
PHP Syntax

PHP Syntax

• PHP is a great example of a commonly-used modern
programming language.
• C was first released in 1972, PHP in 1995.

• PHP is an excellent language choice for software that requires
an easy way to do things that, in C, are really complicated.
• String manipulation
• Networking

• Fortunately, PHP is heavily inspired by C (in fact, the PHP
interpreter is written in C) and so the syntax should be pretty
familiar.

PHP Syntax

• To start writing PHP, open up a file with the .php file extension.

• All PHP code inside of that file must be enclosed in the PHP
delimiters.

• If not, when the code is run, everything outside of those
delimiters will simply be printed out verbatim in your program.

<?php

?>

PHP Syntax

• Unlike C, which is a compiled language, PHP is an interpreted
language.
• Get to skip the step of compiling our code, with the trade off that

PHP code needs to be converted to 0s and 1s on the fly, which might
slow the program down.

• The fact that the PHP interpreter effectively “discards” non-
PHP can actually be used to our advantage though, particularly
when we start to mix PHP and HTML in the context of web
programming.

PHP Syntax

• Variables

• PHP variables have two big differences from C.
• No type specifier.

• All names start with $.

PHP Syntax

• Variables

• PHP variables have two big differences from C.
• No type specifier.

• All names start with $.

int x = 54;

PHP Syntax

• Variables

• PHP variables have two big differences from C.
• No type specifier.

• All names start with $.

int x = 54;

PHP Syntax

• Variables

• PHP variables have two big differences from C.
• No type specifier.

• All names start with $.

$x = 54;

PHP Syntax

• Variables

• PHP variables have two big differences from C.
• No type specifier.

• All names start with $.

string phrase = “This is CS50”;

PHP Syntax

• Variables

• PHP variables have two big differences from C.
• No type specifier.

• All names start with $.

string phrase = “This is CS50”;

PHP Syntax

• Variables

• PHP variables have two big differences from C.
• No type specifier.

• All names start with $.

$phrase = “This is CS50”;

PHP Syntax

• Conditionals

• All of the old favorites from C are still available for you to use.

PHP Syntax

• Conditionals

• All of the old favorites from C are still available for you to use.

if ($y < 43 || $z == 15)
{

}

PHP Syntax

• Conditionals

• All of the old favorites from C are still available for you to use.

if ($y < 43 || $z == 15)
{

}
else
{

}

PHP Syntax

• Conditionals

• All of the old favorites from C are still available for you to use.

if ($coursenum == 50)
{

}
else if ($name == “David”)
{

}

PHP Syntax

• Conditionals

• All of the old favorites from C are still available for you to use.

if ($coursenum == 50)
{

}
else if ($name == “David”)
{

}

PHP Syntax

• Conditionals

• All of the old favorites from C are still available for you to use.

if ($coursenum == 50)
{

}
elseif ($name == “David”)
{

}

PHP Syntax

• Conditionals

• All of the old favorites from C are still available for you to use.

$var = ‘A’;
$letter = ctype_alpha($var) ? true : false;

PHP Syntax

• Conditionals

• All of the old favorites from C are still available for you to use.
$state = readline(“Your state, please: ”);
switch($state)
{

case “MA”: case “Mass.”: case “Massachusetts”:
// stuff
break;

default:
echo(“I don’t understand your input!”);

}

PHP Syntax

• Conditionals

• All of the old favorites from C are still available for you to use.
$state = readline(“Your state, please: ”);
switch($state)
{

case “MA”: case “Mass.”: case “Massachusetts”:
// stuff
break;

default:
echo(“I don’t understand your input!”);

}

PHP Syntax

• Loops

• All of the old favorites from C are still available for you to use.

PHP Syntax

• Loops

• All of the old favorites from C are still available for you to use.

$counter = 1;
while($counter <= 100)
{

print($counter);
$counter++;

}

PHP Syntax

• Loops

• All of the old favorites from C are still available for you to use.

$counter = 1;
do
{

print($counter);
$counter++;

}
while($counter <= 100);

PHP Syntax

• Loops

• All of the old favorites from C are still available for you to use.

for ($counter = 1; $counter <= 100; $counter++)
print($counter);

PHP Syntax

• Arrays

• Here’s where things really start to get a lot better than C.

• PHP arrays are not fixed in size; they can grow or shrink as
needed, and you can always tack extra elements onto your
array and splice things in and out easily.

• Because PHP is loosely typed, your arrays can also mix different
data types together.

PHP Syntax

• Arrays

• Declaring an array is pretty straightforward.

$nums = array(1, 2, 3, 4);

PHP Syntax

• Arrays

• Declaring an array is pretty straightforward… though there is
more than one way to do it.

$nums = [1, 2, 3, 4];

PHP Syntax

• Arrays

• Tacking on to an existing array can be done a few ways:

$nums = [1, 2, 3, 4];
$nums[4] = 5;

PHP Syntax

• Arrays

• Tacking on to an existing array can be done a few ways:

$nums = [1, 2, 3, 4];
$nums[] = 5;

PHP Syntax

• Arrays

• Tacking on to an existing array can be done a few ways:

$nums = [1, 2, 3, 4];
array_push($nums, 5);

PHP Syntax

• Arrays

• Recall that our arrays also do not have to always contain
elements of the same data type.

$nums = [1, true, 3, 4];
array_push($nums, “five”);

PHP Syntax

• Associative arrays

• PHP also has built in support for associative arrays, allowing
you to specify array indices with words or phrases (keys),
instead of integers, which you were restricted to in C.

PHP Syntax

• Associative arrays

$pizzas = [
“cheese” => 8.99,
“pepperoni” => 9.99,
“vegetable” => 10.99,
“buffalo chicken” => 11.99

];

PHP Syntax

• Associative arrays

$pizzas = [
“cheese” => 8.99,
“pepperoni” => 9.99,
“vegetable” => 10.99,
“buffalo chicken” => 11.99

];

PHP Syntax

• Associative arrays

$pizzas = [
“cheese” => 8.99,
“pepperoni” => 9.99,
“vegetable” => 10.99,
“buffalo chicken” => 11.99

];

PHP Syntax

• Associative arrays

$pizzas = [
“cheese” => 8.99,
“pepperoni” => 9.99,
“vegetable” => 10.99,
“buffalo chicken” => 11.99

];

PHP Syntax

• Associative arrays

$pizza[“cheese”] = 7.99;

PHP Syntax

• Associative arrays

$pizza[“cheese”] = 7.99;

if ($pizza[“vegetable”] < 12)
{

}

PHP Syntax

• Associative arrays

$pizza[“cheese”] = 7.99;

if ($pizza[“vegetable”] < 12)
{

}

$pizza[“bacon”] = 13.49;

PHP Syntax

• Associative arrays

• PHP also has built in support for associative arrays, allowing
you to specify array indices with words or phrases (keys),
instead of integers, which you were restricted to in C.

• But this creates a somewhat new problem… how do we iterate
through an associative array? We don’t have indexes ranging
from [0, n-1] anymore.

PHP Syntax

• Loops (redux)

• PHP also includes a new kind of loop called foreach that allows
you to iterate across any array, but is particularly useful for
associative arrays.

foreach($array as $key)
{

// use $key in here as a stand-in for $array[$i]
}

PHP Syntax

• Loops (redux)

$pizzas = [
“cheese” => 8.99,
“pepperoni” => 9.99,
“vegetable” => 10.99,
“buffalo chicken” => 11.99

];

PHP Syntax

• Loops (redux)

$pizzas = [
“cheese” => 8.99,
“pepperoni” => 9.99,
“vegetable” => 10.99,
“buffalo chicken” => 11.99

];

foreach($pizzas as $pizza)
{

print($pizza);
print(“\n”);

}

PHP Syntax

• Loops (redux)

$pizzas = [
“cheese” => 8.99,
“pepperoni” => 9.99,
“vegetable” => 10.99,
“buffalo chicken” => 11.99

];

foreach($pizzas as $pizza)
{

print($pizza);
print(“\n”);

}

PHP Syntax

• Loops (redux)

$pizzas = [
“cheese” => 8.99,
“pepperoni” => 9.99,
“vegetable” => 10.99,
“buffalo chicken” => 11.99

];

foreach($pizzas as $pizza)
{

print($pizza);
print(“\n”);

}

8.99
9.99
10.99
11.99

PHP Syntax

• Loops (redux)

$pizzas = [
“cheese” => 8.99,
“pepperoni” => 9.99,
“vegetable” => 10.99,
“buffalo chicken” => 11.99

];

foreach($pizzas as $topping => $price)
{

}

PHP Syntax

• Loops (redux)

$pizzas = [
“cheese” => 8.99,
“pepperoni” => 9.99,
“vegetable” => 10.99,
“buffalo chicken” => 11.99

];

foreach($pizzas as $topping => $price)
{

print(“A whole ”);
print($topping);
print(“ pizza costs $”);
print($price);
print(“.\n”);

}

PHP Syntax

A whole cheese pizza costs $8.99.
A whole pepperoni pizza costs $9.99.
A whole vegetable pizza costs $10.99.
A whole buffalo chicken pizza costs $11.99.

PHP Syntax

• Printing and variable interpolation

• We’ve already seen a few ways to print out information to the
user.
• print()

• echo()

• Suffice it to say, PHP has a lot of ways to print, including ways
to print out substituted variables in the middle of strings.

PHP Syntax

• Printing and variable interpolation

print(“A whole ”);
print($topping);
print(“ pizza costs $”);
print($price);
print(“.\n”);

PHP Syntax

• Printing and variable interpolation

printf(“A whole %s pizza costs $%s.\n”,
$topping, $price);

PHP Syntax

• Printing and variable interpolation

printf(“A whole %s pizza costs $%s.\n”,
$topping, $price);

PHP Syntax

• Printing and variable interpolation

echo(“A whole {$topping} pizza costs
\${$price}.\n”);

PHP Syntax

• Printing and variable interpolation

echo(“A whole {$topping} pizza costs
\${$price}.\n”);

PHP Syntax

• Printing and variable interpolation

echo(“A whole {$topping} pizza costs
\${$price}.\n”);

PHP Syntax

• Printing and variable interpolation

print(“A whole {$topping} pizza costs
\${$price}.\n”);

PHP Syntax

• Printing and variable interpolation

print(“A whole ” . $topping .
“ pizza costs $” . $price . “.\n”);

PHP Syntax

• Printing and variable interpolation

print(“A whole ” . $topping .
“ pizza costs $” . $price . “.\n”);

PHP Syntax

• Printing and variable interpolation

print(“A whole ” . $topping .
“ pizza costs $” . $price . “.\n”);

PHP Syntax

• Functions

• PHP has support for functions as well. Like variables, we don’t
need to specify the return type of the function (because it
doesn’t matter), nor the data types of any parameters (ditto).

• All functions are introduced with the function keyword.
• Also, no need for main(), since the interpreter just reads from top

to bottom!

PHP Syntax

• Functions

function hard_square($x)
{

$result = 0;
for ($i = 0; $i < $x; $i++)

$result += $x;
return $result;

}

PHP Syntax

<?php
$x = readline(“Give me a number to square: ”);
echo(hard_square($x) . “\n”);

function hard_square($x)
{

$result = 0;
for ($i = 0; $i < $x; $i++)

$result += $x;
return $result;

}
?>

PHP Syntax

• Functions

function hard_square($x = 10)
{

$result = 0;
for ($i = 0; $i < $x; $i++)

$result += $x;
return $result;

}

PHP Syntax

<?php
echo(hard_square() . “\n”);

function hard_square($x = 10)
{

$result = 0;
for ($i = 0; $i < $x; $i++)

$result += $x;
return $result;

}
?>

PHP Syntax

<?php
echo(hard_square() . “\n”);

function hard_square($x = 10)
{

$result = 0;
for ($i = 0; $i < $x; $i++)

$result += $x;
return $result;

}
?>

PHP Syntax

• Including files

• Just like C programs can consist of multiple files to form a
single program, so can PHP programs tie files together.

#include <cs50.h>

PHP Syntax

• Including files

• Just like C programs can consist of multiple files to form a
single program, so can PHP programs tie files together.

#include <cs50.h>

PHP Syntax

• Including files

• Just like C programs can consist of multiple files to form a
single program, so can PHP programs tie files together.

require_once(__DIR__ . “cs50.php”);

PHP Syntax

• Including files

• Just like C programs can consist of multiple files to form a
single program, so can PHP programs tie files together.

require_once(__DIR__ . “cs50.php”);

PHP Syntax

• Though PHP is primarily used (and was initially designed) as a
language for web-based programming, it is a full language and
can do nearly all things C can, which means it can be run from
the command line.

• All that is required is that the PHP interpreter is installed on the
system you wish to run your PHP programs on.

PHP Syntax

• To run your PHP program through the PHP interpreter at the
command-line, simply type

php <file>

• and your program will run through the interpreter, which will
execute everything inside of the PHP delimiters, and simply
print out the rest.

PHP Syntax

• Recall that you don’t have to have only one set of PHP
delimiters in your program. You can have as many as you’d like,
opening and closing them as needed.

PHP Syntax

• You can also make your programs look a lot more like C
programs when they execute by adding a shebang to the top of
your PHP files, which automatically finds and executes the
interpreter for you.

#!/usr/bin/php

• If you do this, you need to change the permissions on your file
as well using the linux command chmod as follows:

chmod a+x <file>

