Critical Care in Obstetrics: An Innovative and Integrated Model for Learning the Essentials
Maternal Cardiac Arrest

COL Shad Deering, MD FACOG
Chair, Department of OB/GYN
Assistant Dean for Simulation Education
Uniformed Services University of the Health Sciences

Society for Maternal • Fetal Medicine
The remarks made today are not representative of the official views of the US Army or US Government.

No financial disclosures.
Outline

- Learning Objectives
- Background
- Risk Factors / Etiologies
- Treatment Algorithms
 - Pregnancy specific interventions/considerations
 - Perimortem Cesarean Section
- Summary
- Evidence
Learning Objectives

- Understand the incidence and common etiologies that lead to cardiac arrest during pregnancy
- Describe the important modifications in treatment algorithms of cardiac arrest in pregnancy
AHA Guidelines 2010

“There are no randomized controlled trials evaluating the effect of specialized obstetric resuscitation versus standard care in pregnant patients in cardiac arrest.

There are reports in the literature of patients not in arrest that describe the science behind important physiological changes that occur in pregnancy that may influence treatment recommendations and guidelines for resuscitation from cardiac arrest in pregnancy.”
The Society for Obstetric Anesthesia and Perinatology Consensus Statement on the Management of Cardiac Arrest in Pregnancy

Steven Lipman, MD,* Sheila Cohen, MB, ChB, FRCA,* Sharon Einav, MD,†
Farida Jeejeebhoy, MD, FRCPC, FACC,† Jill M. Mhyre, MD,§ Laurie J.Morrison, MD, MSc, FRCPC, ||
Vern Katz, MD,¶ Lawrence C. Tsen, MD,# Kay Daniels, MD,** Louis P. Halamek, MD, FAAP,††
Maya S. Suresh, MD,†† Julie Arafeh, RN, MSN,§§ Dodi Gauthier, M.Ed, RNC-OB, C-EFM, || ||
Jose C. A. Carvalho, MD, PhD, FANZCA, FRCPC,¶¶ Maurice Druzin, MB, BCh,**
and Brendan Carvalho, MBBCh, FRCA*

• Why Was This Consensus Statement Developed?
This consensus statement was commissioned by the Society for Obstetric Anesthesia and Perinatology to improve maternal resuscitation by providing health care providers critical information and teamwork strategies relevant to maternal cardiac arrest.
Why is this Statement Different?

- “These recommendations were designed to address the operational reality of a real event by emphasizing team and systems strategies, latent systems errors, and periodic testing of performance.”
AHA Scientific Statement

Cardiac Arrest in Pregnancy
A Scientific Statement From the American Heart Association

Farida M. Jeejeebhoy, MD, Chair; Carolyn M. Zelop, MD; Steve Lipman, MD; Brendan Carvalho, MD; Jose Joglar, MD; Jill M. Mhyre, MD; Vern L. Katz, MD; Stephen E. Lapinsky, MB BCh, MSc; Sharon Einaav, MD; Carole A. Warnes, MD; Richard L. Page, MD; Russell E. Griffin, LP, FP-C; Amish Jain, MD; Katie N. Dainty, PhD; Julie Arafeh, RN, MS; Rory Windrim, MD; Gideon Koren, MD; Clifton W. Callaway, MD, PhD; on behalf of the American Heart Association Emergency Cardiovascular Care Committee, Council on Cardiopulmonary, Critical Care, Perioperative and Resuscitation, Council on Cardiovascular Diseases in the Young, and Council on Clinical Cardiology

Abstract—This is the first scientific statement from the American Heart Association on maternal resuscitation. This document will provide readers with up-to-date and comprehensive information, guidelines, and recommendations for all aspects of maternal resuscitation. Maternal resuscitation is an acute event that involves many subspecialties and allied health providers; this document will be relevant to all healthcare providers who are involved in resuscitation and specifically maternal resuscitation. (Circulation. 2015;132:00-00. DOI: 10.1161/CIR.0000000000000300.)

Key Words: AHA Scientific Statements ■ cardiopulmonary resuscitation ■ heart arrest ■ pregnancy
Background
Background

- Maternal cardiac arrest (MCA) is becoming more common and is a potential morbid obstetric emergency
- Treatment algorithms are modified based on both pregnancy and gestational age
- Early consideration of how to effect cesarean delivery is an important step to optimizing outcomes
Incidence of maternal cardiac arrest is increasing

Obstetric healthcare teams lack experience given low incidence of ~1:20,000-1:50,000 (NEW 1:12,000 Admissions)

Standard ACLS courses do not dedicate significant time to teaching obstetric specific interventions

Lipman, 2010
Background

- ACLS course requirements vary between institutions
- Knowledge decay shown in OB providers
- ACLS course does not address facilities issues
 - Contribute to 75% of poor outcomes
Trends in Incidence

- Increasing risk of Severe Maternal Morbidity/Mortality

<table>
<thead>
<tr>
<th>Complication</th>
<th>% Increase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute Renal Failure</td>
<td>351%</td>
</tr>
<tr>
<td>Cardiac Arrest</td>
<td>245%</td>
</tr>
<tr>
<td>Shock</td>
<td>250%</td>
</tr>
<tr>
<td>Sepsis</td>
<td>149%</td>
</tr>
<tr>
<td>Blood Transfusion</td>
<td>184%</td>
</tr>
</tbody>
</table>

- At least one major complication 113%
You are having your morning coffee with another OB physician and discussing cardiac arrest. Your colleague says that the majority of cases in pregnancy are related to use of crack.

Your best reply to them is:
- No, trauma is much more common
- No, AFEs are now the leading cause
- Yes, especially in women over the age of 40
Risk Factors/ Etiologies

Most common causes of MCA:

- Maternal cardiac complications 19%
- Trauma 20%
- Complications of preeclampsia 18%
- Amniotic fluid embolism 13%
- Toxicity (iatrogenic/drug abuse) 8%

Einav, 2012
Prevention

- Awareness of patient’s risk factors
 - Maternal cardiac disease
 - Risk of hemorrhage

- Aggressive treatment of conditions that may deteriorate
 - Preeclampsia/eclampsia
 - Hypertension
 - Hemorrhage/blood product replacement

- Low threshold for admission to hospital
 - Best survival rates when cardiac arrest occurs in hospital compared to outside
Prevention

- Should consider checklist for risk assessment
- Score of > 6 should result in ICU notification

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Systolic BP</th>
<th>Respiratory rate</th>
<th>Heart rate</th>
<th>Fio₂ to keep Sat >96%</th>
<th>Temperature</th>
<th>Consciousness</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td><80</td>
<td><10</td>
<td><60</td>
<td>Room air</td>
<td><34</td>
<td>Alert (GCS=15)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>80–89</td>
<td>10–17</td>
<td>60–110</td>
<td>24%–39%</td>
<td>34.1–35.0</td>
<td>Not alert (≤15)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>91–139</td>
<td>18–24</td>
<td>111–149</td>
<td>>40%</td>
<td>35.1–37.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>140–149</td>
<td>25–29</td>
<td>>150</td>
<td></td>
<td>38.0–38.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>150–159</td>
<td></td>
<td></td>
<td></td>
<td>>39.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>>180</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Score of > 6 should result in ICU notification.
ROSC

- Return
- Of
- Spontaneous
- Circulation
Treatment Algorithms:
Pregnancy specific interventions/considerations
Pregnancy-Related Modifications to Cardiac Resuscitation

Immediate request for OB/PEDS support
- Preparation for cesarean delivery with delivery within 5 minutes

Maternal Maneuvers
- **NO-** Chest compressions above center of midpoint of sternum
- Left uterine displacement
- Removal of fetal monitors prior to defibrillation

Airway
- Early consideration for intubation
- Continuous cricoid pressure
- Use small ET tube size
A 38 year old G3P2002 at 32 4/7 weeks who was brought in to triage complaining of sudden onset dyspnea and chest pain that started less than an hour ago. Past medical history is unremarkable. Upon initial presentation, she appeared to be in mild discomfort and slightly short of breath. Shortly after arrival, she was observed to become more agitated and combative and while attempting to restrain the patient, she lost consciousness and could not be aroused by verbal commands. As you check the patient you are unable to identify a pulse.

With recognition of maternal cardiac arrest, which of the following is/are the primary responsibilities of the first responder?

- Activate the maternal cardiac arrest team and document time of onset of arrest
- Start chest compressions
- Start intravenous access and ventilation with 100% oxygen
Treatment Algorithm

- IMMEDIATE ACTIONS:
 - Call Obstetric Code
 - Call for Neonatal team (if viable pregnancy)
 - Begin BLS Immediately
 - Get Adult code cart & Backboard
 - Begin preparation for cesarean section
 - Assign a staff as timekeeper/documentation

- BEGIN ACLS ALGORITHMS- PLACE AED
Treatment Algorithm

- CIRCULATION
- AIRWAY
- BREATHING
- DEFIBRILLATE
- EXTRACT FETUS
In Hospital – BLS Steps

Unresponsive
No breathing or no normal breathing
Uterus is at or above the umbilicus

Activate emergency response system:
• BLS response: minimum 3 additional staff + code cart
• ACLS: maternal code team activation
• Second responder: get AED immediately and apply

Check pulse:
Definite pulse within 10 seconds?

No pulse or unsure

Document time
Start high-quality chest compressions†

Apply AED
Perform appropriate airway management‡
Perform continuous manual LUD

Shockable
Give 1 shock
Resume CPR immediately for 2 minutes

Not shockable
Resume CPR immediately for 2 minutes
Check rhythm every 2 minutes; if not shockable
Fluid resuscitation if PEA
What is the best initial patient position to decrease aortocaval compression and ensure optimal maternal hemodynamics during resuscitation efforts of maternal cardiac arrest in pregnancy?

- With elevation of the feet above the level of the heart
- Patient supine with manual left uterine displacement
- Right lateral decubitus position
Aortocaval Compression
Left Uterine Displacement

2015 AHA STATEMENT
Treatment Algorithm

- **CIRCULATION**
 - Left uterine displacement
 - Chest compressions (100/min) – 5cm depth
 - IV access above diaphragm (IV or intraosseous)

- **AIRWAY**
 - Chin lift/jaw thrust / 100% O2 at 10-15L/min
 - Bag/Mask ventilation
 - Oral airway or Intubation (ETT vs LMA)
 - **Do NOT** interrupt chest compressions (if intubated)
 - Consider continuous cricoid pressure
 - Small ETT size
You are 2 minutes into the code and you allow your intern to take over chest compressions. She is doing them correctly.

Where is the correct placement of the hands for chest compression when performing CPR on a pregnant patient?

- In the same position as the non-pregnant patient
- Slightly higher than in the non-pregnant patient
- On the lower 1/3 of the sternum
Note higher position of hand placement in pregnancy no longer recommended by AHA.
Chest Compressions in pregnancy:
- Use a firm backboard
- Place patient supine
- Place hands in center of chest (as in nonpregnant patient)
- Compress at a rate of at least 100/min
- Compress at a depth of at least 2 inches (5 cm)
- Perishock pause <10 seconds
- Allow complete chest recoil after each compression
- Minimize interruptions
- Perform continuous manual LUD
Airway Management

Ventilate 100% O2
- Don’t interrupt chest compressions!
- Jaw thrust + chin lift
- Bag mask (2 handed + oral airway if necessary)
- Cycles of 30 chest compressions: 2 breaths
- 2 breaths, each over 1 second

Prepare & Position
- Call for expert airway help and difficult airway cart
- Portable suction + airway equipment
- 6.0 mm ID endotracheal tube
- Optimize position
- Don’t interrupt chest compressions!

Primary Attempt
- Direct or video-laryngoscopy
- Bougie if available

Secondary Attempt
- Alternate laryngoscopic technique
- Adjust/release cricoid pressure if applied
- Return to mask ventilation if unsuccessful
- Prepare supraglottic airway (preferably with gastric port)

Alternative Airway Control
- Insert supraglottic airway (e.g., LMA)
- If ventilation inadequate, return to mask ventilation
- If mask ventilation inadequate → Cricothyrotomy

Airway Controlled
- Confirm ETT placement*
- Secure ETT or SGA
- 10 breaths per minute
- Deliver 500 - 700 mL per breath

Consensus Statement – Society of OB Anesthesia and Perinatology 2014
You have determined that you need to defibrillate the patient. Your nurse tells you that there is a fetal scalp electrode in place. What should you do?

- Defibrillate anyways
- Remove the FSE and then perform defibrillation
- Perform defibrillation at a lower energy level
The code team has arrived and taken over the code. They note that there is a shockable rhythm and ask if it is okay to defibrillate.

You tell them:

- No, it may cause a lethal fetal arrhythmia
- Yes, defibrillation is considered safe in pregnancy
Treatment Algorithm

- **BREATHING**
 - If not intubated – 30 compressions : 2 breaths
 - If intubated – 10 breaths per minute
 - Administer each breath over 1 second

- **DEFIBRILLATE (*This is safe for fetus)**
 - Place pads (anterior & posterior)
 - AED: Analyze/defibrillate every 2 min (same settings)
 - Immediately resume CPR in between shocks

- **EXTRACT FETUS**
ACLS Actions During Pregnancy

BLS team actions ongoing
- High-quality chest compressions
- Defibrillation when indicated
- Monitor CPR quality

Maternal cardiac arrest team arrives
- Consider etiology of cardiac arrest

Maternal interventions
- Appropriate airway management
 - Anticipate the difficult airway
 - Most experienced provider preferred
- IV above diaphragm
- Give typical ACLS drugs and dosages
 - Assess for hypovolemia and give fluid bolus +/- blood products when required
- If patient receiving IV magnesium prearrest, stop magnesium and give IV/IO calcium chloride 10 mL in 10% solution or calcium gluconate 30 mL in 10% solution

Obstetric interventions for patient whose uterus is at or above the umbilicus
- Continuous manual LUD
- Remove/detach fetal monitors
- Prepare for emergency cesarean delivery

Neonatal team
- Prepare to receive infant

* If no ROSC by 4 minutes of resuscitative efforts, consider performing immediate emergency cesarean delivery
Evaluate/Treat Possible Causes

- Bleeding/DIC
- Embolism- coronary/pulmonary/AFE
- Anesthetic complications
- Uterine atony
- Cardiac disease- MI/cardiomyopathy
- Hypertension- preeclampsia/eclampsia
- Other- Differential dx of standard ACLS
- Placenta abruption/previa
- Sepsis
Treatment Algorithms: Perimortem Cesarean Section
Perimortem Cesarean

- Goal: Delivery within 5 min of maternal collapse after 20wks gestation.
 - Goal of improving compression of the IVC by the gravid uterus
 - Decrease O2 demand
 - Improve pulmonary mechanics

- Practice: Of 57 cases of MCA with time from arrest to delivery recorded:
 - Only 5/57 completed within 5 minutes

Einav, 2012
Perimortem Cesarean

- Delivery within 10 minutes is likely more achievable.
- Consider creating emergency C/S kit for use in patient’s room to decrease delays
 - Also considering keeping one in the ICU if pregnant patients are admitted
- Sterile abdominal prep not a priority
- “…timing of delivery remains more critical than the location of delivery.”
Perimortem Cesarean

- 15 Teams randomized during drill for perimortem C/S to delivery in room or OR
 - Significantly shorter time to delivery when done in Delivery Room than when transported to OR
 - 4:25 (3:59–4:50) vs 7:53 (7:18–8:57) minutes ($p=0.004$)
- When delivery accomplished in Delivery Room, following outcomes done earlier:
 - Contacting the neonatal team
 - Placement of defibrillator
 - Resuming compressions
 - Endotracheal intubation

Lipman, 2011
Perimortem Cesarean

AHA Scientific Statement recommends that for In-Hospital Cardiac Arrest

a. The woman should not be transported to an operating room for PMCD during the management of an in-hospital maternal cardiac arrest (Class IIa; Level of Evidence B).

b. The team should not wait for surgical equipment to begin the procedure; only a scalpel is required (Class IIa; Level of Evidence C).

c. The team should not spend time on lengthy antiseptic procedures. Either a very abbreviated antiseptic pour should be performed, or the step should be eliminated entirely (Class IIa; Level of Evidence C).

d. Continuous manual LUD should be performed throughout the PMCD until the fetus is delivered (Class IIa; Level of Evidence C). Care should be taken to avoid injury to the rescuer performing the manual LUD during PMCD.
A woman at 39 weeks is witnessed to collapse and have no pulse. The nurse begins CPR and the code team arrives. If no ROSC occurs, how long until you should proceed to Perimortem C/S?

- 4 minutes after CPR started
- 5 minutes after CPR started
- No delay and proceed immediately
Teamwork & Communication

- Remove physical barriers for code team access

- Leadership & Workload distribution
 - Shared decision making during C/S
 - OB & Code Team (changes during code)
 - Assignment of roles

- Communication
 - Closed loop communication key
 - Brief “time outs” during resuscitation

- Drills & Practice as a team
| Call for help! | ☐ Call “OB Code” |
| Start CPR | ☐ Call neonatal team |
| | ☐ AED/defibrillator |
| | ☐ IMMEDIATE BLS |
| | ☐ Adult code cart |
| | ☐ Adult airway equipment |
| | ☐ Backboard |
| | ☐ Scalpel/Cesarean pack |
| | ☐ Assign timer/documenter |
| C Circulation | ☐ Left uterine displacement (manual) |
| Chest compressions | ☐ Hands mid-sternum |
| | ☐ 100 compressions/min |
| | ☐ PUSH HARD! PUSH FAST! |
| | ☐ Change compressors every 2 min |
| | ☐ Obtain IV access above diaphragm |
| A Airway | ☐ Chin lift/jaw thrust |
| | ☐ 100% O₂ at 10–15 L/min |
| | ☐ Use self-inflating bag mask |
| | ☐ Oral airway or |
| | ☐ Experienced personnel: Intubation with 6–7.0 ETT or |
| | ☐ Supraglottic airway (e.g., LMA) |
| | ☐ Do not interrupt chest compressions! |
| B Breathing | ☐ If not intubated: 30 compressions to 2 breaths |
| | ☐ If intubated: 10 breaths per min (500–700 mL per breath) |
| | ☐ Administer each breath over 1 s |
| D Defibrillate| ☐ Pads front and back |
| | ☐ Use AED or Analyze/defibrillate every 2 min |
| | ☐ Immediately resume CPR for 2 min |
| | ☐ Prepare for delivery |
| E Extract FETUS | ☐ Aim for incision by 4 min |
| | ☐ Aim for fetal delivery by 5 min |
Call for help

Start CPR

- Call maternal code blue (Time: ____________)
- Backboard (Time: ____________)
- IMMEDIATE BLS
- AED/defibrillator
- Maternal airway equipment
- Scalpel/cesarean pack
- Assign timer/documenter
- Document time of cardiac arrest (Time: ____________)
- Assign cognitive aid reader/recorder

Circulation

Chest Compressions

- Left uterine displacement (manual) (Time: ____________)
- Hands midsternum
- 100 compressions/min (Time: ____________)
- PUSH HARD, PUSH FAST
- Change compressors every 2 minutes
- Obtain IV access above diaphragm (Time: ____________)

Airway

- Minimize interruptions in chest compressions
- Chin lift/jaw thrust if not trauma victim
- 100% O₂ at ≥15 L/min (Time: ____________)
- Use self-inflating bag-mask
- Oral airway or
 - Experienced personnel: intubation with 6.0- to 7.0-mm inner diameter ETT or (Time: ____________)
 - Supraglottic airway
 - eg, laryngeal mask airway with gastric port (Time: ____________)

Breathing

- If not intubated: 30 compressions to 2 breaths
- If intubated: 8–10 breaths/min
- Administer each breath over 1 second

Defibrillate

- Pads front and side
- AED: analyze/defibrillate every 2 minutes (Time: ____________)
- Immediately resume CPR for 2 minutes
- Prepare for delivery

Extract Fetus

- PMCD started (Time: ____________)
- Fetus delivered (Time: ____________)
Maternal Cardiac Arrest

First Responder
- Activate maternal cardiac arrest team
- Document time of onset of maternal cardiac arrest
- Place the patient supine
- Start chest compressions as per BLS algorithm; place hands slightly higher on sternum than usual

Subsequent Responders

Maternal Interventions
Treat per BLS and ACLS Algorithms
- Do not delay defibrillation
- Give typical ACLS drugs and doses
- Ventilate with 100% oxygen
- Monitor waveform capnography and CPR quality
- Provide post-cardiac arrest care as appropriate

Maternal Modifications
- Start IV above the diaphragm
- Assess for hypovolemia and give fluid bolus when required
- Anticipate difficult airway; experienced provider preferred for advanced airway placement
- If patient receiving IV/IO magnesium prearrest, stop magnesium and give IV/IO calcium chloride 10 mL in 10% solution, or calcium gluconate 30 mL in 10% solution
- Continue all maternal resuscitative interventions (CPR, positioning, defibrillation, drugs, and fluids) during and after cesarean section

Obstetric Interventions for Patient With an Obviously Gravid Uterus*
- Perform manual left uterine displacement (LUD)—displace uterus to the patient’s left to relieve aortocaval compression
- Remove both internal and external fetal monitors if present

Obstetric and neonatal teams should immediately prepare for possible emergency cesarean section
- If no ROSC by 4 minutes of resuscitative efforts, consider performing immediate emergency cesarean section
- Aim for delivery within 5 minutes of onset of resuscitative efforts

*An obviously gravid uterus is a uterus that is deemed clinically to be sufficiently large to cause aortocaval compression
Summary
Things to Avoid

- Do NOT focus on the fetal heart rate tracing/status
 - Remove monitors during resuscitation

- Do NOT delay in moving towards perimortem cesarean section when indicated
Expected Outcomes

- Depends on the underlying etiology
- Largest study to date reports 54% survival to discharge
- Neonatal survival was most closely correlated with in hospital arrest - overall survival rate of 63%

Einav, 2012
Recommends Obstetric Emergency Drills

Drills should be used to:
- train staff in the protocols,
- refine local protocols
- identify and fix systems problems that would prevent optimal care
“The actions of one provider or any single intervention rarely result in a positive or negative outcome in the event of maternal cardiopulmonary arrest; rather, it is the global performance of the resuscitation team and institutional preparedness for rare, critical events.”
Summary

- Knowledge of the key differences for cardiac arrest in pregnancy are important.
- Practicing for obstetric emergencies with simulation improves outcomes.
- Multidisciplinary simulation training should focus on both technical and teamwork skills in order to be most effective.
Evidence
Evidence

Thank You for Your Attention!

Planning Committee

Mike Foley, Director
Helen Feltovich, co-Director
Loralei Thornburg, Content co-Chair
Suneet Chauhan, Testing Chair
Daniel O’Keeffe
Barbara Shaw

Shad Deering, co-Director
Bill Goodnight, co-Director
Deirdre Lyell, Content co-Chair
Mary d’Alton
Andrew Satin

Society for Maternal • Fetal Medicine