
1

Week 1

This is CS50. Harvard University. Fall 2014.

Cheng Gong

Table of Contents

Introduction ..................................................................................................................... 1

Announcements .............................................................................................................. 2

How the PC Came to Be ...............................................................................................  2

Source Code ..................................................................................................................  3

C .....................................................................................................................................  3

Writing Code ..................................................................................................................  5

Introduction

• Colton Ogden’s music can be downloaded at http://soundcloud.com/cs50.

• This week we move on to C, reusing all of the ideas we learned last week in Scratch.

• Recall that the [ say [] ]  block is a statement, but also a function.

• [ repeat [] ]  and [ forever ]  are types of loops.

# Mark Zuckerburg teaches REPEAT LOOPS1 describes how a loop can do very

powerful things, like wishing everyone on Facebook a happy birthday. Similarly,

CS50 uses code to send people Dropbox coupon codes by iterating through email

addresses.

• Hexagon blocks are boolean expressions inside conditions like [ if < > ] . Nested

conditions can allow for three, four, or more branches.

# Bill Gates explains IF & IF/ELSE statements2 as how computers make decisions.

1  http://www.youtube.com/watch?v=hYvcoRkAkOU
2  http://www.youtube.com/watch?v=fVUL-vzrIcM

http://soundcloud.com/cs50
http://www.youtube.com/watch?v=hYvcoRkAkOU
http://www.youtube.com/watch?v=fVUL-vzrIcM
http://www.youtube.com/watch?v=hYvcoRkAkOU
http://www.youtube.com/watch?v=fVUL-vzrIcM


Week 1

2

Announcements

• Sectioning Wednesday through Friday. Supersections3 start Week 2, one more comfy

one less comfortable. More details to come.

• Sections4 start Week 3 (two weeks from now).

• Questions should go to heads@cs50.harvard.edu5

• Problem Set 0 is now out.

• Support available at office hours in four dining halls, with the schedule at http://

cs50.harvard.edu/hours.

How the PC Came to Be

• Two volunteers read a script with accompanying visuals about the history of the PC.

# Paul Allen and Bill Gates started working with large computers called the PDP-10

family. After Allen discovered the MITS Altair 8800, they realized the potential

of minicomputers and started writing a version of BASIC for the MITS. Despite

setbacks and hurdles, the main program worked successfully and Allen and Gates

sold their first commercial software as Microsoft.

• Today, three pages of the original source code hangs on campus in Maxwell Dworkin

with Allen and Gates' signatures.

# They set out to write a program that allows other people to write programs in code

that looks more user-friendly:

10 PRINT "hello, world"

20 END

• Professor Harry Lewis gives a tour of the BASIC interpreter6, showing us the code they

wrote, talking about Allen and Gates, and pointing out a comment from Bill Gates about

code that can be deleted to save memory space.

3  http://cs50.harvard.edu/sections/1
4  http://cs50.harvard.edu/sections
5  mailto:heads@cs50.harvard.edu
6  http://www.youtube.com/watch?v=FeUi67qU7fo

http://cs50.harvard.edu/sections/1
http://cs50.harvard.edu/sections
mailto:heads@cs50.harvard.edu
http://cs50.harvard.edu/hours
http://cs50.harvard.edu/hours
http://www.youtube.com/watch?v=FeUi67qU7fo
http://cs50.harvard.edu/sections/1
http://cs50.harvard.edu/sections
mailto:heads@cs50.harvard.edu
http://www.youtube.com/watch?v=FeUi67qU7fo


Week 1

3

Source Code

• A theme of computer science is layering, or abstraction, building on the works of others

before you.

• Today we’ll start to look at source code that looks like this:

#include <stdio.h>

int main(void)

{

    printf("hello, world\n");

}

• A special program called a compiler converts the above source code to zeroes and

ones, or object code that are understood by a CPU to ultimately print "hello world".

C

• Comparing Scratch and C, there is roughly a one-to-one correlation in the code below:

[ say ]  in Scratch is akin to printf()  in C, and [ when (green flag)

clicked ]  is equivalent to main .

Scratch:                              C:

                                      #include <stdio.h>

[ when (green flag) clicked ]         int main(void)

|                                     {

|   [ say [hello, world] ]                printf("hello, world\n");

L                                     }

• Below, while (true)  is the same as [ forever ]  in Scratch. true  is the

boolean expression that while  checks, and since true  will always be true  the

loop will run forever.

Scratch:                              C:

[ forever ]                           while (true)

|                                     {

|   [ say [hello, world] ]                printf("hello, world\n");



Week 1

4

L                                     }

• Below, for (int i = 0; i < 10; i++)  is equivalent to [ repeat [10] ]

in Scratch.

Scratch:                              C:

[ repeat [10] ]                       for (int i = 0; i < 10; i++)

|                                     {

|   [ say [hello, world] ]                printf("hello, world!\n");

L                                     }

• Variables store something, and in C we can say int counter = 0  instead of [ set

[counter] to 0 ] . int  means we want to store an integer, or number.

Scratch:                              C:

[ set [counter] to 0 ]                int counter = 0;

[ forever ]                           while (true)

|                                     {

|   [ say (counter) ]                     printf("%d\n",  counter); 

|   [ change [counter] by [1] ]           counter++;

L                                     }

• Line 4, beginning with printf  and containing a %d  is simply syntax for printing some

decimal number, which we say is whatever is in counter .

• Boolean expressions translate similarly, with more parentheses and symbols.

Scratch:                              C:

< (x) < (y) >                         (x < y)

< < (x) < (y) > and < (y) < (z) > >   ((x < y) && (y < z))

• The following chunks of code both say the relation between x  and y :

Scratch:                                  C:

[ if < (x) < (y) > ]                      if (x < y)

|                                         {

|   [ say [x is less than y] ]                printf("x is less than y

\n");

|                                         }



Week 1

5

[ else             ]                      else if (x > y)

|   [ if < (x) > (y) > ]                  {

|   |   [ say [x is greater than y] ]         printf("x is greater than y

\n");

|   |                                     }

|   [ else             ]                  else

|   |   [ say [x is equal to y] ]         {

|   L                                         printf("x is equal to y\n");

L                                         }

Writing Code

• Most computers don’t have a compiler preinstalled, though they can be downloaded

like any other software. But instead of supporting hundreds of various computer

configurations, we give you a standard Linux environment called the CS50 Appliance7.

• A hypervisor will run the CS50 Appliance on your computer regardless of whether you

have a Mac or PC, so all of us can have the illusion of running the same operating

system on our computer.

• Within the Appliance, we will use a program called gedit  that is a simple text editor.

Note that the Appliance has a menu with applications, making it a full-fledged computer

within your computer, so to speak.

• Let’s open gedit and save a blank file as hello.c . We’ll type in the code for it, but

that only gives us the source code. To get the object code by compiling it, we run a

program called make  by typing in make hello , that tells make  to look for a file

called hello.c . make  is smart enough to find a compiler in the Appliance and output

the zeroes and ones in a file called hello .

• We can then run our program like so:

jharvard@appliance (~): ./hello

hello, world

jharvard@appliance (~):

• In the first few weeks, we’ll use the terminal, the black-and-white window in the bottom

half of gedit, to focus on the underlying ideas without graphics or windows to distract us.

• If we remove the \n  as follows,

7  http://manual.cs50.net/appliance/2014/

http://manual.cs50.net/appliance/2014/
http://manual.cs50.net/appliance/2014/


Week 1

6

#include <stdio.h>

int main(void)

{

    printf("hello, world");

}

• the terminal will look like:

jharvard@appliance (~): ./hello

hello, worldjharvard@appliance (~):

• because \n  is telling printf  to print a new line after hello, world .

• In the documentation, we encourage you to use Dropbox or an equivalent service to

back up your programs automatically.

• With hello-1.c , we introduce a variable to store a name:

#include <stdio.h>

int main(void)

{

    string s = "David";

    printf("hello, %s\n", s);

}

• %s  is a placeholder for a string , which will be replaced by printf  when it runs.

• In a command-line interface like the terminal, we need to move into the folder to where

our program is saved in order to compile and run it.

# cd  is a command we can run, which stands for change directory . We type

cd Dropbox  to change our folder, and by typing ls , which stands for list, we

can see files in our folder.

jharvard@appliance (~): cd Dropbox

jharvard@appliance (~/Dropbox): ls

hello-1.c  src1m

jharvard@appliance (~/Dropbox):

• But when we tried to make hello-1 , we get many errors. Let’s look at the first:

jharvard@appliance (~/Dropbox): make hello-1



Week 1

7

clang -ggdb3 -O0 -std=c99 -Wall -Werror    hello-1.c  -lcs50 -lm -o

 hello-1

hello-1.c:5:5: error: use of undeclared identifier 'string'; did you mean

 'stdin'?

    string s = "David";

    ^~~~~

    stdin

...

• The compiler tells us the error is in line 5, column 5. This is because string  doesn’t

exist in C. CS50 created it as training wheels for the first few weeks in cs50.h , which

we add as follows in line 1:

#include <cs50.h>

#include <stdio.h>

int main(void)

{

    string s = "David";

    printf("hello, %s\n");

}

• Functions previously written, like printf , are in files called stdio.h  and

stdio.c , that we can include in our programs so we can reuse those functions.

stdio.h  is the header file and stdio.c  is the actual C source code, but if we link

just stdio.h  the compiler will know to include stdio.c .

• Now we get another error, in line 7:

jharvard@appliance (~/Dropbox): make hello-1

clang -ggdb3 -O0 -std=c99 -Wall -Werror    hello-1.c  -lcs50 -lm -o

 hello-1

hello-1.c:7:21: error: more '%' conversions than data arguments [-Werror,

 -Wformat]

    printf("hello, %s\n");

                   ~^

...

• Well, to fix this, we learn that the stuff inside the parentheses are arguments, or what

we pass in to functions. Earlier, with the Scratch example, we specified that %d  referred

to the variable counter . In this case, the string we want to print is s , so we add s

to the arguments in line 7.



Week 1

8

#include <cs50.h>

#include <stdio.h>

int main(void)

{

    string s = "David";

    printf("hello, %s\n", s); 

}

• Now hello-1.c  compiles and runs successfully, but let’s make things more

interesting. The CS50 Library, in cs50.h , contains functions like GetInt  and

GetString , which gets input from the user.

• Let’s now write hello-2.c  that gets a string as the name:

#include <cs50.h>

#include <stdio.h>

int main(void)

{

    string s = GetString();

    printf("hello, %s\n", s);

}

• Note that we have parentheses after GetString , signifying that it is a function. We

also end every statement with a semicolon.

• string s  means, create a new variable to hold a string, and call it s .

• Now we compile and run hello-2 , and the blinking cursor waits for input and prints

the name as we wanted. But we can extend the program further with another puzzle

piece:

#include <cs50.h>

#include <stdio.h>

int main(void)

{

    printf("Your name please: ");

    string s = GetString();

    printf("hello, %s\n", s);

}



Week 1

9

• And remember to run make hello-2  every time the program changes, because

while the source code has been updated we need a compiler to update the object code.

Now we get:

jharvard@appliance (~/Dropbox): ./hello-2

Your name please: Daven

hello, Daven

jharvard@appliance (~/Dropbox):

• Eventually, we’ll use loops and conditions to do even more interesting things.

• We end on thadgavin.c8, code written to look pretty but not be readable by

humans.

8  http://cdn.cs50.net/2014/fall/lectures/1/m/src1m/thadgavin.c

http://cdn.cs50.net/2014/fall/lectures/1/m/src1m/thadgavin.c
http://cdn.cs50.net/2014/fall/lectures/1/m/src1m/thadgavin.c

	Week 1
	Table of Contents
	Introduction
	Announcements
	How the PC Came to Be
	Source Code
	C
	Writing Code

