdens.</th>
<th>Randomized controlled trials with important limitations (inconsistent results, methodologic flaws, indirect or imprecise), or very strong evidence of some other research design. Further research (if performed) is likely to have an effect on confidence in the estimate of benefit and risk and may change the estimate.</th>
<th>Recommendation; alternative approaches likely to be better for some patients under some circumstances.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2C. Weak recommendation, low-quality</td>
<td>Uncertainty in the estimates of benefits, risks,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Evidence from observational studies,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Very weak recommendation, other alternatives</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Best practice</td>
<td>Recommendation in which either (i) there is an enormous amount of indirect evidence that clearly justifies strong recommendation (direct evidence would be challenging, and inefficient use of time and resources, to bring together and carefully summarize), or unsystematic clinical experience, or randomized controlled trials with serious flaws. Any estimate of effect is uncertain.</td>
<td>may be equally reasonable.</td>
<td></td>
</tr>
<tr>
<td>(ii) recommendation to the contrary would be unethical.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

References

growth restriction: cohort outcomes of the trial of randomized umbilical and fetal flow in Europe
790 77. Thornton JG, Hornbuckle J, Vail A, Spiegelhalter DJ, Levene M. A randomised trial of
timed delivery for the compromised preterm fetus: short term outcomes and Bayesian
791 78. Thornton JG, Hornbuckle J, Vail A, Spiegelhalter DJ, Levene M. Infant wellbeing at 2
years of age in the Growth Restriction Intervention Trial (GRIT): multicentred randomised
793 80. Hendrix N, Berghella V. Non-placental causes of intrauterine growth restriction. Semin
795 82. The investigation and management of the small-for-gestational age fetus. RCOG Green-
top Guideline No. 31. 2014. (Accessed April 24, 2020, at
796 83. Sagi-Dain L, Peleg A, Sagi S. Risk for chromosomal aberrations in apparently isolated
797 84. Borrell A, Grande M, Pauta M, Rodriguez-Revenga L, Figueras F. Chromosomal
microarray analysis in fetuses with growth restriction and normal karyotype: a systematic review
816 toxoplasmosis, rubella, cytomegalovirus and herpes simplex virus infection in cases of fetal
818 88. Tsuge M, Hida AI, Minematsu T, et al. Prospective cohort study of congenital
819 cytomegalovirus infection during pregnancy with fetal growth restriction: serologic analysis and
821 89. Sukenik-Halevy R, Katz A, Regev RH, et al. The yield of the prenatal work-up in
822 intrauterine growth restriction and the spectrum of fetal abnormalities detected postnatally. J
824 90. Chung MH, Shin CO, Lee J. TORCH (toxoplasmosis, rubella, cytomegalovirus, and
825 herpes simplex virus) screening of small for gestational age and intrauterine growth restricted
827 91. Trudinger BJ. Doppler ultrasonography and fetal well-being. In: Reece EA, Hobbins JC,
830 92. Society for Maternal-Fetal Medicine Publications C, Berkley E, Chauhan SP, Abuhamad
832 2012;206:300-8.

111. Frauenschuh I, Frambach T, Karl S, Dietl J, Muller T. Ductus venosus blood flow prior to intrauterine foetal death in severe placental insufficiency can be unaffected as shown by doppler sonography. Z Geburtshilfe Neonatol 2014;218:218-22.

55

Reprints will not be available.

All authors and Committee members have filed a conflict of interest disclosure delineating personal, professional, and/or business interests that might be perceived as a real or potential conflict of interest in relation to this publication. Any conflicts have been resolved through a process approved by the Executive Board. The Society for Maternal-Fetal Medicine (SMFM) has neither solicited nor accepted any commercial involvement in the development of the content of this publication.

This document has undergone an internal peer review through a multilevel committee process within SMFM. This review involves critique and feedback from the SMFM Publications and Document Review Committees and final approval by the SMFM Executive Committee. The Society for Maternal-Fetal Medicine accepts sole responsibility for document content. SMFM publications do not undergo editorial and peer review by the American Journal of Obstetrics & Gynecology. Society for Maternal-Fetal Medicine Publications Committee reviews publications every 18-24 months and issues updates as needed. Further details regarding SMFM Publications can be found at www.smfm.org/publications.

The Society for Maternal-Fetal Medicine has adopted the use of the word “woman” (and the pronouns “she” and “her”) to apply to individuals who are assigned female sex at birth, including individuals who identify as men as well as nonbinary individuals who identify as both genders or neither gender. As gender-neutral language continues to evolve in the scientific and medical communities, SMFM will reassess this usage and make appropriate adjustments as necessary.
All questions or comments regarding the document should be referred to the SMFM Publications Committee at pubs@smfm.org.