Airway pathological heterogeneity in asthma: Visualization of disease microclusters using topological data analysis

Salman Siddiqui, MRCP, PhD,a Aarti Shikotra, BSc, PhD,a Matthew Richardson, BSc, PhD,a Emma Doran, PhD,b David Choy, BSc,b Alex Bell, MMath,a,c Cary D. Austin, MD, PhD,b Jeffrey Eastham-Anderson, MS,b Beverley Hargadon, RGN,a Joseph R. Arron, MD, PhD,b Andrew Wardlaw, FRCP, PhD,a Christopher E. Brightling, FRCP, PhD,a Liam G. Heaney, FRCP, MD,c and Peter Bradding, FRCP, DMb
Leicester and Belfast, United Kingdom, and South San Francisco, Calif

BACKGROUND

Asthma is a complex chronic disease underpinned by pathological changes within the airway wall. How variations in structural airway pathology and cellular inflammation contribute to the expression and severity of asthma are poorly understood.

OBJECTIVES: Therefore we evaluated pathological heterogeneity using topological data analysis with the aim of visualizing disease clusters and microclusters.

METHODS: A discovery population of 202 adult patients (142 asthmatic patients and 60 healthy subjects) and an external replication population (59 patients with severe asthma) were evaluated. Pathology and gene expression were examined in bronchial biopsy samples. TDA was applied by using pathological variables alone to create pathology-driven visual networks.

RESULTS: A discovery population of 202 adult patients (142 asthmatic patients and 60 healthy subjects) and an external replication population (59 patients with severe asthma) were evaluated. Pathology and gene expression were examined in bronchial biopsy samples. TDA was applied by using pathological variables alone to create pathology-driven visual networks.

BACKGROUND: Asthma is a complex chronic disease underpinned by pathological changes within the airway wall. How variations in structural airway pathology and cellular inflammation contribute to the expression and severity of asthma are poorly understood.

OBJECTIVES: Therefore we evaluated pathological heterogeneity using topological data analysis with the aim of visualizing disease clusters and microclusters.

METHODS: A discovery population of 202 adult patients (142 asthmatic patients and 60 healthy subjects) and an external replication population (59 patients with severe asthma) were evaluated. Pathology and gene expression were examined in bronchial biopsy samples. TDA was applied by using pathological variables alone to create pathology-driven visual networks.

RESULTS: A discovery population of 202 adult patients (142 asthmatic patients and 60 healthy subjects) and an external replication population (59 patients with severe asthma) were evaluated. Pathology and gene expression were examined in bronchial biopsy samples. TDA was applied by using pathological variables alone to create pathology-driven visual networks.

From the Department of Infection Immunity and Inflammation, Institute for Lung Health, University of Leicester, Glenfield Hospital, Leicester; Genentech, South San Francisco; the Centre for Infection and Immunity, Health Sciences Building, Queens University Belfast; and the Department of Mathematics, University of Leicester.

Supported by the National Institute for Health Research (NIHR) Leicester Respiratory Biomedical Research Unit and project grants (to S.S., P.B., J.R.A., and L.G.H.) from Asthma UK (AUK-PG-2013-208 [project title: Endotyping asthma for the benefit of patients]) and from the Jules Thorne Trust Clinical Senior Lecturer Award (“Systems medicine: novel mathematical approaches to personalised care in asthma patients”; to S.S.). The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR, or the Department of Health. Additional funding was received from Genentech (to P.B.) to support this study. Biopsy samples and additional funding from the GlaxoSmithKline-sponsored studies RES100767 (clinicaltrials.gov: NCT00331058) and RES100769 (clinicaltrials.gov: NCT00327197) were provided by GlaxoSmithKline (to A.J.W.) to support this study. In addition, biopsy samples were provided by C.E.B. to support this study from funded by an MRC inter- mediate grant and a Wellcome Trust senior fellowhip award.

Disclosure of potential conflict of interest: S. Siddiqui discloses grants from the Jules Thorne Trust Grant for Clinical Senior Lecturers, an Asthma UK Project Grant, a grant from the NIHR Biomedical Research Centre and consultancy with AstraZeneca, GlaxoSmithKline, Owlstone, Mundipharma, and Boehringer Ingelheim. D. Choy is employed by Genentech, a member of the Roche Group; holds patents (planned, pending or issued) with Genentech, a member of the Roche Group; and has stock/stock options with Roche. C. D. Austin is employed by, has stock/stock options with, and has received travel/accommodation/meeting expenses unrelated to activities listed from Genentech. J. R. Arron is employed by Genentech and has stock/stock options with Roche Holdings. A. Wardlaw has received a grant from GlaxoSmithKline; holds board membership with TEVA; has been a consultant for GlaxoSmithKline, Pulmocide, Boehringer, and KNOPP; and has received grants from/has grants pending with Pfizer. C. E. Brightling has received grants from the Wellcome Trust, Asthma UK, and the MRC; has consultant arrangements with GlaxoSmithKline, AstraZeneca/MedImmune, Chiesi, Novartis, Roche/Genentech, Theravance, Sanofi/Regeneron, Vectura, and Prep, and has grants from/grants pending with Roche/Genentech. Novartis, GlaxoSmithKline, AstraZeneca/MedImmune, Mologic, and Pfizer. L. G. Heaney has received grants from Northern Ireland Chest, Heart & Stroke Association and Genentech; has consultant arrangements with Hoffman la Roche, AstraZeneca, Novartis, GlaxoSmithKline, and TEVA; has received grants from/has grants pending with Novartis UK, Roche/Genentech, MedImmune, and GlaxoSmithKline; has received payment for lectures, including service on speakers’ bureaus, from Hoffman la Roche, Novartis, and TEVA; and has received travel/accommodation/meeting expenses unrelated to activities listed from AstraZeneca, Boehringer Ingelheim, GlaxoSmithKline, TEVA, Chiesi, and Napp. P. Bradding has received a grant from Genentech and has Consultant arrangements with Roche. The rest of the authors declare that they have no relevant conflicts of interest.

Received for publication April 28, 2017; revised November 16, 2017; accepted for publication December 4, 2017.

Corresponding author: Salman Siddiqui, MRCP, PhD, Institute for Lung Health, Respiratory Biomedical Research Unit, University Hospitals of Leicester, Leicester LE3 0QP, United Kingdom. E-mail: ss338@le.ac.uk. 0091-6740/36.00
Crown Copyright © 2018 Published by Elsevier Inc. on behalf of the American Academy of Allergy, Asthma & Immunology. All rights reserved
Results: In the discovery cohort TDA identified 4 groups/networks with multiple microclusters/regions of interest that were masked by group-level statistics. Specifically, TDA group 1 consisted of a high proportion of healthy subjects, with a microcluster representing a topological continuum connecting healthy subjects to patients with mild-to-moderate asthma. Three additional TDA groups with moderate-to-severe asthma (Airway Smooth MuscleHigh, Reticular Basement MembraneHigh and RemodelingLow groups) were identified and contained numerous microclusters with varying pathological and clinical features. Mutually exclusive T4,2 and T8,17 tissue gene expression signatures were identified in all pathological groups. Discovery and external replication applied to the severe asthma subgroup identified only highly similar “pathological data shapes” through analyses of persistent homology.

Conclusions: We have identified and replicated novel pathological phenotypes of asthma using TDA. Our methodology is applicable to other complex chronic diseases. (J Allergy Clin Immunol 2018;nnn:nnn-nnn.)

Key words: Severe asthma, remodeling, airway inflammation, topological data analysis, phenotyping

Asthma is a complex chronic disease that causes considerable morbidity and is often suboptimally controlled with current therapies. It is characterized by the presence of airway inflammation, which can be associated with the presence or absence of type 2 inflammatory cytokines. In addition to inflammation, airway remodeling is a common feature of asthma and encompasses a variety of structural changes, including reticular basement membrane thickening, increased airway smooth muscle (ASM) mass, increased glandular mass, goblet cell hyperplasia, and vascular remodeling.

The use of endobronchial biopsies to investigate the pathology of asthmatic airways has greatly improved our understanding of asthma pathophysiology. However, studies to date describing airway pathology in asthmatic patients have been limited by (1) relatively small sample sizes, (2) variability in the pathological features described, and (3) variability in the techniques used. In particular, there has been no comprehensive evaluation of airway pathology in asthma using a single set of analytical features with a view to identifying pathological subtypes of asthma. Such a study is important because emerging asthma therapies can target specific features of remodeling, cellular inflammation, or both and their associated molecular pathways.

We hypothesized that (1) patients with asthma comprise distinct pathological phenotypes and (2) the phenotypes observed in asthma could be replicated by using mathematical techniques suitable for replication of high-dimensional topologies. We used unbiased statistical approaches combining data topology and visualization using topological data analysis (TDA) to generate pathological phenotypes of patients with asthma across the spectrum of treatment intensity and healthy age-matched subjects. An independent severe asthma external replication cohort was used to evaluate topology replication. Specifically, we selected TDA as an analytic tool because of the ability to interrogate complex data in high-dimensional (>3 dimensions) space and create visualizations (networks) of the data. Unlike classical approaches, such as some forms of cluster analysis, TDA does not require any a priori specification of the number of clusters and has the added advantage of enhanced visualization of putative phenotypes and microscopic clusters identified as connected nodes of individual patients sharing similar pathological attributes. Additionally, with classical clustering methods, data points that can be naturally connected can be broken apart, but TDA preserves natural connections and reflects the “gradual” separation of points in a real data set. If well-separated groups exist within a data set, then TDA will identify these groups but not at the expense of introducing artificial separation between data points.

METHODS

Patient populations

We evaluated 2 independent populations (see Fig E1 in this article’s Online Repository at www.jacionline.org): (1) a discovery population (discovery cohort) of asthmatic patients across the spectrum of asthma treatment intensity and age-matched healthy volunteers and (2) an independent replication population (replication cohort) of patients with severe asthma at Global Initiative for Asthma (GINA) treatment steps 4 and 5. The replication cohort was evaluated and compared with the GINA step 4 and 5 population in the discovery cohort.

Discovery cohort. Two hundred two patients (142 asthmatic patients and 60 healthy volunteers) were recruited prospectively at Glenfield Hospital, Leicester, United Kingdom, and Queen’s University, Belfast, United Kingdom. Some pathological features presented here have been reported previously from subcohorts of patients.

Replication cohort. Bronchial biopsy specimens were evaluated in 59 patients from the multicenter Bronchoscopic Exploratory Research Study of Biomarkers in Corticosteroid-refractory Asthma (BOBCAT) study, a 3-visit observational study of patients with uncontrolled severe asthma taking high-dose inhaled or oral corticosteroids (GINA treatment steps 4-5).

Asthmatic/healthy volunteers: definition

All patients with asthma were current nonsmokers, with a 10 pack year or less smoking history, and met the following diagnostic criteria: an expert physician’s diagnosis of asthma with objective evidence (defined as ≥1 of the following: peak flow variation ≥20% over a 2-week period, bronchodilator reversibility ≥12% and 200 mL, or airway hyperresponsiveness [methacholine PC20 ≤8 mg/ mL]). Asthma treatment intensity was used as a marker of disease severity and defined according to GINA treatment steps 4 and 5. All patients were current nonsmokers, with a 10 pack year or less smoking history, and met the following diagnostic criteria: an expert physician’s diagnosis of asthma with objective evidence (defined as ≥1 of the following: peak flow variation ≥20% over a 2-week period, bronchodilator reversibility ≥12% and 200 mL, or airway hyperresponsiveness [methacholine PC20 ≤8 mg/mL]). Asthma treatment intensity was used as a marker of disease severity and defined according to GINA treatment steps 4 and 5.

Healthy volunteers in the discovery cohort (n = 30 [mild], GINA 2-3, n = 31 [moderate], and GINA 4-5 [severe], n = 81). Healthy volunteers in the discovery cohort (n = 60) were identified from local advertising and had no prior history of respiratory disease.

Ethical approvals

All studies were approved by locally relevant ethics committees and institutional review boards. A detailed statement on ethical approvals is provided in the Methods section in this article’s Online Repository at www.jacionline.org.

Patient characterization

Discovery cohort. Patients underwent extensive evaluation at baseline, including a full medical history and lung function testing with bronchial challenge using methacholine where appropriate and sputum inflammometry. Tables of data completeness for clinical metadata are reported in Table E1 in this article’s Online Repository at www.jacionline.org.
Replication cohort. Characterization of patients in the BOBCAT cohort has been described previously, and results have been compared with those in the discovery severe asthma cohort (GINA treatment steps 4-5).21 Further details of patient characterization and bronchoscopy in both cohorts are provided in the Methods section in this article’s Online Repository.

Immunohistochemistry
Discovery cohort. Two-micrometer glycol methacrylate (GMA) sections were cut and immunostained, as described previously.22 The following mouse primary antibodies were used: anti–neutrophil elastase clone NP57 (0.1 μg/mL; Dako, Ely, United Kingdom), anti–mast cell tryptase clone AA1 (0.1 μg/mL; Dako), anti–eosinophil major basic protein clone BMK-13 (0.4 μg/mL; Monosan, Uden, The Netherlands), anti–EN4 (5 μg/mL; Monosan), anti–α-smooth muscle actin (1A4, 0.7 μg/mL; Dako), and appropriate isotype controls (Dako).

Replication cohort. Tissues were fixed with 10% formalin and embedded in paraffin wax before cutting. Tissue sections (5 μm) were immunostained for a specific eosinophil marker (eosinophil major basic protein) by using the alkaline phosphatase technique. Immunoreactivity was immunostained for a specific eosinophil marker (eosinophil major basic protein) by using the alkaline phosphatase technique. Immunoreactivity was

Assessment of pathology using immunohistochemical staining
Discovery cohort. The following 9 previously validated pathological features were evaluated in the discovery cohort (see Fig E2 in this article’s Online Repository at www.jacionline.org). For features 1 to 3, percentages of epithelial, smooth muscle, and glandular areas in sections were identified and measured by using a computer analysis system (Cell F; Olympus, Hamburg, Germany). The mean of 2 sections at least 10 μm apart was taken for each analysis. For features 4 to 7, numbers of positively stained nucleated eosinophils, neutrophils, and mast cells in the lamina propria and mast cells within the ASM bundle areas were counted and expressed per square millimeter. The ASM areas of less than 0.1 mm² were considered insufficient to quantify mast cell numbers. For feature 8, reticular basement membrane thickness was measured by using the technique reported by Sullivan et al. In addition, for feature 9, the mean Chalkley count, a validated unbiased measure of vascular size and density, was evaluated in a subset of patients (n = 87 asthmatic and 32 healthy volunteers), as previously reported by us.

Biopsy gene expression cohort
Discovery and replication cohorts. For a subset of biopsy specimens (see Fig E1), gene expression data were available from bronchial biopsy homogenates. RNA was isolated from homogenized bronchial biopsy specimens, as described previously.20 RNA was amplified (Ambion, Life Technologies, Grand Island, NY) for Agilent (Santa Clara, Calif) 2-color Whole Human Genome 4x44k gene expression microarray analysis. The gene expression profile of TNFα or TGFβ1 asthma was defined, as previously reported.20,25,26 Additional analyses of genome-wide expression were performed in the severe asthma fraction (GINA treatment steps 4-5) of both cohorts and are outlined in the Methods section in this article’s Online Repository.

Statistical analysis
Basic summary statistical analysis was performed with R 3.3.1 software (R Development Core Team) and SAS software (version 9.4; SAS Institute, Cary, NC). Parametric and nonparametric data are presented as means (SEMs) and medians (interquartile ranges [IQRs]), respectively, unless otherwise stated. For comparison of multiple groups characterized by parametric and nonparametric variables, 1-way ANOVA or the Kruskal-Wallis test was used, and χ²/Fisher exact tests were used for proportions.

RESULTS
Discovery cohort: Airway pathology and asthma severity
Clinical characteristics of the study population stratified by GINA treatment intensity are presented in Tables E4, A and B, and pathological biopsy measurements stratified by GINA treatment duration was 2.73 years (Q1-Q3, 0.77-5.34 years). This population was used to evaluate the effect of remodeling phenotype on lung function decrease over time, although this substudy was not powered to detect interaction of TDA clusters and time.
Biopsy gene expression analysis and asthma treatment intensity

A total of 11 differentially expressed genes demonstrating increased (FKBP5, KRT24, SLC25A16, and PHACTR3) or reduced (PHACTR1, RPL23AP32, YME1L1, ROBO3, TMC6, and IGLJ3) expression between patients with severe asthma and healthy control subjects (after accounting for false discovery) were replicated in the BOBCAT severe asthma cohort (see Fig E6 and Table E7 in this article’s Online Repository at www.jacionline.org). Based on these observations, Tη2 and Tη17 gene expression scores10 and a selection of the 11 replicated genes (see Fig E6: FKBP5,32-34 PHACTR3,35-37 and KRT2438) were used to subsequently annotate TDA networks and colocalize gene expression with various remodeling and clinical features.

Disc discovery cohort: Identification of pathological subtypes/phenotypes of asthma by using TDA

Fig E3 demonstrates a conceptual and mathematical overview outlining the process used by TDA to generate pathological networks. Fig 1 demonstrates TDA networks of airway pathology generated in a 4-dimensional data space. The networks have been annotated by using GINA treatment intensity scores, with GINA step 0 assigned to healthy volunteers. The images represent 2-dimensional networks of airway pathology in asthmatic patients and healthy volunteers. Each network is a series of nodes (round circle) that represent small clusters of patients who share similar pathology and are connected by lines to other nodes in a network.

A total of 190 of 202 patients were identified within 4 discrete TDA groups (Fig 1 and Table I). However, 10 of 202 did not demonstrate any clear grouping by using TDA (Fig 1).

Healthy volunteers (Fig 1, white arrows and white boundary nodes) appeared to be primarily located in the group 1 network and within nodes that did not form any particular TDA grouping. In contrast, topological groups 2 to 4 were primarily composed of patients with moderate-to-severe asthma, although healthy volunteers were present within these groups (white arrows, Table I). Higher-resolution images of the TDA groups are reported in Figs 2-5 with summaries for both clinical and immunopathologic data in the groups presented in Tables I and II and of discovery TDA groups in Fig 6.
3 (Q1-Q3, 1-4), with 19 of 41 asthmatic patients demonstrating mild (GINA treatment step 1-2) disease. This population comprised the loop population and comprised a continuum with the healthy volunteers in group 1. The loop population did not experience any asthma exacerbations in the previous calendar year. Gene expression overlay identified low tissue expression of the DNA methylation gene *PHACTR3*\(^{38-39}\) in the loop population. In contrast, GINA step 4 to 5 asthmatic patients within group 1 either occupied the apex of the loop population or were a distinct population toward the right-hand side of the group 1 network.

Interestingly, a small microcluster within group 1 (MC1) was enriched markedly for patients with high submucosal glands. This patient population were T4f17 high and T4f2 low at the biopsy gene expression level and demonstrated a low postbronchodilator FEV₁ percentage and FEV₁/FVC forced vital capacity ratio.

**Group 2: Reticular Basement Membrane High** group. Group 2 was characterized primarily by patients with moderate-to-severe asthma (n = 52/60), with 23% of patients receiving maintenance oral steroids. Pathologically, subjects in group 2 had reticular basement membrane thickening, with the topology demonstrating 2 nested subgroups with high and low epithelial percentage areas within the upper and lower poles of the network, respectively (Fig 3). Two microclusters (Fig 3) within the topological data space of group 2 were identified. Microcluster 2 consisted of patients with primarily adult-onset severe asthma who had high tissue T4f17 gene expression, epithelial percentage area, cytokeratin 24 (KRT24) expression,\(^{38}\) and tissue neutrophil counts. In contrast, microcluster 3 consisted of patients with early-onset moderate-to-severe asthma who demonstrated high sputum and tissue eosinophil counts with evidence of intermediate T4f2-high and low T4f17 gene expression.

**Group 3: Airway Smooth Muscle High** group. Group 3 was primarily characterized by patients with moderate-to-severe asthma, with 25% of patients receiving maintenance oral corticosteroids. The most striking feature of group 3 was high airway hyperresponsiveness when compared with group 1 (median methacholine PC₂₀, 1.4 mg/mL [IQR, 3.4 mg/mL] vs 15.7 mg/mL [IQR, 3.14 mg/mL]; *P* = .0043; Table I). Group 3 subjects also demonstrated the highest levels of mast cells in the lamina propria (and smooth muscle) and had concurrent tissue eosinophilia and
basement membrane remodeling with associated poor lung function and high exacerbations (Fig 4). Data from the severe asthma discovery and replication cohorts indicated that this population had a variable TH2 and TH17 tissue inflammatory phenotype (see Fig E9 in this article’s Online Repository at www.jacionline.org).

**Group 4: RemodelingLow group.** Group 4 was primarily characterized by patients with moderate-to-severe asthma (GINA step 4-5: 10/19), although 6 of 19 patients were healthy volunteers without a diagnosis of asthma. Asthmatic patients within this group had the highest numeric exacerbation frequency (median, 2 [IQR, 1.0] exacerbations/y; \( P < .06 \), comparison across asthmatic patients within TDA groups), despite having well-controlled eosinophilic inflammation in blood, sputum, and tissue (Tables I and II). Overall, group 4 had few features of airway remodeling.

However, a microcluster of patients was identified within this network, demonstrating a high epithelial percentage area, a non-TH2 and variable high/low TH17 tissue gene expression score, high tissue DNA hypermethylation marker **PHACTR3** gene expression, and a high frequency of exacerbations. This group appeared to be enriched markedly for sputum neutrophilia (Fig 5).

Our observations of microclusters in all 4 discovery pathology phenotypes were masked group level statistics (Tables I and II) and are summarized in Fig 6.

**Reciprocal tissue gene expression patterns**

Overall, TH2 and TH17 gene expression in biopsy tissue was mutually exclusive across all TDA groups. In addition, the corticosteroid sensitivity gene **FKBP5** demonstrated reciprocal tissue expression when compared with **PHACTR3** across networks (Figs 2-5 and see Fig E6).35-37

**Discovery: Prebronchodilator FEV1 change analysis**

Median decrease slopes in milliliters per year were centered at zero, with wide Q1-Q3 ranges across the TDA groups; see Table E3, B, and Fig E7 in this article’s Online Repository at www.jacionline.org.
Replication of airway pathology phenotypes: Comparison of patients with severe asthma in the discovery and replication cohorts

Patients in the discovery and replication cohorts with severe asthma were matched for age and sex but differed with respect to the proportion receiving oral steroids (GINA step 5), bronchodilator responsiveness, and baseline spirometry (see Table E8, A-C, in this article’s Online Repository at www.jacionline.org). The results of computing persistent homology for the discovery and replication data sets are shown in barcode plots in Fig E8 in this article’s Online Repository at www.jacionline.org. Both the discovery and replication populations demonstrated highly similar level 0 and level 1 homologies indicative of homology replication after accounting for 30% tissue shrinkage because of paraffin embedding. In contrast, simple visual inspection of networks (see Fig E9) using TDA did not identify topological similarities.

DISCUSSION

We have used novel methods to explore and visualize airway pathological heterogeneity in asthma and health. Specifically, high-dimensional pathological objects and networks were generated by using TDA and identified 3 pathological phenotypes corresponding to visualized disease networks: (1) Mild-to-Moderate Asthma/Healthy Continuum, (2) Reticular Basement Membrane High, (3) Airway Smooth Muscle High, and (4) Remodeling Low.

We selected TDA as an analytical tool because of the ability to interrogate complex data in high-dimensional space based on the field of topology/shape analysis of data, machine learning, and data visualization. Unlike classical approaches, such as cluster analysis, this tool does not require any a priori specification of the number of clusters and has the added advantage of enhanced visualization of putative phenotypes. TDA group 1 (Mild-to-Moderate Asthma/Healthy Continuum) comprised both patients without asthma and those with mild asthma, forming a distinct topological loop in the data space with a smooth transition of airway hyperresponsiveness from the nonresponsive range to low-grade hyperresponsiveness, few features of airway remodeling, and no exacerbations in the previous calendar year, which is indicative of a low risk phenotype. Nested within this pathological group, we identified a small microcluster of patients with TH17-high asthma with a high
percentage of submucosal glands and the lowest postbronchodilator lung function within the group 1 TDA network.

Similarly, in the moderate-to-severe asthma–predominant TDA groups (groups 2-4), we observed heterogeneity of phenotypes within networks, and the emergence of potentially biologically relevant microclusters of disease was evident.

Exemplars of observed microphenotypes generated by our analyses included 2 microclusters within TDA group 2 (Reticular Basement Membrane High). The overall demonstration of increased reticular basement membrane thickness and variable epithelial area in group 2 might suggest that research evaluating extracellular matrix pathways, epithelial wound repair (eg, EGFR receptor activation/signaling), and epithelial metaplasia might shed a deeper insight into disease mechanisms in this group specially. The microcluster within group 2 was enriched for patients with late-onset disease and demonstrated marked airway hyperresponsiveness and tissue expression of a TH17 tissue gene expression signature that was mutually exclusive with the TH2 signature, as previously reported, and lamina propria neutrophilia.

Patients within this microcluster were taking high levels of both inhaled and, in many cases, oral corticosteroids, which have been proposed as a possible reason for the emergence of a TH17 gene signature and neutrophilic disease. However, against this hypothesis was the observed low level of tissue PHACTR3 gene expression, which we observed consistently as being upregulated in patients taking high levels of corticosteroids. It is possible that this gene, which is associated with epigenetic modification (through DNA methylation) in patients with lung cancer, might be unresponsive to corticosteroids in this population, rendering patients corticosteroid resistant or indeed that the gene and its product cross-talk with TH17 inflammatory pathways, an assertion that would require in vitro evaluation. Nonetheless, we speculate that therapeutic strategies targeting IL-17 might be most fruitful in this microcluster. In contrast, the demonstration of an additional microcluster within the group 2 TDA network with severe early-onset atopic disease an persistent tissue and sputum eosinophilia despite high levels of corticosteroid exposure (GINA step 4-5, high tissue PHACTR3 expression) might suggest a population that would benefit most from therapeutic approaches targeting the TH2 axis.

Within TDA group 3 (Airway Smooth Muscle High), we identified a microcluster with a high percentage ASM mass and increased numbers of tryptase-positive mast cells within both the ASM and lamina propria. This group had marked airway hyperresponsiveness and was enriched for patients with severe asthma within this subgroup (see Fig E9, A and B).
exacerbations and lower lung function. Therefore it is possible that this group might be more amenable to existing therapeutic strategies targeting the ASM in asthmatic patients and potentially novel therapies aimed at targeting tissue mast cells. In support of this hypothesis, a recent report has identified significant attenuations in ASM mass in patients with a high baseline ASM mass undergoing thermoplasty. Finally, group 4 (RemodelingLow) appeared to have frequent exacerbations in the absence of eosinophilic inflammation in tissue, sputum, and blood and group-level features of remodeling. However, we identified a microcluster enriched for increased epithelial area and sputum neutrophilia that appeared to be TH2 low, with variable TH17 gene expression in tissue. These observations highlight the fact that our understanding of the inflammatory mechanisms that drive airway pathology beyond the TH2 and TH17 axes in asthmatic patients remain poorly understood.

A common criticism of phenotyping studies is the lack of replication of clusters identified within external populations. We attempted to evaluate this concept using an independent replication cohort of patients from the BOBCAT severe asthma study, comparing them with patients matched for asthma severity and treatment in the discovery cohort. It is well recognized that paraffin embedding promotes tissue shrinkage by approximately 30% in length and 50% in area when compared with GMA. Therefore we normalized paraffin-embedded biopsy data from BOBCAT by using correction factors that assumed isotropic tissue shrinkage to allow for direct comparisons with GMA in the discovery severe asthma cohort. Our results are one of the first of their kind that demonstrate excellent replication of data topology in independent severe asthma cohorts and highlight the importance of using appropriate mathematical methods for topology replication.

Our study has a number of limitations. First, all of our observations with respect to pathology are cross-sectional. Second, we did not capture the full complement of remodeling features in biopsy tissue (e.g., goblet cell hyperplasia). Third, substudies evaluating FEV1 decrease and TH2/TH17 gene expression in tissue warrant further evaluation in studies with larger cohort sizes to study cluster-specific decrease and specific protein expression.
rather than gene expression markers of inflammatory disease, such as IL-17 and IL-22, in patients with Th17 asthma.

Finally, treatment effects might have contributed to TDA group assignment, but in mitigation against this, TDA networks were not generated by using GINA scores as an input function, and TDA groups showed clear differences in GINA treatment steps both within and between networks. Additionally, because of potential oversampling of patients with GINA steps 3 to 5 asthma.

**TABLE II.** Pathological features of the discovery population stratified by TDA grouping

<table>
<thead>
<tr>
<th></th>
<th>Mild-to-Moderate Asthma/HealthyContinuum group 1 (n = 77)</th>
<th>Reticular Basement MembraneHigh group 2 (n = 60)</th>
<th>Airway Smooth MuscleHigh group 3 (n = 36)</th>
<th>RemodelingLow group 4 (n = 19)</th>
<th>P value*</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Total biopsy area (mm²)</strong></td>
<td>1.62 (1.07)</td>
<td>2.12 (1.46)§</td>
<td>1.49 (1.27)</td>
<td>1.36 (1.26)</td>
<td>.0256</td>
</tr>
<tr>
<td><strong>Remodeling parameters</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reticular basement membrane thickness (µm)</td>
<td>6.65 (4.14)‡§</td>
<td>12.83 (3.48)§</td>
<td>9.65 (3.83)</td>
<td>6.99 (1.64)‡§</td>
<td>&lt;.0001</td>
</tr>
<tr>
<td>Epithelial area (%)</td>
<td>7.35 (5.98)§</td>
<td>10.47 (10.31)§</td>
<td>5.83 (4.83)</td>
<td>14.87 (15.78)§</td>
<td>&lt;.0001</td>
</tr>
<tr>
<td>ASM area (mm²)</td>
<td>0.24 (0.24)§†</td>
<td>0.16 (0.30)§</td>
<td>0.51 (0.43)</td>
<td>0.06 (0.08)§</td>
<td>&lt;.0001</td>
</tr>
<tr>
<td>ASM area (%)</td>
<td>13.96 (16.79)§</td>
<td>9.77 (13.52)§</td>
<td>28.04 (17.77)</td>
<td>4.60 (6.73)§</td>
<td>&lt;.0001</td>
</tr>
<tr>
<td>Glands (%)</td>
<td>0.00 (0.39)</td>
<td>0.00 (0.00)</td>
<td>0.00 (0.31)</td>
<td>0.00 (0.00)</td>
<td>.0740</td>
</tr>
<tr>
<td>Chalkley count</td>
<td>3.78 (2.00)</td>
<td>4.80 (2.30)</td>
<td>4.00 (2.50)</td>
<td>4.15 (0.70)</td>
<td>.0728</td>
</tr>
<tr>
<td>Tryptase-positive mast cells in ASM (cells/mm²)</td>
<td>2.59 (6.12)</td>
<td>4.05 (7.26)</td>
<td>6.20 (8.19)</td>
<td>0.00 (6.25)</td>
<td>.0475</td>
</tr>
<tr>
<td>Lamina propria cells/mm²</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tryptase-positive mast cells</td>
<td>15.84 (15.96)</td>
<td>12.20 (17.66)</td>
<td>18.99 (28.00)</td>
<td>12.21 (14.93)</td>
<td>.1482</td>
</tr>
<tr>
<td>Major basic protein–positive eosinophils</td>
<td>6.81 (18.52)</td>
<td>9.75 (10.64)</td>
<td>9.87 (17.78)</td>
<td>7.04 (15.58)</td>
<td>.6008</td>
</tr>
<tr>
<td>Neutrophil elastase–positive neutrophils</td>
<td>9.55 (11.71)</td>
<td>9.04 (13.21)</td>
<td>14.21 (17.12)</td>
<td>8.05 (18.01)</td>
<td>.1977</td>
</tr>
<tr>
<td><strong>Tissue gene expression</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TH2 gene expression score</td>
<td>−0.33 (1.03)</td>
<td>−0.29 (1.96)</td>
<td>−1.20 (0.46)</td>
<td>−1.17 (1.03)</td>
<td>.0635</td>
</tr>
<tr>
<td>TH17 gene expression score</td>
<td>−0.063 (0.95)</td>
<td>−0.316 (1.04)</td>
<td>0.587 (4.23)</td>
<td>0.097 (2.21)</td>
<td>.2184</td>
</tr>
<tr>
<td>FKBP51 gene expression‡</td>
<td>0.20 (0.52)</td>
<td>0.28 (0.41)</td>
<td>0.52 (0.31)</td>
<td>0.38 (0.32)</td>
<td>.4473</td>
</tr>
</tbody>
</table>

All values not presented as means ± SEMs are presented as median (IQRs). Values in boldface indicate statistical significance.

**FIG 6.** Discovery cohort, TDA cluster, and microcluster summary. A descriptive visual summary of the core pathological endotypes and microclusters identified in the discovery asthma and healthy volunteer population is shown. Group number refers to the TDA groups identified in Fig 1 with the corresponding percentage identifying the total proportion of the discovery population within a particular group. Five microclusters referred to in Figs 2-5 and denoted as MC1 to MC5 are summarized in the black dotted lines within their respective group/TDA network.

**TABLE II.** Pathological features of the discovery population stratified by TDA grouping

*Statistical analysis across all groups. Adjusted P values (P < .05) are denoted as follows: †versus 1; ‡versus 2; §versus 3; and ‖versus 4. Adjusted P values were obtained by using Bonferroni correction. All tests are Kruskal-Wallis tests.

†Tissue gene expression analyses were only available in a subgroup of patients (see Fig E1).
compared with steroid-naive/low-dose inhaled steroid taking GINA step 1 to 2 asthma, future studies should compare pathological heterogeneity in both primary and secondary care asthma cohorts. Finally, although we were able to replicate broad topological structures in severe asthma, the replication of microclusters will require novel analytic methods and should form the basis of future research in this area.

In summary, we have used TDA to identify and visualize pathological disease clusters of asthma. Using this approach, we identified numerous microclusters (masked by group-level analysis) of disease that warrant further mechanistic evaluation and replicated pathology phenotypes by using appropriate mathematical methods in an independent population with severe asthma.

We thank Ayasdi (Menlo Park, Calif) and Dr Devi Ramanan for access to the Ayasdi software and SDK platforms for data analysis and Professors Alexander Gorban (Leicester, Mathematics) and Professor Gunnar Carlsson (Stanford, Mathematics) for their critique of the manuscript. We also thank Fiona Symon for pathology counts performed within the Leicester cohort and Ana Robles for pathology regions of interest identification within the BOBCAT cohort.

Key messages
- TDA identified 4 pathological phenotypes (Mild-Moderate Asthma/Healthy Continuum, Reticular Basement Membrane High, Airways Smooth Muscle High, and Remodeling Low) of patients with asthma/healthy volunteers, with numerous nested microclusters derived from bronchial biopsy specimens.
- Reciprocal TH2 and TH17 gene expression was demonstrated (1) across pathological phenotypes, (2) across the spectrum of asthma severity, and (3) in healthy volunteers.
- Our methodology provides new insight into pathological heterogeneity in asthmatic patients and is applicable to other complex chronic diseases.

REFERENCES