
1

Week 3

This is CS50. Harvard University. Fall 2014.

Cheng Gong

Table of Contents

Command-Line Arguments .. 1

Memory Access .. 5

Return Values ... 6

More on argv .. 8

Sorting .. 10

Bubble Sort ... 11

Selection Sort ... 12

Insertion Sort ... 12

Command-Line Arguments

• We’ve been writing programs that look like this, whereby main does not take any

arguments (as implied by the presence of void):

#include <cs50.h>

#include <stdio.h>

int main(void)

{

 // TODO

}

This means that no other words can be typed after the program’s name and

accessed within main , and the only way to provide input is by a function running

after the program is started, like with GetString .

• Commands like cd take arguments from the command-line, so cd Dropbox

changes the directory to Dropbox without a separate prompt for input. mkdir

pset2 makes a directory called pset2 , and make hello builds a program called

hello .

Week 3

2

• So far we’ve had int main(void) at the beginning of our programs, signifying

that they don’t take any arguments. Starting today, though, we’ll start supporting even

multiple command-line arguments.

clang -o hello hello.c has three such arguments (-o , hello , and

hello.c).

• We will start adding code like this:

#include <cs50.h>

#include <stdio.h>

int main(int argc, string argv[])

{

 // TODO

}

• We see that main now takes two arguments, argc which is an int , and argv

which is an array of strings. We specify the name, argv (short for argument vector,

or array of arguments), but not the size, so any array can be passed in to main.

• So command-line arguments look like this:

argc

| |

argv

--

| | | | | ...

--

• argv is a chunk of memory that stores one string after another, and argc is a

single chunk of memory that holds an int .

• We can access each string individually:

argc

| |

Week 3

3

argv[0] argv[1] argv[2] argv[3]

--

| | | | | ...

--

• If we run a program with ./hello , the computer will store this in argc and

argv[0] :

argc

| 1 |

argv[0] argv[1] argv[2] argv[3]

| ./hello | | | | ...

• If we run cd Dropbox , the memory will look like this:

argc

| 2 |

argv[0] argv[1] argv[2] argv[3]

| cd | Dropbox | | | ...

• And likewise for mkdir pset2 :

argc

| 2 |

argv[0] argv[1] argv[2] argv[3]

| mkdir | pset2 | | | ...

• If we ran clang -o hello hello.c , however, we get:

Week 3

4

argc

| 4 |

argv[0] argv[1] argv[2] argv[3]

| clang | -o | hello | hello.c | ...

• Since we don’t know where argv will end by itself, we need argc to tell us where

to stop looking.

• Let’s write a program that uses these arguments. What about a program that says

hello without using GetString ? Instead, it’ll take arguments like this:

argc

| 2 |

argv[0] argv[1] argv[2] argv[3]

| ./hello | Zamyla | | | ...

• We’ll call this hello-3.c 1:

#include <cs50.h>

#include <stdio.h>

int main(int argc, string argv[])

{

 printf("hello, %s\n", argv[1]);

}

argv[1] contains whatever string is passed in after the name of our program.

1 http://cdn.cs50.net/2014/fall/lectures/3/m/src3m/hello-3.c

http://cdn.cs50.net/2014/fall/lectures/3/m/src3m/hello-3.c
http://cdn.cs50.net/2014/fall/lectures/3/m/src3m/hello-3.c

Week 3

5

Memory Access

• But what happens if we don’t type someone’s name in?

jharvard@appliance (~/Dropbox): make hello-3

clang -ggdb3 -O0 -std=c99 -Wall -Werror hello-3.c -lcs50 -lm -o

 hello-3

jharvard@appliance (~/Dropbox): ./hello-3

hello, (null)

printf is printing (null) because there’s nothing (well, technically, NULL) in

argv[1] .

What about poking around even more? Let’s try to access argv[2] :

#include <cs50.h>

#include <stdio.h>

int main(int argc, string argv[])

{

 printf("hello, %s\n", argv[2]);

}

jharvard@appliance (~/Desktop): ./hello-3

hello, XDG_VTNR=7

What about argv[3] ?

jharvard@appliance (~/Desktop): ./hello-3

hello, SSH_AGENT_PID=1616

Interesting. How about argv[50] ?

jharvard@appliance (~/Desktop): ./hello-3

hello, INSTANCE=

Let’s be reckless, and try argv[5000] :

jharvard@appliance (~/Desktop): ./hello-3

Segmentation fault (core dumped)

Week 3

6

This message might look familiar. We’ve caused a segmentation fault where we’ve

touched memory we shouldn’t have, and segments are just chunks of memory. The

computer gives us the number of arguments in argv , and if we try to go farther

there is physically other memory there and data stored, so we might have seen

anything else. Indeed, it might even be possible for hackers to use programs in

a powerful language like C to go through memory and find passwords or other

interesting things.

We should have gotten errors as soon as we went even one index past the end

of argv , but since a computer allocates memory in chunks for efficiency, our

program got a big enough chunk to look at argv[3] and argv[50] without

going past its boundaries. Once we tried to access argv[5000] , the operating

system noticed and enforced the segmentation of memory.

Another note, core dumped means that the program’s memory when it

crashed is saved as a file called core , so we can use it diagnostically after

the fact.

In this case, however, we went too far and the program crashed. Let’s try to fix this.

Return Values

• Starting over, we notice that main is a function that returns an int :

#include <cs50.h>

#include <stdio.h>

int main(int argc, string argv[])

{

 // TODO

}

Even though we haven’t specified return 0 , the compiler has been putting that

in for you. In the case of main , returning a 0 signifies successful completion,

whereas any non-zero return value signifies an error.

• So let’s look at hello-4.c 2:

2 http://cdn.cs50.net/2014/fall/lectures/3/m/src3m/hello-4.c

http://cdn.cs50.net/2014/fall/lectures/3/m/src3m/hello-4.c
http://cdn.cs50.net/2014/fall/lectures/3/m/src3m/hello-4.c

Week 3

7

#include <cs50.h>

#include <stdio.h>

int main(int argc, string argv[])

{

 if (argc == 2)

 {

 printf("hello, %s\n", argv[1]);

 return 0;

 }

 else

 {

 return 1;

 }

}

On line 6 we make sure that argc has a value of 2 , and return 0 on line 9 if

all went well. Otherwise, we return 1 on line 13 if something went wrong.

Now if we pass in any number of arguments beside 2, the program will exit, and

though the user can’t see the return value of 1 , we will later use a debugger that

can:

jharvard@appliance (~/Desktop): ./hello-4 Zamyla

hello, Zamyla

jharvard@appliance (~/Desktop): ./hello-4

jharvard@appliance (~/Desktop): ./hello-4 Rob is a proctor in Thayer

jharvard@appliance (~/Desktop):

• Also, string is the same as char* , but we’ll remove those training wheels soon

and see what they actually are.

• And the computer knows the value of argc because the blinking prompt is a program

in itself that, working with the operating system, takes the words typed, and figures out

argc and argv for you.

• We can name argc and argv in our main function to be anything, but by convention

they are what they are.

Week 3

8

More on argv

• Let’s look a little more closely at argv :

argv[0] argv[1]

| ./hello | Zamyla | ...

• Remember that a string is an array of characters, so we should really draw this picture:

argv[0] argv[1]

| ------------------ | ---------------- |

| |.|/|h|e|l|l|o|\0| | |Z|a|m|y|l|a|\0| | ...

| ------------------ | ---------------- |

Indeed, the little white boxes of each string are actually outside of the bigger boxes,

but we won’t worry about that for now.

• Let’s look at argv-1.c 3:

#include <cs50.h>

#include <stdio.h>

int main(int argc, string argv[])

{

 // print arguments

 for (int i = 0; i < argc; i++)

 {

 printf("%s\n", argv[i]);

 }

}

This will print each argument, one per line:

jharvard@appliance (~/Dropbox/src3m): make argv-1

clang -ggdb3 -O0 -std=c99 -Wall -Werror argv-1.c -lcs50 -lm -o

 argv-1

3 http://cdn.cs50.net/2014/fall/lectures/3/m/src3m/argv-1.c

http://cdn.cs50.net/2014/fall/lectures/3/m/src3m/argv-1.c
http://cdn.cs50.net/2014/fall/lectures/3/m/src3m/argv-1.c

Week 3

9

jharvard@appliance (~/Dropbox/src3m): ./argv-1

./argv-1

jharvard@appliance (~/Dropbox/src3m): ./argv-1 foo

./argv-1

foo

jharvard@appliance (~/Dropbox/src3m): ./argv-1 foo bar

./argv-1

foo

bar

• We can take this further in argv-2.c 4:

#include <cs50.h>

#include <stdio.h>

#include <string.h>

int main(int argc, string argv[])

{

 // print arguments

 for (int i = 0; i < argc; i++)

 {

 for (int j = 0, n = strlen(argv[i]); j < n; j++)

 {

 printf("%c\n", argv[i][j]);

 }

 printf("\n");

 }

}

Now we go through each argument with line 8, but in line 10 we check the length of

the argument stored in argv[i] , store it in n , and use j as a counter to iterate

through argv[i] since i was already used. Then in line 12 we use this new

syntax, argv[i][j] that gets the i’th string and the j’th character in that string,

and indeed this works as we expect:

jharvard@appliance (~/Desktop): make argv-2

clang -ggdb3 -O0 -std=c99 -Wall -Werror argv-2.c -lcs50 -lm -o

 argv-2

jharvard@appliance (~/Desktop): ./argv-2

.

4 http://cdn.cs50.net/2014/fall/lectures/3/m/src3m/argv-2.c

http://cdn.cs50.net/2014/fall/lectures/3/m/src3m/argv-2.c
http://cdn.cs50.net/2014/fall/lectures/3/m/src3m/argv-2.c

Week 3

10

/

a

r

g

v

-

2

jharvard@appliance (~/Desktop): ./argv-2 foo bar

.

/

a

r

g

v

-

2

f

o

o

b

a

r

Sorting

• So we’re just taking the same ideas and applying them. If we think about a phone book

as an array with pages in each box, we can start to see a solution in another way.

• A volunteer from the audience, Ajay, looks for the number 50 among 7 doors on the

screen, and luckily finds it on the first try. The numbers were in random order, so the

best we could have done, if we didn’t get lucky, is continue searching randomly until

we find it.

• We have another set of doors, this time sorted, and Ajay finds it luckily again. (After

class, we sent Ajay to buy a lottery ticket on behalf of CS50, but haven’t heard from

him since …)

Week 3

11

• Time to play a clip5 from the past of this same demonstration, with Sean who wasn’t

quite as lucky.

• With the second set of doors, that are sorted, we can do much better. Much like the

phonebook example, we can start in the middle, and divide the problem in half by

moving in the direction we expect the number we want to be.

Bubble Sort

• Let’s take a closer look at sorting with 8 volunteers from the audience. We line them

up with numbers on stage in this order:

4 2 6 8 1 3 7 5

• Let’s make the first swap at the beginning, since 4 and 2 were out of order:

2 4 6 8 1 3 7 5

• Continuing by going down and comparing numbers one pair at a time, swapping them

as necessary:

2 4 6 1 8 3 7 5

2 4 6 1 3 8 7 5

2 4 6 1 3 7 8 5

2 4 6 1 3 7 5 8

• So 8 has bubbled up to the end and we’re getting closer to the solution. Let’s run this

again:

2 4 6 1 3 7 5 8

2 4 1 6 3 7 5 8

2 4 1 3 6 7 5 8

2 4 1 3 6 5 7 8

• Now both 7 and 8 are correct. One more time:

2 1 4 3 6 5 7 8

2 1 3 4 6 5 7 8

2 1 3 4 5 6 7 8

5 http://youtu.be/nEdFfBbmlp4?t=26m24s

http://youtu.be/nEdFfBbmlp4?t=26m24s
http://youtu.be/nEdFfBbmlp4?t=26m24s

Week 3

12

• And again:

2 1 3 4 5 6 7 8

1 2 3 4 5 6 7 8

• How many steps did we take to sort these numbers? It may have seemed inefficient,

because it was, so we take a loot at other algorithms.

• This online demo6 shows various sorting algorithms, in particular bubble sort, moving

bars in order of length. The longer bars "bubble" to the right, and the shorter bars

"bubble" to the left.

Selection Sort

• Let’s try another algorithm, where we keep looking for the smallest element, and switch

it (in constant time) with the first unsorted element:

4 2 6 8 1 3 7 5

1 2 6 8 4 3 7 5 // 1 is moved toward the front

1 2 3 8 4 6 7 5 // 2 is moved toward the front

1 2 3 4 8 6 7 5 // 3 is moved toward the front

1 2 3 4 5 6 7 8 // 4 is moved toward the front

This is called selection sort, and we see how it sorted differently again with this

online demo7.

Insertion Sort

• Let’s reset one more time:

4 2 6 8 1 3 7 5

• We take the first element, declare it to be sorted, and move the next one to its correct

placement within the sorted part of the array.

4 2 6 8 1 3 7 5 // 4 is sorted

2 4 6 8 1 3 7 5 // we move 2 to in front of 4

6 http://cs.smith.edu/~thiebaut/java/sort/demo.html
7 http://cs.smith.edu/~thiebaut/java/sort/demo.html

http://cs.smith.edu/~thiebaut/java/sort/demo.html
http://cs.smith.edu/~thiebaut/java/sort/demo.html
http://cs.smith.edu/~thiebaut/java/sort/demo.html
http://cs.smith.edu/~thiebaut/java/sort/demo.html
http://cs.smith.edu/~thiebaut/java/sort/demo.html

Week 3

13

2 4 6 8 1 3 7 5 // 6 is sorted

2 4 6 8 1 3 7 5 // 8 is sorted

1 2 4 6 8 3 7 5 // we move 1 to the beginning

1 2 3 4 6 8 7 5 // we move 3 to its location

1 2 3 4 6 7 8 5 // we move 7 to its location

1 2 3 4 5 6 7 8 // we move 5 to its location

And the demo has another "feel" with little gaps that we fix over time.

• It turns out that all of these algorithms are fundamentally equivalent in efficiency once

n (the number of items to sort) is sufficiently large.

• Finally, we watch what different sorting algorithms sound like8 to get a feel for them

in another way.

8 http://youtu.be/t8g-iYGHpEA

http://youtu.be/t8g-iYGHpEA
http://youtu.be/t8g-iYGHpEA

	Week 3
	Table of Contents
	Command-Line Arguments
	Memory Access
	Return Values

	More on argv
	Sorting
	Bubble Sort

	Selection Sort
	Insertion Sort

