Recent high-resolution geochronologic data has led to significant revision of tectonic models for the geologic evolution of the Adirondack Mountains. Granulite facies metamorphism and associated deformation accompanied both Shawinigan (1200-1140 Ma) and Ottawan orogenies (1090-1050 Ma). In order to better understand the nature of Shawinigan versus Ottawan deformation and metamorphism, a field-based study, including mapping, structural analysis, and petrologic analysis was conducted in the southern half of the Shelving Rock quadrangle. This area was chosen because earlier mapping suggests that this area is located in the nose of a W-NW trending, kilometer scale fold involving AMCG related rocks. AMCG rocks were emplaced at the tail end of the Shawinigan Orogeny. Therefore deformation and folding of this rocks is presumably due to the Ottawan Orogeny. We mapped a variety of rock types including pyroxene-bearing felsic gneisses with variable amounts of hornblende and garnet, weakly to strongly deformed metagabbroic to leucogabbroic rocks, white, garnet-bearing granitic rocks, marbles, and biotite-bearing paragneisses. These rocks document a period of high-grade metamorphism and deformation after the emplacement of the AMCG magmas (ca. 1.15 Ga). Sample GP-15-152 represents a garnet-sillimanite gneiss collected from the area. Pseudosections were created using bulk rock chemical data and the results are consistent with upper amphibolite to granulite facies metamorphism. Monazite age data suggest the dominant metamorphism recorded by these rocks was shortly after the Shawinigan Orogeny but prior to the Ottawan Orogeny.