
Computer Science 50
Fall 2011
Scribe Notes

Week 4 Wednesday: September 28, 2011
Andrew Sellergren

Contents

1 Announcements and Demos (0:00–1:00, 3:00–5:00) 2

2 From Last Time (1:00–3:00) 2

3 Pointers (3:00–13:00) 2

4 Hexadecimal (13:00–19:00) 4

5 String Comparison (19:00–46:00) 5
5.1 compare1.c . 5
5.2 compare2.c . 6

6 More Fun with Pointers (46:00–70:00) 9
6.1 GetString . 9
6.2 copy1.c . 10
6.3 copy2.c . 12
6.4 Binky . 14

1

Computer Science 50
Fall 2011
Scribe Notes

Week 4 Wednesday: September 28, 2011
Andrew Sellergren

1 Announcements and Demos (0:00–1:00, 3:00–5:00)

• If you haven’t already, check out the Google search for recursion and see
if you get the joke.

• Improved wifi is now available here in Sanders. The SSID is cs50 and
the password is 12345678. Wireless has also been bolstered in the house
dining halls to prepare for the onslaught of CS50 Office Hours.

• If David hasn’t responded to your questions about Pass/Fail, don’t give
up! He’s a very busy man,1 so feel free to ping him again if necessary.

• We’ll soon be having some Pointer Fun With Binky thanks to Nick Par-
lante, a CS professor at Stanford.2

2 From Last Time (1:00–3:00)

• We looked at a few different sorting algorithms and their big O runtimes.
Here is a bit of vocabulary that will allow you to refer to big O runtimes:

O(1) “constant”
O(log n) “logarithmic”
O(n) “linear”
O(n log n) “supralinear”
O(n2) “quadratic”
O(nc) “polynomial”
O(n!) “factorial”

Thus far, linear runtimes have been mostly unrealistic whereas quadratic
runtimes have been exceedingly slow. So-called supralinear runtimes are
something of a sweet spot in between.

3 Pointers (3:00–13:00)

• Recall our problems in the past few weeks involving writing a swap func-
tion that actually worked. Let’s reenact this problem using pseudocode:

a = OJ;

b = milk;

a and b represent the cups of orange juice and milk onstage. Our goal is
to swap them so that a contains milk and b contains orange juice.

• If we take the following approach, we’re going to get a nasty OJ+milk
combination:

1Wii Tennis is super important.
2And a consultant at Google!

2

http://www.google.com/search?q=recursion
http://cslibrary.stanford.edu/104/

Computer Science 50
Fall 2011
Scribe Notes

Week 4 Wednesday: September 28, 2011
Andrew Sellergren

a = b;

b = a;

Once we pour the orange juice into the milk, we can’t possibly hope to
separate out just the milk in order to pour it into the other cup.

• We can, however, achieve a proper swap if we make use of a temporary
variable, represented by an extra, empty cup onstage. Now we can pour
the OJ into the extra, empty cup (tmp), then pour the milk into the cup
that originally held the OJ (a), and finally pour the OJ into the cup that
originally held the milk (b):

tmp = a;

a = b;

b = tmp;

• This seems to work as is, but what happens when we factor it out into a
separate function?

void

swap(int a, int b)

{

int tmp = a;

a = b;

b = tmp;

}

When we call this function, we’re actually passing in copies of a and b. So
we our original two cups of OJ and milk remain untouched. Meanwhile,
we have two separate cups of OJ and milk which will be properly swapped.
As soon as swap returns, though, we forget about the cups that have been
swapped and go back to the original two cups that haven’t been touched.
If we want swap to work correctly, we actually need to hand it the original
two cups, not copies of them. How do we do this programmatically?

• In the context of our program, the cups a and b are more or less bolted
to the table. We can’t really pass them to the swap function because they
live in main’s memory. However, we can pass references to a and b so
that swap can actually find them in main’s memory. You can visualize
this as passing two pieces of paper to swap which have the locations, or
the memory addresses, of a and b written on them. Now swap is able to
find a and b and swap their values in their original locations.

• How much does this process cost us? The pieces of paper that we passed
actually represent pointers, or memory addresses, each of which is 32 bits
in size.3

3Assuming a 32-bit architecture. If the architecture is 64-bit, then each pointer is 64 bits
in size.

3

Computer Science 50
Fall 2011
Scribe Notes

Week 4 Wednesday: September 28, 2011
Andrew Sellergren

• In order to pass pointers to our swap function, we need to modify its
definition slightly:

void

swap(int *a, int *b)

{

int tmp = *a;

*a = *b;

*b = tmp;

}

4 Hexadecimal (13:00–19:00)

• We’ve already learned how to count in decimal4 and binary, but we need
to learn a third base system: base-16 or hexadecimal. Since we now know
that the smallest practical unit of memory is a byte, each number in binary
should probably be represented with 8 bits like so:

00000000

00000001

00000010

• Hexadecimal is the base system typically used for expressing memory ad-
dresses. Although generally we won’t care what number a memory address
is, we do care that is a memory address, so it’s important that we learn
to recognize hexadecimal so that we can recognize memory addresses.

• Hexadecimal numbers conventionally begin with 0x. Whereas in binary
there are 2 possible digits and in decimal there are 10 possible digits, in
hexadecimal there are 16 possible digits. Where do the extra 6 digits come
from? Once we get to 9, we begin using the letters A through F:

0x00

0x01

0x02

0x03

0x04

0x05

0x06

0x07

0x08

0x09

0x0A

0x0B

0x0C

4Hopefully before this class.

4

Computer Science 50
Fall 2011
Scribe Notes

Week 4 Wednesday: September 28, 2011
Andrew Sellergren

0x0D

0x0E

0x0F

0x10

• Interestingly, hexadecimal is used to represent not only memory addresses,
but also RGB colors. For example, 0xFF0000 is the color red in HTML.
The first two digits represent the amount of red, the second two digits
represent the amount of green, and the third two digits represent the
amount of blue. Hence, RGB.

5 String Comparison (19:00–46:00)

5.1 compare1.c

• Let’s try to hammer out a program we’ll call compare1.c that compares
two strings passed to us by the user and announces whether they are equal
or not:

#include <cs50.h>

#include <stdio.h>

int

main(void)

{

printf(‘‘Say something: ’’);

string s1 = GetString();

printf(‘‘Say something again: ’’);

string s2 = GetString();

if (s1 == s2)

printf(‘‘You typed the same thing!\n’’);

else

printf(‘‘You typed different things!\n’’);

}

Seems like it should work as intended.5 When we compile and run this
program, typing “hello” at both prompts, the program tells us that we
typed different things. What’s going on? Turns out we can’t compare
strings using the == operator. When we peeked under the hood of the
CS50 Library, we found that string is just a synonym for char *. The
* indicates that this is a pointer type. We’ve just learned that pointers
are memory addresses, so when we ask if s1 is equal to s2, we’re actually

5You know that whenever I say that, I’m about to say, “But it doesn’t! (gasp)” Sad how
predictable I am.

5

Computer Science 50
Fall 2011
Scribe Notes

Week 4 Wednesday: September 28, 2011
Andrew Sellergren

asking if these two memory addresses are the same. Since they are clearly
different string instances, their memory addresses aren’t the same.

• If strings are actually just 32-bit pointers, then how does GetString work?
Based on the length of the text the user provides, GetString allocates
a contiguous chunk of memory large enough to hold this text, plus an
extra byte to store the null terminator. To allocate this chunk of memory,
GetString calls malloc. But if s1 and s2 are only 32 bits each, they can’t
possibly store all of the user’s text (unless somehow it was only 3 or fewer
characters long). So after GetString allocates the memory for the user’s
text, it returns the address of that memory so that we can find it later.
In fact, it returns only the address of the first byte of the memory that it
allocated, which store only the first character of the user-provided text;
the other bytes are contiguous, so we can easily find the other characters
the user typed simply by iterating until we find the null terminator.

• Let’s actually examine s1 and s2 as pointers:

printf(‘‘s1 is %p’’, s1);

printf(‘‘s2 is %p’’, s2);

Now when we compile and run this program, we get the following (among
the usual output):

s1 is 0x8856030

s2 is 0x8856040

As you can see, although these hexadecimal values are very close, they are
not equal.

5.2 compare2.c

• So how do we compare strings, then? Well, we can probably guess that
there’s a built-in function for that. To find out if that’s the case, we can
navigate to the C Reference on the course website and browse around.
Indeed, we see that there is a function named strcmp whose purpose is to
“compare two strings.”

• The description of strcmp indicates that it takes two char * as argu-
ments. Actually, they’re const char *. The const simply means that
this function will not (and cannot) modify the strings we pass to it. As we
scroll down, we see that this function doesn’t return a boolean, but rather
an integer value. This integer value is 0 if the strings are equal, negative
if the first string is less than the second string, and positive if the first
string is greater than the second string. “Less than” and “greater than”
pertain to alphabetical order in this context, not length. This could be
useful in implementing binary search, for example.

6

https://www.cs50.net/resources/cppreference.com/stdstring/index.html

Computer Science 50
Fall 2011
Scribe Notes

Week 4 Wednesday: September 28, 2011
Andrew Sellergren

• Let’s update our program to use strcmp:

#include <cs50.h>

#include <stdio.h>

#include <string.h>

int

main(void)

{

printf(‘‘Say something: ’’);

string s1 = GetString();

printf(‘‘Say something again: ’’);

string s2 = GetString();

if (strcmp(s1, s2) == 0)

printf(‘‘You typed the same thing!\n’’);

else

printf(‘‘You typed different things!\n’’);

}

Notice that we need to include the string.h library (as indicated by the
documentation page) in order for this program to compile. When we do,
we see that typing “hello” at both prompts gives us “You typed the same
thing!”

• Woohoo, it’s working! Now we’re gonna be annoying and say that you’re
not allowed to use strcmp. Rather, you have to figure out how to compare
two strings yourself. Well, actually, this shouldn’t be too hard since we
need only iterate through both strings, comparing them one character at
a time, returning early as soon as two characters are different:

#include <cs50.h>

#include <stdio.h>

#include <string.h>

int

main(void)

{

printf(‘‘Say something: ’’);

string s1 = GetString();

printf(‘‘Say something again: ’’);

string s2 = GetString();

for (int i = 0; i < strlen(s1); i++)

7

Computer Science 50
Fall 2011
Scribe Notes

Week 4 Wednesday: September 28, 2011
Andrew Sellergren

{

if (s1[i] != s2[i])

{

printf(‘‘You typed different things!\n’’);

return 1;

}

}

printf(‘‘You typed the same thing!\n’’);

}

Is this program correct? Not quite. If we type “cat” as our first string
and “caterpillar” as our second string, the program tells us that we typed
the same thing. This is because we iterated only up to the length of the
first string (3), and since the first 3 letters of both strings are the same,
we never found a character that differs between them.

• If our first string is much longer than our second string, we’re going to
iterate off the end of the second string, which is also a concern. To fix
this, we could simply compare the lengths of our two strings and return
early if they’re different:

#include <cs50.h>

#include <stdio.h>

#include <string.h>

int

main(void)

{

printf(‘‘Say something: ’’);

string s1 = GetString();

printf(‘‘Say something again: ’’);

string s2 = GetString();

if (strlen(s1) != strlen(s2))

{

printf(‘‘Obviously not the same!\n’’);

return 1;

}

for (int i = 0; i < strlen(s1); i++)

{

if (s1[i] != s2[i])

{

printf(‘‘You typed different things!\n’’);

8

Computer Science 50
Fall 2011
Scribe Notes

Week 4 Wednesday: September 28, 2011
Andrew Sellergren

return 1;

}

}

printf(‘‘You typed the same thing!\n’’);

}

Clearly, if the two strings differ in their length, then they are not the same.
With this construction, we know that the strings are of equal length by
the time we reach our for loop.

• One optimization we can make is to move the call to strlen into the
initializations of the for loop like so:

for (int i = 0, n = strlen(s1); i < n; i++)

{

if (s1[i] != s2[i])

{

printf(‘‘You typed different things!\n’’);

return 1;

}

}

Previously, strlen was called on each iteration of the loop. Here, it will
only be called once. Actually, technically, we already called it once before
when we compared it to the length of s2, but this isn’t as expensive of a
mistake.

6 More Fun with Pointers (46:00–70:00)

6.1 GetString

• The declaration of GetString in cs50.h, which lives in /usr/include/

on the Appliance, is as follows:

/*

* Reads a line of text from standard input and returns it as a

* string (char *), sans trailing newline character. (Ergo, if

* user inputs only "\n", returns "" not NULL.) Returns NULL

* upon error or no input whatsoever (i.e., just EOF). Leading

* and trailing whitespace is not ignored. Stores string on heap

* (via malloc); memory must be freed by caller to avoid leak.

*/

string GetString(void);

9

Computer Science 50
Fall 2011
Scribe Notes

Week 4 Wednesday: September 28, 2011
Andrew Sellergren

Note that although the user terminates his input by hitting Enter, the
CS50 Library assumes that that newline character should be excluded from
the string. Thus, if the user only hits Enter, then GetString will store the
empty string, which takes exactly 1 byte to store (the null terminator).

• What exactly is NULL? NULL is actually a pointer which stores the memory
address 0x0. Because this memory address is never accessible by a pro-
gram, it exists as a special sentinel value. From now on, when we want to
check if a pointer has a legitimate value, we will check that it is not equal
to NULL.

6.2 copy1.c

• Let’s try writing a program that will copy a string:

#include <cs50.h>

#include <stdio.h>

int

main(void)

{

printf(‘‘Say something: ’’);

char *s1 = GetString();

if (s1 == NULL)

{

printf(‘‘An error occurred.\n’’);

return 1;

}

char *s2 = s1;

printf(‘‘s1 is %s\n’’, s1);

printf(‘‘s2 is %s\n’’, s2);

}

Now that we know that GetString can return NULL when something went
wrong,—for example, if the user gave Ctrl + D as input or if he entered
a string that was so long it couldn’t be stored in RAM—we must check
its return value before continuing on. Although it might seem harmless,
failing to do this check can result in very worrisome bugs and security
vulnerabilities.

• When we compile and run this program, typing “hello” at the prompt, we
get the following output:

s1 is hello

s2 is hello

10

Computer Science 50
Fall 2011
Scribe Notes

Week 4 Wednesday: September 28, 2011
Andrew Sellergren

Seems to work.6 However, what if we add a snippet of code in to capitalize
only one of the copies of the string?

#include <cs50.h>

#include <stdio.h>

#include <ctype.h>

int

main(void)

{

printf(‘‘Say something: ’’);

char *s1 = GetString();

if (s1 == NULL)

{

printf(‘‘An error occurred.\n’’);

return 1;

}

char *s2 = s1;

// capitalize just one of the strings

s2[0] = toupper(s2[0]);

printf(‘‘s1 is %s\n’’, s1);

printf(‘‘s2 is %s\n’’, s2);

}

toupper is a function that converts a lowercase letter to uppercase. Now
when we compile and run this program, typing “hello” at the prompt, we
get the following output:

s1 is Hello

s2 is Hello

Well, the capitalization worked, but unfortunately it worked on both
copies of the string. What’s going on here is that s1 and s2 both point
to the same chunk of memory. If the chunk of memory storing the string
“hello” is at memory address 0x1234, then both s1 and s2 have the value
0x1234. When we capitalize the first character of s2, we’re also capitaliz-
ing the first character of s1, since they are one and the same. Incidentally,
the actual memory address of the string is unimportant, so when we talk
about pointers, we generally don’t visualize them as memory addresses like
0x1234 but rather as arrows that literally point to a chunk of memory.

6You know what comes next. Groan.

11

Computer Science 50
Fall 2011
Scribe Notes

Week 4 Wednesday: September 28, 2011
Andrew Sellergren

• To fix this problem, we’ll need to allocate a separate chunk of memory
that is equal in size to the chunk of memory that stores our string. Then,
we’ll insert into this new chunk of memory each of the characters of the
string we want to copy. To allocate a chunk of memory, we’ll call malloc,
the same function that GetString uses.

6.3 copy2.c

• To get our feet wet using malloc, let’s start by hardcoding a call to it
with the input 6, i.e. enough to store the string “hello”:

#include <cs50.h>

#include <stdio.h>

#include <ctype.h>

int

main(void)

{

printf(‘‘Say something: ’’);

char *s1 = GetString();

if (s1 == NULL)

{

printf(‘‘An error occurred.\n’’);

return 1;

}

char *s2 = malloc(6);

// capitalize just one of the strings

s2[0] = toupper(s2[0]);

printf(‘‘s1 is %s\n’’, s1);

printf(‘‘s2 is %s\n’’, s2);

}

6 bytes is enough to store each of the characters of “hello” as well as the
null terminator. But if we want to be more flexible with the strings that
this program can copy, we need only generalize what 6 represents: it’s
actually just the length of the user’s string plus 1 additional character to
store the null terminator. So we can improve our design as follows:

#include <cs50.h>

#include <stdio.h>

#include <ctype.h>

12

Computer Science 50
Fall 2011
Scribe Notes

Week 4 Wednesday: September 28, 2011
Andrew Sellergren

int

main(void)

{

printf(‘‘Say something: ’’);

char *s1 = GetString();

if (s1 == NULL)

{

printf(‘‘An error occurred.\n’’);

return 1;

}

char *s2 = malloc(strlen(s1) + 1);

// capitalize just one of the strings

s2[0] = toupper(s2[0]);

printf(‘‘s1 is %s\n’’, s1);

printf(‘‘s2 is %s\n’’, s2);

}

The source code on the course website also multiplies this amount strlen(s1)
+ 1 by sizeof(char) which is not strictly necessary, but is technically
more correct. Without this multiplication, our program assumes that the
char type takes exactly one byte, but that might not always be true. With
this multiplication, our program will dynamically ask for the number of
bytes that a char type requires using a call to sizeof.

• We have space to store our copy, now, so let’s fill it up:

#include <cs50.h>

#include <stdio.h>

#include <ctype.h>

#include <string.h>

int

main(void)

{

printf(‘‘Say something: ’’);

char *s1 = GetString();

if (s1 == NULL)

{

printf(‘‘An error occurred.\n’’);

return 1;

}

13

Computer Science 50
Fall 2011
Scribe Notes

Week 4 Wednesday: September 28, 2011
Andrew Sellergren

char *s2 = malloc((strlen(s1) + 1) * sizeof(char));

if (s2 == NULL)

{

printf(‘‘An error occurred (e.g., out of memory).\n’’);

return 1;

}

for (int i = 0, n = strlen(s1) + 1; i < n; i++)

{

s2[i] = s1[i];

}

// capitalize just one of the strings

s2[0] = toupper(s2[0]);

printf(‘‘s1 is %s\n’’, s1);

printf(‘‘s2 is %s\n’’, s2);

}

Note that we iterate up through one greater than the length of s1 so that
we copy the null terminator into s2. Also, we check that malloc didn’t
return NULL when we asked for memory for s2. FInally, we’ve included
string.h since we’re again using strlen.

• When we compile and run this program, typing “hello” at the prompt, we
get the following output:

s1 is hello

s2 is Hello

It finally worked!

6.4 Binky

• Thus far, we’ve only looked at pointers to chunks of memory that store
characters. But there are, of course, pointers to other data types. Let’s
look at the following toy program which demonstrates how to store an
integer value:

int

main(void)

{

int *x;

int *y;

x = malloc(sizeof(int));

*x = 42;

}

14

Computer Science 50
Fall 2011
Scribe Notes

Week 4 Wednesday: September 28, 2011
Andrew Sellergren

The * notation, in addition to being used in the declaration of pointers, is
used in the dereferencing of pointers. That is, when you want to ask for
what a pointer is pointing to, you put a * in front of it. So *x = 42 says
to store the value of 42 in the memory that x is pointing to.

• Let’s use this notation to initialize y as well:

int

main(void)

{

int *x;

int *y;

x = malloc(sizeof(int));

*x = 42;

*y = 13;

y = x;

*y = 13;

}

Anything wrong here?7 Oops, we haven’t asked for any memory for y, so
we have no idea where it’s pointing. When we ask to assign the number
13 to the memory it’s pointing to, we’re asking for trouble, probably in
the form of a segmentation fault.

• Once we assign to y the value of x, both are pointing to the chunk of
memory that we allocated for x. Thus when we dereference y and store
the value 13, we’re overwriting the value 42 that we originally stored there.

• This toy program is the subject of the long-anticipated Pointer Fun With
Binky!

7The answer to that question is always yes.

15

http://www.cs.stanford.edu/cslibrary/PointerFunCBig.avi
http://www.cs.stanford.edu/cslibrary/PointerFunCBig.avi

	Announcements and Demos (0:00–1:00, 3:00–5:00)
	From Last Time (1:00–3:00)
	Pointers (3:00–13:00)
	Hexadecimal (13:00–19:00)
	String Comparison (19:00–46:00)
	compare1.c
	compare2.c

	More Fun with Pointers (46:00–70:00)
	GetString
	copy1.c
	copy2.c
	Binky

