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High-throughput biological data, whether generated as sequenc-
ing, transcriptional microarrays, proteomic, or other means,
continues to require analytic methods that address its high
dimensional aspects. Because the computational part of data
analysis ultimately identifies shape characteristics in the organi-
zation of data sets, the mathematics of shape recognition in high
dimensions continues to be a crucial part of data analysis. This
article introduces a method that extracts information from high-
throughput microarray data and, by using topology, provides
greater depth of information than current analytic techniques. The
method, termed Progression Analysis of Disease (PAD), first iden-
tifies robust aspects of cluster analysis, then goes deeper to find
a multitude of biologically meaningful shape characteristics in
these data. Additionally, because PAD incorporates a visualization
tool, it provides a simple picture or graph that can be used to
further explore these data. Although PAD can be applied to a wide
range of high-throughput data types, it is used here as an example
to analyze breast cancer transcriptional data. This identified a
unique subgroup of Estrogen Receptor-positive (ER+) breast can-
cers that express high levels of c-MYB and low levels of innate
inflammatory genes. These patients exhibit 100% survival and no
metastasis. No supervised step beyond distinction between tumor
and healthy patients was used to identify this subtype. The group
has a clear and distinct, statistically significant molecular signa-
ture, it highlights coherent biology but is invisible to cluster meth-
ods, and does not fit into the accepted classification of Luminal
A/B, Normal-like subtypes of ER+ breast cancers. We denote the
group as c-MYB+ breast cancer.
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Increasingly it has become clear that, for most cancers, un-
derstanding the disease demands exploring biological processes

as complex functioning systems and the pathology observed as
a disruption in the coordinated performance of such systems. This
viewpoint necessitates incorporating high-throughput data in the
study of these diseases and consequently demands the continued
development of mathematical analytic methods geared specifi-
cally to such data. The fundamental mathematical challenges
in extracting meaningful information from high-throughput bi-
ological data stem, ultimately, from the difficulty in understanding
the intrinsic shape of data in high dimensions (1). Shape char-
acteristics such as kurtosis, modality, or the presence of outliers
have always played a crucial role in the analysis of data, but the
high dimensionality of genomic data poses mathematical diffi-
culties in identifying its geometry. Additionally, biological phe-
nomena are intrinsically highly variable and stochastic in nature,
and notions of biological similarity are less rigid. Consequently,
analysis methods for biomedical data need to identify shape
characteristics that are fairly robust to changes by rescaling of
distances and therefore become more qualitative in nature. This
has led us to use methods adapted from the mathematics area of
topology, which studies precisely the characteristics of shapes that
are not rigid. The particular method we introduce in the present

article is intermediate between clustering and more distance-
sensitive methods like Principal Component Analysis (PCA) and
multidimensional scaling. This hybrid approach is able to extract
unique biology from data sets. As an example, we applied our
method of analysis to breast cancer transcriptional genomic data
and identified a molecularly distinct unique breast cancer sub-
group of Estrogen Receptor-positive (ER+) tumors that have 100%
overall survival and whose molecular signature is distinct from
normal tissue and other breast cancers.
This article introduces Progression Analysis of Disease (PAD),

an approach to data analysis of disease that unravels the ge-
ometry of data sets and provides an easily accessible picture of
the outcome. This method is an application of Mapper (2), a
mathematical tool that builds a simple geometric representation
of data along preassigned guiding functions called filters. Mapper
provides both a method for mathematical data analysis and a
visualization tool; the filter functions introduced through Mapper
define a framework for supervised analysis. The output of the
analysis approximates a collapse of the data into a simple, low
dimensional shape, and the filter functions act as guides along
which the collapse is done. Mapper has already been used suc-
cessfully to uncover unique subtle aspects of the folding patterns
of RNA (3). Here we define an application of Mapper to the
analysis of transcriptionally genomic data from disease, with
guiding filter functions provided by Disease-Specific Genomic
Analysis (DSGA) (4). DSGA is a method of mathematical analysis
of genomic data that highlights the component of data relevant to
disease, by defining a transformation that measures the extent to
which diseased tissue deviates from healthy tissue. DSGA has
been shown to both (i) outperform traditional methods of anal-
ysis, and (ii) highlight unique biology. In combination with
Mapper, DSGA transformations provide a means to define the
guiding filter function, essentially by unraveling the data accord-
ing to the extent of overall deviation from a healthy state.
We make PAD available as a Web tool, with options for DSGA

only, Mapper only, or a combination of the two (5).
Our method, PAD, is able to identify geometric characteristics

of these data that are obscured when using cluster analysis. Long
gradual drifts in the graphs of these data are visible, as for ex-
ample are expected when the results consist of patients with
progressively advanced stages of disease. More importantly, by
preserving the geometry of these data, PAD has identified
a unique subset of breast cancers that exhibit clear and coherent
clinical characteristics. Specifically, we applied PAD to breast
cancer transcriptional microarray data (6) and identified two
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distinct ER+ molecular subtypes with 100% overall survival,
whose molecular signatures are distinct from one another. It is
important to note that survival information, given above, was not
incorporated into the original analysis; rather, these two groups
of patients were identified solely on the basis of gene expression
data and its geometry in space. When the survival characteristics
of each group were explored after PAD analysis was completed,
each group turned out to have 100% overall survival. Both
groups are ER+ and her2-amplification negative (her2−). One of
these groups has a molecular signature that is similar to that of
normal tissue and has been observed before and denoted as
Normal-like (7). The other group is previously uncharacterized: it
is composed of tumors that (i) are ER+ and her2−, (ii) express
high levels of the c-MYB gene, (iii) express very low levels of a
number of innate immune inflammatory genes, (iv) have a mo-
lecular signature that is distinct from normal tissue, and (v) do
not fit into the previously accepted molecular subtypes of breast
cancer (7). We have named this group the c-MYB+ group, and it
constitutes 10% of ER tumors. This c-MYB+ group was identi-
fied and validated in an independent breast cancer data set (8).

1. Preliminary Mathematical Tools
The method consists in applying Mapper to genomic data from
a disease state, along with the data transformation defined by
DSGA. Mapper is one tool developed under the heading of to-
pological data analysis, a recently developed form of data anal-
ysis that has a greater degree of robustness to noise and to
changes in notions of distance and similarity than more distance-
rigid methods like PCA and multidimensional scaling. Specifi-
cally, Mapper has the following properties: (i) its output is a
combinatorial graph, rather than a linear subspace or a scattered
set of points in a low-dimensional Euclidean space; (ii) the
output has a multiresolution form (i.e., the data may be viewed at
various scales of resolution), which is useful in distinguishing
between real features and artifacts; (iii) the method has the
ability to capture detail even in a large data set, in situations in
which standard methods would tend to wash out the detail
in question; and (iv) the method can be applied to any situation
in which there is a notion of similarity or nearness, not only in
Euclidean data.

1.1. Mapper. Mapper (2) is a mathematical tool that uses recent
developments in the area of applied topology to identify shape
characteristics of data sets. Topological approaches generally
preserve a notion of nearness between points but can distort
large-scale distances. This can be highly desirable when working
with certain types of data in which, whereas small distances
between points carry a notion of similarity or nearness, large
distances often carry little meaning. This property often fits bi-
ological data especially well. The key idea is to identify local
clusters within the data and then to understand the interaction
between these small clusters by connecting them to form a graph
whose shape captures aspects of the topology of the data set.
Mapper is a mathematical tool that identifies the shape of a data
set along a preassigned filter function. In its simplest form, the
method works essentially as follows: we begin with a function f
defined on the data and fragment the range of f into overlapping
pieces. We then cluster separately the portion of the data that is
mapped to each single piece. Each such local cluster can be
viewed as a bin of data points. Once all data points have been
assigned to bins, edges connecting bins are added: two bins that
have data points in common are connected by an edge, thereby
creating a graph whose shape captures important aspects of the
data shape. Bins are then colored by the average value of the filter
function defined on the data points inside the bin. Numeric values
of these means are translated into colors. just as numeric entries
in a data matrix are turned into color to produce heat maps.

Fig. 1 illustrates how the Mapper construction turns a set of
points with a roughly circular shape into a graph capturing this
shape. Mapper extends a concept from topology called the nerve
of a covering to the more difficult setting of working with discrete
sets of points. Clearly similar shapes have similar graphs, even
when the shape is somewhat distorted. However, different
shapes produce different graphs that cannot be mapped into
each other. Thus, Mapper graphs associated to data sets preserve
a wealth of information about the original shapes, while pro-
viding a simplified mathematical object. Applying Mapper to
genomic data can produce an equally simple graph from a shape
that is much less accessible, because the data are both extremely
high dimensional and very sparse.

1.2. Disease-Specific Genomic Analysis.DSGA (4) is a mathematical
method for transforming omic data from diseased tissue as a sum
of two terms: the normal component of these data best mimics
healthy tissue, whereas the disease component measures the error
or deviation from normal:

T
!¼ Nc:T

!þDc:T
!
: [1]

This decomposition is defined by computing a linear model of
the diseased tissue data onto a Healthy State Model (HSM) es-
timated from normal tissue data, to obtain the normal compo-
nent. The disease component is then the vector of error terms
from the linear model fit. The HSM is constructed from the
normal tissue data using the FLAT construction: a combination
of mathematical data desparsing—a method to make data in very
high dimensions less sparse—followed by dimension reduction
through PCA. The FLAT construction was introduced by Nicolau
et al. (4), and details are found in the Math Supplement of that
article. Fig. 2 shows a schematic of the DSGA decomposition
into disease and normal components. By working with the dis-
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Fig. 1. Mapper starts with a set of data points and a filter function f and
produces a colored graph that captures the shape of the data. (A) The image
of the function f is subdivided into overlapping intervals. (B) Each piece is
clustered separately. (C) Each cluster is represented by a colored disk: a bin
of points. The color of each bin corresponds to the average value of the filter
function f on the data points inside the bin. (D) Identify pairs of bins that
have points in common and (E) connect pairs of bins that have points in
common by an edge.
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Fig. 2. DSGA decomposition of the original tumor vector T
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into the Normal
component its linear models fit Nc:T

!
onto the Healthy State Model and the

Disease component Dc:T
!

vector of residuals.
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ease component—deviation from health vector—rather than the
original data vector, several things are accomplished: (i) we
emphasize the degree to which diseased tissue data are aberrant
from healthy tissue data; (ii) we allow for a wide variability
within the normal range; and (iii) we incorporate controls into
the analysis. Working with the disease component of data has
been shown both to outperform the use of original data and to
bring out unique biology. Unlike direct comparison between
normal and neoplastic tissue data, DSGA highlights the extent to
which gene expression in a tumor is aberrant, whereas direct
comparison tends to emphasize the background molecular signa-
ture of the progenitor cell type of the tumor. As we explain below,
when combining theDSGA transformation withMapper, we use as
data the disease component of these data. We additionally define
the guiding Mapper filter functions from the DSGA method.

1.3. Progression Analysis of Disease. We show now how to apply
Mapper to DSGA-transformed data, with filter functions derived
from the DSGA transformation. Importantly, the output of the
procedure is a graph that highlights the core geometric shape of
the data set of patients. As demonstrated in the next section,
applying PAD to genomic data produces biologically meaningful
insights and brings to light unique aspects of the biology of
these tumors.
We begin with a data matrix from diseased tissue, in which

columns are patients and rows are any genomic variable type,
for example transcriptional microarray data. We assume we
have tumor data vectors T

!
1; T
!

2; . . . ; T
!

m and normal tissue
data vectors N

!
1; N
!

2; . . . ; N
!

k comprising the columns of the
data matrix.
Step 1.
DSGA-transform all of the data and construct the following

two matrices: (i) Dc.mat, the matrix whose columns
Dc:T

!
1; . . .Dc:T

!
m are the disease components of the original

tumor vectors T
!

1; . . . T
!

m; (ii) L1.mat, a matrix whose columns
L1:N

!
1; . . .L1:N

!
k are leave-one-out estimates of the deviation

from healthy state by normal tissue data. Note that the columns
of L1.mat constitute an estimate of the disease component of
normal tissue. (iii) L1Dc.mat, the concatenated matrix with
normal and tumor columns L1:N

!
1; . . .L1:N

!
k;Dc:T

!
1; . . .Dc:T

!
m.

Step 2.
Threshold data coordinates (genes, proteins, etc.) so that only

the genes that show a significant deviation from the healthy state
are retained in the data matrix from step 1. Any appropriate test
for significance can be used.
Step 3.
Define Mapper filter functions on the data along which to

perform the Mapper collapse to a graph. These functions should
capture a biologically meaningful characteristic of the data. Es-
sentially the data points are the individual columns of the DSGA-
transformed data matrix, and for the filter functions we compute
the vector magnitude in the Lp norm, as well as k powers of this
magnitude. Below fp,k denotes the filter function, and V

!
denotes

the column vector: either Dc:T
!

i or L1:N
!

j. The coordinates are
individual genes: V

!¼ < g1; g2; . . . ; gs > .

fp;kðV!Þ ¼ ½Σj grjp�k=p: [2]

Note that if k = 1 and p = 2, the function simply computes the
standard (Euclidean) vector magnitude of each column. Essen-
tially, all these different filter functions, fp,k, measure the overall
amount of deviation from the null hypothesis, which is the HSM.
Roughly, fp;kðDc:T!jÞ is large when a large number of genes
deviates a lot from normal levels (the HSM) either in the positive
direction (overexpression relative to normal) or the negative
direction (underexpression relative to normal). Therefore, by
using a variety of distance measurements, all these functions
measure the extent to which a diseased tissue is different from

normal tissue. A tissue sample that has many genes exhibiting
either increased or decreased activity relative to normal would
show a large value of the filter fp,k. A sample that resembles
normal tissue in its gene activity will show a small value of fp,k,
close to 0. The effect of the different choices of p determining
the choice of Lp norm is that, for larger values of p the weight of
genes with larger expression levels is greater. Thus, the choice of
p acts as an additional smooth threshold of genes.
Step 4.
Apply Mapper to the data obtained in step 2, using the filter

functions defined in step 3. Mapper also requires that we define a
distance function on the data: a measure of similarity between
individual data points. The distance function used is the corre-
lation distance.

2. Application of PAD to Breast Cancer Microarray Data
We applied the steps defined in the previous section to a breast
cancer microarray gene expression data set (6). Normal tissue
data were a set of 13 microarrays (4): four from reduction
mammoplasty and nine normal tissue samples from cancer
patients. Details of this analysis can be found in SI Text. The
DSGA transformation and gene thresholding (steps 1 and 2)
produced a data matrix with 262 rows (genes). Mapper filter
functions were computed for the following parameters: k powers
of the Lp distance with p = 1,. . .5 and powers k = 1,. . .10. Fig. 3
shows the output of PAD analysis for p= 2 and k= 4. Each node
is a bin of tumors, and its color encodes the value of the filter
function averaged across all of the data points in the bin, with
blue denoting a low value and red encoding a large value. Thus,
bins that are blue contain tumors whose expression is close to
normal, whereas bins that are red contain tumors that generally
have large deviation from normal along multiple genes, in both
the positive and the negative direction. There are several groups
of tumors that stand out. Basal tumors occupy most of the bins in
the tumor sequence denoted as ER− sequence. They are imme-
diately visible and stand out with large value (red) in the filter
function: overall deviation from normal. Normal tissue samples
all fall in the same bin together with 15 additional ER+ tumors.
These are colored blue and show minimal overall deviation from
normal according to the filter function. The known group of
her2+ tumors is not yet visible, owing to the well-understood
problem that only a small number of genes (on 17q) identify it,
making them mathematically less visible, despite the fact that the
small number of coordinates (17q genes) are biologically im-
portant. This discrepancy between mathematical and biological
significance will be addressed in a later article. An additional
long tumor sequence on the graph, the ER+ sequence showing
large deviation from normal, is visible, as defined by the filter.
This tumor sequence also consists of ER+ tumors, but unlike the
first (blue) group of tumors, these are distinct from normal tissue
in that the value of the filter function—the Lp magnitudes of the
tumor vectors Dc:T

!
i in these bins—is very large. The breakdown

of genes that most deviate from normal within the ER+ sequence
tumors is given below in sections 2.4 and 2.5, but much of the
positive gene activity centers on Estrogen Receptor and c-MYB. A
subgroup of tumor bins is flanked by areas of sparse bins and is
termed c-MYB+ tumors, because, as we show later in section 2.5,
the list of significant genes points to crucial involvement of this
and related genes. The c-MYB+ subset of tumors was also chosen
to be the most dense segment of the ER+ sequence because it
remains in the PAD output even when small bins containing only
one data point are thresholded from the graph. This is very
helpful to consider, because dropping the smallest bins provides
a schematic of the denser part of data and corresponds to re-
moving outliers. The simplified PAD output with small bins re-
moved can be seen in SI Text. For the remainder of this section
we analyze properties of these two very different subsets of
ER+ tumors.
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The Normal-like (blue) group of tumors (15 tumors) con-
stitutes 5% of the cohort. The low value of the filter function
indicates little activity different from normal.
The c-MYB+ (red) group of tumors (22 tumors) constitutes

7.5% of the cohort, or the more compact subset (outliers re-
moved 14 tumors) 5% of ER+ tumors. The high value of the
filter function identifies these tumors as among the most distinct
from normal tissue, showing extremely high activity in some gene
groups (ER+, c-MYB+) and low activity in others (innate im-
mune genes), relative to normal tissue. This extreme deviation
from normal molecular profiles, together with the biology of the
overly active gene groups, and the excellent overall survival
suggests that these tumors have a mechanism to respond in
a protective way, antagonizing the presence of neoplastic tissue.
In the next paragraphs we give evidence for the following two
points: (i) c-MYB+ breast cancer warrants being identified as
a breast cancer group because it shows uniformity in molecular
signature and clinical and survival properties, and because it is
validated in other cancer data sets; and (ii) c-MYB+ breast
cancer is a unique group that does not fit into previously iden-
tified breast cancer types.

2.1. Survival Analysis. Survival analysis was performed on each of
the two groups of ER+ tumors: the blue Normal-like group and
the red group that shows altered transcriptional activity in a large
number of genes compared with the normal tissue, c-MYB+ red
group. Each group showed 100% overall survival, with no re-
currence and no death from disease. Median time to follow-up
was 10 y for the Normal-like group and 8.5 y for the c-MYB+

tumors. It is important to note that survival information was not
incorporated in the DSGA decomposition or the Mapper pro-
gression. We simply tested survival of groups of tumors that our
PAD analysis found to stand out, purely on the basis of our two-
step analysis: (i) DSGA, highlighting the distinction between
normal and disease data, and (ii) Mapper, identifying subtle
aspects in the shape of the data.

2.2. Comparison with Cluster Analysis Applied to the Same Data
Matrix. The Normal-like tumor group (blue) is often observed

through this type of analysis. However, the other group, c-MYB+

tumor group, was scattered across several clusters, as seen in Fig.
4. Thus, unlike PAD, cluster analysis was unable to identify this
new group of tumors. This shows that the appearance of the new
group of tumors was not due to the way data were transformed
via DSGA nor to the specific method used for thresholding
genes, but rather to the ability of PAD to identify subtle shape
characteristics of the data set. Cluster analysis scattered the
tumors in the ER+ tumor progression and even the very tight c-
MYB+ tumor group. That the tumors in this group (22 in all, 14
without outliers) ought indeed to appear together is seen below,
in sections 2.4–2.6, which show that the molecular signatures of
these tumors are indeed very similar to one another and signif-
icantly distinct from other tumors.

2.3. Comparison with Molecular Subtype Classification. The 22
tumors in the c-MYB+ group were analyzed for molecular sub-
type (Basal, ERBB2, Luminal A, Luminal B, and Normal-like) (7)
as previously assigned (6). Of the 22 tumors, only six had cor-
relation >0.1 to one of the five centroids, the rest having been
left unclassified. Five were classified as Luminal A and one as
Normal-like. The rest of the c-MYB+ tumors were partially
classified by the centroid they were closest to as follows: seven
Normal-Like, six Luminal A, and three Luminal B. These
assignments to subtype have changed (9) to be two Normal-Like,
two Luminal B, and 18 Luminal A. This new assignment changes
the subtype of 77% of tumors (17 of the 22 tumors have different
assignment from their original one).

2.4. Prediction Analysis of Microarrays (PAM). PAM (10) was per-
formed on DSGA-transformed data, using all genes, before
thresholding (step 1 only). We wanted to investigate whether the
two tumor groups, c-MYB+ and Normal-like, are good candidates
for being molecular subtypes as far as their gene expression data
were concerned. Using PAM, we wanted to determine whether
they are (i) distinct from normal tissue, (ii) distinct from each
other, and (iii) uniform within each group of tumors. Thus, we
tested how successful PAM was in finding predictor variables for
distinguishing these groups. The distinctions had extremely good

9.
9E

+5
3.

2E
+6

4.
7E

+6
7.

0E
+6

9.
4E

+6
1.

2E
+7
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5E

+7

FILTER COLOR SCALE

ER+ sequence

sparse data

sparse data

sparse data

sparse data

c-MYB+ tumors
detached tumor bins
very sparse data

Normal-Like
& Normal

Basal-like

ER-- sequence

Fig. 3. PAD analysis of the NKI data. The output has three progression arms, because tumors (data points) are ordered by the magnitude of deviation from
normal (the HSM). Each bin is colored by the mean of the filter map on the points. Blue bins contain tumors whose total deviation from HSM is small (normal
and Normal-like tumors). Red bins contain tumors whose deviation from HSM is large. The image of f was subdivided into 15 intervals with 80% overlap. All
bins are seen (outliers included). Regions of sparse data show branching. Several bins are disconnected from the main graph. The ER− arm consists mostly of
Basal tumors. The c-MYB+ group was chosen within the ER arm as the tightest subset, between the two sparse regions.
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error rates attained with very small numbers of genes, indicating
that these groups of tumors satisfy all three conditions above.
The output of the PAM analysis is found in SI Text. The dis-
tinction between c-MYB+ and normal is of particular interest:
two predictor genes were able to distinguish between c-MYB+

group and normal tissue with error = 0. These predictor genes
are TSH-releasing hormone, TRH, and proprotein convertase
subtilisin/kexin type 1, PCSK1. Although it is important to re-
member that predictor variables need not be the most revealing
about the underlying biology of the tumors, the fact that we are
able to distinguish between c-MYB+ and normal with 0 error rate
using only two genes is a strong indication that c-MYB+ is both
significantly distinct from normal and significantly homogeneous
as a class.

2.5. Significance of the Analysis of Microarrays (SAM). SAM (11) was
performed on groups of tumors. Of special interest are the genes
that are significantly different between (i) the c-MYB+ group and
normal samples and (ii) the c-MYB+ group and the rest of the
ER+ sequence in the PAD output. Tables S1 and S2 show the top
genes in the output of these SAM analyses and demonstrate
a significant set of differences between groups, as indicated by
these lists of genes.

2.6. Testing the c-MYB Signature in the c-MYB+ Tumor Group. The
SAM analysis identified the c-MYB gene to be among the sig-
nificant top overexpressing genes (sixfold to 20-fold) in the c-
MYB+ tumor group, both relative to normal tissue and relative to
the rest of the ER+ tumor sequence in the PAD output. We
wanted to find out whether other genes, known to be associated
with (or downstream of) c-MYB overexpression (12), also show
similar association in the c-MYB+ tumor group. We compared
expression levels of known c-MYB-associated genes and com-
puted P values using Student’s t test; the results are found in
Table S3. We tested the original rather than disease component
values for the c-MYB signature. None of the genes listed as re-
pressed byMYB overexpression showed significant reduction, but
of the 45 genes listed as activated and present in the Nederlands
Kanker Instituut (NKI) data, more than half (25 genes) had a P
value <0.05 when values in the c-MYB+ group were compared
with values in the normal group data.

2.7. Validation in Independent Breast Cancer Data. We validated the
presence of the c-MYB+ group of tumors in two other breast
cancer data sets: Ullevål University Hospital (ULL) (8) of 80
breast cancers, of which 52 were of ductal histological types, as
were the NKI tumors and HERSCH (13) set of 232 tumors, of
which 188 were primary breast tumors with good-quality RNA.
We found the subset that best resembled the c-MYB+ among the
identified SAM genes. Specifically, we considered DSGA-trans-
formed tumor data along the 262 genes identified as DSGA sig-

nificant in the NKI data set, of which 255 genes were present in
the ULL data and 221 in the HERSCH set. We further eliminated
from the survival analysis step the tumors that had a very short
follow-up time (<10 mo), as is standardly done because these
short follow-up tumors affect negatively the reliability of survival
analysis. Array mean-centered disease components were tested
along the up and low sets of genes identified in the SAM analysis
performed in the NKI data. Tumors were chosen on the basis of
SAM genes in a two-step procedure: step 1 using two sets of SAM
genes; step 2 using correlation along the 255 DSGA genes in
common with the ULL set and the 221 DSGA genes in common
with the HERSCH set. In step 1 we extracted tumors using two
sets of SAM genes. First, we used the genes that were significant
for the PAD progression arm ER+ sequence: the sequence of
tumors leading up to the c-MYB+ group compared with normal,
Basal, and Normal-like samples. Here we identified tumors which
for at least 60% of the up SAM genes had expression levels higher
than 33% of the tumors, and similarly, for 60% of the low SAM
genes that had expression levels lower than 67% of the tumors.
Second, we used the genes that were significantly distinct for the c-
MYB+ subgroup compared with the rest of the tumors in ER+

sequence. This identified four tumors in the ULL set and 37
tumors in the HERSCH set. We then considered all of the tumors
that were highly correlated (r > 0.68) to these top four tumors,
along the 255 DSGA genes in the ULL set. Similarly, in the
HERSCH set we identified tumors highly correlated (r > 0.60) to
the top 37 tumors. This identified six tumors (13%) of the 46 total
inULL and 19 tumors (10%) of the total 188 inHERSCH. Finally,
we tested survival in this group and again found them to have
perfect survival and recurrence. Although this c-MYB+ subgroup
consisted of only a few tumors, these constitute 13% of patients in
ULL and 10% inHERSCH, thus higher than the 7.5% found in the
first or NKI data set.

3. Discussion
We have introduced PAD, a method of analysis that takes into
account the topology of data obtained from microarrays of dis-
ease tissue. First, DSGA highlights the expression pattern that
deviates from normal (4). The second component of PAD con-
sists in identifying the shape of DSGA-transformed data to ac-
cess its topological properties beyond its cluster decomposition.
Whereas cluster analysis identifies regions of higher density in
these data, Mapper is able to find long gradual progressions, as is
clearly demonstrated in this article. Here PAD identifies both
quasi-parallel splits in progression, when a long string of data
points suddenly splits into two gradually divergent progressions,
as well as complete breaks, where data truly separate into dis-
connected regions. Moreover, Mapper creates a graph. This
provides a means to visualize the shape of these data by way of
a graph, and Mapper is flexible in the choice of guiding filter
functions along which these data are collapsed to produce the
graph. The filter functions are essentially a supervised step in the
analysis, and different filter functions defined on the same data
set highlight distinct shape features of these data. We note that
Mapper is a much more general method to transform data into
graphs, whereby filter functions can be chosen in a myriad pos-
sible ways. Different filter functions will highlight different
aspects of the data. Indeed, several filter functions can be ap-
plied at once, thereby highlighting several aspects of the data at
once. Moreover, owing in part to the simplicity of the graph
output, the central problem of robustness of output can be
addressed in a rigorous manner, using the concept of persistence
(1). Thus, Mapper, in its complete generality, opens the door to
study a wide range of data analysis problems. These and other
aspects of Mapper will be discussed in further articles. Here we
have attacked a very concrete type of omic data analysis prob-
lem, having defined the Mapper filter directly from the DSGA
analysis as a measure of how aberrant the gene expression profile
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Fig. 4. Clustering vs. PAD. Can Mapper extract something new from the
data that clustering does not? We compare the outputs of clustering (av-
erage linkage) vs. Mapper as applied to the same exact data matrix (DSGA-
transformed NKI) to show that these two procedures are different. The bins
defining the c-MYB+ group were marked on the cluster dendrogram (red for
the tighter—no outliers—group, and orange for the larger c-MYB+ group
containing outliers) The c-MYB+ tumors are scattered among different
clusters, but PAD has been able to extract this group that turns out to be
both statistically and biologically/clinically coherent.
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of a tumor is. As clearly demonstrated in the analysis of these
breast cancer data, we were able to identify a unique subset of
tumors—c-MYB+ breast cancers with a 100% overall survival—
even though survival data were not taken into account for the
PAD analysis. Indeed, no clinical information was incorporated
into the analysis beyond the distinction between tumor and
normal tissue samples. Cluster analysis completely missed the c-
MYB+ group, by scattering the points in this subset of tumors
across multiple clusters. Thus, although the c-MYB+ group is
extremely coherent in terms of molecular profile, it is invisible to
cluster analysis, which scatters these patients across multiple
clusters. This fact highlights the value of mathematical analysis
methods that are sensitive enough to go beyond cluster analysis
in identifying the subtle geometry of these data.
We believe that topological data analysis, a group of methods

for studying data from many different sources and of many dif-
ferent kinds, is particularly appropriate for the analysis of all
kinds of biological data. These methods begin the process of
uncovering the topology or special organization of genomic data
sets. Topological data analysis provides a viewpoint of these data

which is combinatorial and therefore easy to grasp, and it has
a degree of robustness to the sort of distortions that can occur in
studying biomedical data. Importantly, topological data analysis
can uncover new subsets of disease processes, like the c-MYB+

class of breast cancers. Finally, the high expression of c-MYB+ by
an ER+ breast cancer can help to explain why this group of 22
tumors has 100% survival and no metastasis. The c-MYB tran-
scription factor activates the gene encoding HEP-27, which has
been shown to inhibit MDM-2, which in turn activates p53 ac-
tivity (14). So long as there are no p53 mutations in these tumors
(and they belong to classes with few if any p53 mutations), this
could help to provide a mechanism for the relatively non-
aggressive nature of these breast cancers. It will now be useful to
explore p53 activities in this new subset of tumors.
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