
Insertion Sort



Insertion Sort

• In insertion sort, the idea of the algorithm is to build your 
sorted array in place, shifting elements out of the way if 
necessary to make room as you go.

In pseudocode:

• Call the first element of the array “sorted.”

• Repeat until all elements are sorted:

• Look at the next unsorted element. Insert into the “sorted” portion by 
shifting the requisite number of elements.



Insertion Sort

5 2 1 3 6 4

In pseudocode:
Call the first element of the array “sorted.”

Repeat until all elements are sorted:
Look at the next unsorted element. Insert into the “sorted” portion by shifting the requisite number of 

elements.



Insertion Sort

5 2 1 3 6 4

In pseudocode:
Call the first element of the array “sorted.”

Repeat until all elements are sorted:
Look at the next unsorted element. Insert into the “sorted” portion by shifting the requisite number of 

elements.



Insertion Sort

2

5 2 1 3 6 4

In pseudocode:
Call the first element of the array “sorted.”

Repeat until all elements are sorted:
Look at the next unsorted element. Insert into the “sorted” portion by shifting the requisite number of 

elements.



Insertion Sort

2

2 5 1 3 6 4

In pseudocode:
Call the first element of the array “sorted.”

Repeat until all elements are sorted:
Look at the next unsorted element. Insert into the “sorted” portion by shifting the requisite number of 

elements.



Insertion Sort

2

2 5 1 3 6 4

In pseudocode:
Call the first element of the array “sorted.”

Repeat until all elements are sorted:
Look at the next unsorted element. Insert into the “sorted” portion by shifting the requisite number of 

elements.



Insertion Sort

2 1

2 5 1 3 6 4

In pseudocode:
Call the first element of the array “sorted.”

Repeat until all elements are sorted:
Look at the next unsorted element. Insert into the “sorted” portion by shifting the requisite number of 

elements.



Insertion Sort

2 1

2 2 5 3 6 4

In pseudocode:
Call the first element of the array “sorted.”

Repeat until all elements are sorted:
Look at the next unsorted element. Insert into the “sorted” portion by shifting the requisite number of 

elements.



Insertion Sort

2 1

1 2 5 3 6 4

In pseudocode:
Call the first element of the array “sorted.”

Repeat until all elements are sorted:
Look at the next unsorted element. Insert into the “sorted” portion by shifting the requisite number of 

elements.



Insertion Sort

2 1 3

1 2 5 3 6 4

In pseudocode:
Call the first element of the array “sorted.”

Repeat until all elements are sorted:
Look at the next unsorted element. Insert into the “sorted” portion by shifting the requisite number of 

elements.



Insertion Sort

2 1 3

1 2 5 5 6 4

In pseudocode:
Call the first element of the array “sorted.”

Repeat until all elements are sorted:
Look at the next unsorted element. Insert into the “sorted” portion by shifting the requisite number of 

elements.



Insertion Sort

2 1 3

1 2 3 5 6 4

In pseudocode:
Call the first element of the array “sorted.”

Repeat until all elements are sorted:
Look at the next unsorted element. Insert into the “sorted” portion by shifting the requisite number of 

elements.



Insertion Sort

2 1 3

1 2 3 5 6 4

In pseudocode:
Call the first element of the array “sorted.”

Repeat until all elements are sorted:
Look at the next unsorted element. Insert into the “sorted” portion by shifting the requisite number of 

elements.



Insertion Sort

2 1 3 4

1 2 3 5 6 4

In pseudocode:
Call the first element of the array “sorted.”

Repeat until all elements are sorted:
Look at the next unsorted element. Insert into the “sorted” portion by shifting the requisite number of 

elements.



Insertion Sort

2 1 3 4

1 2 3 5 5 6

In pseudocode:
Call the first element of the array “sorted.”

Repeat until all elements are sorted:
Look at the next unsorted element. Insert into the “sorted” portion by shifting the requisite number of 

elements.



Insertion Sort

2 1 3 4

1 2 3 4 5 6

In pseudocode:
Call the first element of the array “sorted.”

Repeat until all elements are sorted:
Look at the next unsorted element. Insert into the “sorted” portion by shifting the requisite number of 

elements.



Insertion Sort

• Worst-case scenario: The array is in reverse order; we have 
to shift each of the n elements n positions each time we 
make an insertion.

• Best-case scenario: The array is already perfectly sorted, and 
we simply keep moving the line between “unsorted” and 
“sorted” as we examine each element.



Insertion Sort

O(n2)

Ω(n)


