Ultra High Efficiency Water Heaters

eF Series® Models

Models Covered by This Manual:

EFR160T120*(EN,SX)
EF60T125(E)*(N,X)(A)(2)
EF60T150(E)*(N,X)(A)(2)
EF60T199(E)*(N,X)(A)(2)
EF100T150(E)*(N,X)(A)(2)
EF100T199(E)*(N,X)(A)(2)
EF100T300(E)*(N,X)(A)(2)
EF100T399(E)*(N,X)(A)(2)

(*) Denotes Warranty Years
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
<th>eF Service Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>3</td>
<td>- - -</td>
</tr>
<tr>
<td>How to use this manual</td>
<td>4</td>
<td>- - -</td>
</tr>
<tr>
<td>Tool required for service</td>
<td>4</td>
<td>- - -</td>
</tr>
<tr>
<td>Features</td>
<td>5</td>
<td>- - -</td>
</tr>
<tr>
<td>Specifications</td>
<td>6</td>
<td>- - -</td>
</tr>
<tr>
<td>Sequence of Operation</td>
<td>10</td>
<td>- - -</td>
</tr>
<tr>
<td>Troubleshooting</td>
<td>16</td>
<td>- - -</td>
</tr>
<tr>
<td>Thermostat Circuit, Testing & Replacement</td>
<td>35</td>
<td>I</td>
</tr>
<tr>
<td>Combustion System Testing and Replacement</td>
<td>43</td>
<td>II</td>
</tr>
<tr>
<td>Burner Tube Inspection & Replacement</td>
<td>49</td>
<td>III</td>
</tr>
<tr>
<td>Gas Valve Replacement</td>
<td>51</td>
<td>IV</td>
</tr>
<tr>
<td>Blower Testing and Replacement</td>
<td>52</td>
<td>V</td>
</tr>
<tr>
<td>Exhaust Pressure Switch Testing and Replacement</td>
<td>54</td>
<td>VI</td>
</tr>
<tr>
<td>Hot Surface Igniter Testing and Replacement</td>
<td>60</td>
<td>VII</td>
</tr>
<tr>
<td>Flame Sensor Testing and Replacement</td>
<td>62</td>
<td>VIII</td>
</tr>
<tr>
<td>Spark Rod Gap Adjustment and Replacement</td>
<td>64</td>
<td>IX</td>
</tr>
<tr>
<td>Ignition Module/Control Board Replacement</td>
<td>66</td>
<td>X</td>
</tr>
<tr>
<td>Transformer Replacement</td>
<td>68</td>
<td>XI</td>
</tr>
<tr>
<td>Intake Pressure Testing and Replacement</td>
<td>69</td>
<td>XII</td>
</tr>
<tr>
<td>Vent Safety Switch Testing and Replacement</td>
<td>71</td>
<td>XIII</td>
</tr>
<tr>
<td>Anode & Flue Baffle Inspection and Replacement</td>
<td>73</td>
<td>XIV</td>
</tr>
<tr>
<td>Installation Check List</td>
<td>78</td>
<td>- - -</td>
</tr>
<tr>
<td>Heater Service Report</td>
<td>79</td>
<td>- - -</td>
</tr>
<tr>
<td>Parts List</td>
<td>80</td>
<td>- - -</td>
</tr>
<tr>
<td>Glossary of Terms</td>
<td>89</td>
<td>- - -</td>
</tr>
</tbody>
</table>
Introduction
The Bradford White eF Series® Ultra High Efficiency Water Heater is designed to deliver a remarkable thermal efficiency rating in a quiet running unit with venting options that allow for installation flexibility. Several technologically advanced design features are incorporated in the design that will require additional knowledge on the part of the qualified service provider. The information in this manual will instruct service and maintenance professionals on the function, proper diagnosis and repair of The Bradford White eF Series® Ultra High Efficiency Water Heater.

The Bradford White eF Series® Ultra High Efficiency Water Heater uses a low Nox premix power burner located at the top of the water heater to direct a turbulent flame down into a submerged combustion chamber. This turbulence causes a thorough mixing of gas and air for optimum combustion. The combustion gases then travel through a three pass flue system keeping the gases moving at a high velocity. The combination of high turbulence and velocity results in an optimum transfer of heat from the flue gases into the water.

Burner operation is controlled using an electronic ignition module. The module monitors the status of the electronic thermostat, vent temperature limit switch, vent system pressure switches and a flame sensor to control output voltage to blower motor, hot surface igniter/spark rod and gas valve. The module contains programming which determines the sequence of operation and timings for purge periods, trial for ignition, flame sensing and lockout. The module will also provide diagnostic information to help in determining the cause of system lockouts.

The contents in this manual are detailed informational tools to assist in the proper diagnosis of the eF Series® Ultra High Efficiency Water Heater operational faults. Please read this service manual completely and provide as much information regarding the eF Series® Ultra High Efficiency Water Heater operation and installation specific concerns.
It is intended for this manual to be used by qualified service personal for the primary purpose of troubleshooting analysis and repair of the Bradford White eF Series® Ultra High Efficiency Water Heater. Understanding the sequence of operation section of this manual will contribute greatly to troubleshooting this product.

An “Installation Check List” is shown towards the end of this manual. Compare the installation against the installation check list to confirm all requirements are met.

An “eF Service Report” is shown towards the end of this manual. Completing this form will assist in the troubleshooting efforts. Should you need to call for technical support, Please provide the information shown on this form to the support technician to insure accurate troubleshooting.

Troubleshooting begins with “System Observation” to determine failure mode as indicated by the LED status of the ignition module. Troubleshooting continues with “Failure Modes and Probable cause” directing the service provider to a series of test procedures to determine root cause of failure. Component replacement procedures directly follow the test procedures for a given component.

In some difficult to diagnose conditions, it may be necessary to isolate the heater from the vent system to determine root cause.

Contact Technical support immediately if diagnosis is not determined using the methods described in this service manual.

Tools Required for Service

Manometer: Two types available, a liquid “U” tube type or a digital (magna-helic) type. This device is used to measure gas and/or air pressures and vacuum.

Multi-Meter: A digital type is strongly recommended. This device is used to measure electrical values. The meter you select must have the capability to measure volts AC, volts DC, Amps, micro-amps and ohms.

Thermometer: Used to measure water temperature. An accurate thermometer is recommended.

Water Pressure Gage: Used to measure water supply pressure. Also used to determine tank pressure by adapting to the drain valve of the heater.

Jumper Leads: A length of wire (12" min.) with alligator clip at both ends.

Various Hand Tools: Pipe wrench, channel locks, open end wrench set, 12" crescent wrench, Allen wrench set, torx bit set, screw drivers (common & phillips), long reach (12") magnetic tip phillips head screw driver #2 tip, ¼" nut driver, pliers (common & needle nose), socket set including a 1-1/16 deep well socket, wire cutters, wire strippers, wire crimpers, torpedo level, small shop vac, step ladder, and flashlight.
Features of Honeywell Integrated Control System

<table>
<thead>
<tr>
<th>Serial Numbers including and AFTER GB13006174 and ALL EFR models</th>
</tr>
</thead>
</table>

- Attractive digital water heater display on control panel for setting and displaying the temperature setpoint. Pressing temperature UP and DOWN buttons changes the temperature setpoint. Same water heater display used on all models. Temperature format may be displayed in °F or °C.
- Single control board with plug in wiring controls temperature, ignition, and blower operation.
- Reduced number of parts for servicing and wiring.
- Plug in wiring reduces chance of miswiring.
- Burner ignition with direct spark ignition - A high voltage spark jumps from the spark rod to the burner surface to ignite the gas. Eliminates burned out hot surface igniter replacements.
- Water heater display will show diagnostic codes in the event the water heater needs servicing. Aids in diagnosing and servicing the water heater.
- Water heater display can show previous error code history to further aid in servicing the water heater.

NOTICE:

THE EF100T399 MODEL SERIES DO NOT USE THE HONEYWELL INTEGRATED CONTROL SYSTEM. THESE MODELS USE THE UT ELECTRONICS CONTROL MODULE WITH HOT SURFACE IGNITION.
Hot Surface Ignition System

<table>
<thead>
<tr>
<th>Specification</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power supply</td>
<td>Dedicated 120 VAC, 60 Hz, 15A, GFI</td>
</tr>
<tr>
<td>Gas Supply</td>
<td>Minimum 1" NPT for EF100T399, all others ¾” NPT (schedule 40 black iron pipe recommended)</td>
</tr>
<tr>
<td>Approved Gas Type</td>
<td>Natural or Propane. Unit must match gas type supplied.</td>
</tr>
<tr>
<td>Approved Vent Materials</td>
<td>PVC or CPVC</td>
</tr>
<tr>
<td>Minimum Clearance for Servicing</td>
<td>18” from top, 24” from front, 4” sides and rear.</td>
</tr>
<tr>
<td>Maximum Water Supply Pressure</td>
<td>150 PSI</td>
</tr>
<tr>
<td>Thermostat Sensor</td>
<td>11,900 Ohms @ 70°F, ECO opens @ 201°F Max., ECO close @ 100°F Min.</td>
</tr>
<tr>
<td>Temperature Dial</td>
<td>Min. set point 5400-6600 ohms, Max set point 0-50 ohms.</td>
</tr>
<tr>
<td>Thermostat Board</td>
<td>Max temp 180°F, Min temp 91°F, 24VAC, 60Hz max.</td>
</tr>
<tr>
<td>Ignition Module</td>
<td>See “Sequence of Operation, for models starting with CF serial and later”</td>
</tr>
<tr>
<td>Transformer</td>
<td>120VAC primary, 24VAC secondary, 40VA.</td>
</tr>
<tr>
<td>Hot Surface Igniter</td>
<td>120VAC, 30-120 ohms @ room temperature.</td>
</tr>
<tr>
<td>Flame Sensor Output</td>
<td>Minimum 1 micro amp, Typical range 4 to 7 micro amps.</td>
</tr>
<tr>
<td>Gas Valve</td>
<td>Negative regulation, 24 VAC, ½” PSI max., 4.5” W.C. Minimum running inlet.</td>
</tr>
<tr>
<td>Vent Safety Switch</td>
<td>Normally closed, opens @ 350°F, manual reset.</td>
</tr>
<tr>
<td>Intake Pressure Switch “CF” serial number or later</td>
<td>Not required.</td>
</tr>
<tr>
<td>Intake Pressure Switch serial numbers prior to “CF”</td>
<td>24VAC, normally closed, opens on vacuum increase @ -1.20 W.C.</td>
</tr>
<tr>
<td>Blocked Vent Pressure Switch “CF” serial number or later</td>
<td>24VAC, normally closed, opens when pressure increases to +2.70 W.C.</td>
</tr>
</tbody>
</table>
| Exhaust pressure switch serial numbers prior to “CF” | 24VAC, normally open, closes on pressure increase as follows Note 1:
 +2.58” W.C. EF(60,100)T199
 +1.50” W.C. EF100T150 (see note 2)
 +1.22” W.C. EF60T150, EF100T250
 +2.08” W.C. EF60T125
 +0.55” W.C. EF100T300 (see note 3)
 Note 2: +5.6” W.C. on serials prior to AH5039107
 Note 3: +0.8” W.C. on serials prior to AK5288269 |
| Blower | 120VAC, 60Hz, .6-1 amps, 6400 RPM. |
| Combustion Levels | CO2: 10-11%, CO: less then 0.04 percent (400 PPM) air free |
Specifications

Honeywell Integrated Control System

<table>
<thead>
<tr>
<th>Specification</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power supply</td>
<td>Dedicated 120 VAC, 60 Hz, 15A</td>
</tr>
<tr>
<td>Gas Supply</td>
<td>Minimum ¾” NPT (schedule 40 black iron pipe recommended)</td>
</tr>
<tr>
<td>Approved Gas Type</td>
<td>Natural or Propane. Unit must match gas type supplied.</td>
</tr>
<tr>
<td>Gas Pressure (Nat & L.P.)</td>
<td>14.0” W.C. maximum static, 4.5” W.C. minimum running (recommend 7.0” W.C. min running)</td>
</tr>
<tr>
<td>Venting System</td>
<td>Power vent, balanced direct vent or unbalanced direct vent. See vent tables on page 7</td>
</tr>
<tr>
<td>Approved Vent Materials</td>
<td>PVC or CPVC</td>
</tr>
<tr>
<td>Minimum Clearance for Servicing</td>
<td>18” from top, 24” from front, 4” sides and rear.</td>
</tr>
<tr>
<td>Maximum Water Supply Pressure</td>
<td>150 PSI</td>
</tr>
<tr>
<td>Thermostat Sensor</td>
<td>11,900 Ohms @ 70°F, ECO opens @ 207°F Max., ECO close @ 120°F Min. Redundant sensor for ECO. Sensor inside well for easy replacement of sensor.</td>
</tr>
<tr>
<td>Control Display</td>
<td>Digital display, 24 volts. Temperature Range: 70-180 deg. F. Used to set tank temperature (deg. F or deg. C), show operating status, Display error codes, error code history, limit maximum setpoint temperature.</td>
</tr>
<tr>
<td>Control Board</td>
<td>Operates from 24 volt from transformer. Controls tank temperature, ignition functions, combustion blower. See ignition timings in sequence of operation for Integrated Control.</td>
</tr>
<tr>
<td>Transformer</td>
<td>120VAC primary, 24VAC secondary, 40VA.</td>
</tr>
<tr>
<td>Spark Rod Igniter</td>
<td>0.22” nominal gap to the burner surface.</td>
</tr>
<tr>
<td>Flame Sensor Output</td>
<td>Minimum 1 micro amp, Typical range 5 to 30 micro amps.</td>
</tr>
<tr>
<td>Gas Valve</td>
<td>Negative regulation, 24 VAC, ½” PSI max., 4.5” W.C. Minimum running inlet.</td>
</tr>
<tr>
<td>Vent Safety Switch</td>
<td>Normally closed, opens @ 350°F, manual reset.</td>
</tr>
<tr>
<td>Blocked Vent Pressure Switch</td>
<td>24VAC, normally closed, opens when pressure increases to +2.70 W.C.</td>
</tr>
<tr>
<td>Blower</td>
<td>120VAC, 60Hz, 6-1 amps, 6400 RPM.</td>
</tr>
<tr>
<td>Combustion Levels</td>
<td>CO2: 10-11%, CO: less then 0.04 percent (400 PPM) air free</td>
</tr>
</tbody>
</table>

NOTICE:

THE EF100T399 MODEL SERIES DO NOT USE THE HONEYWELL INTEGRATED CONTROL SYSTEM. THESE MODELS USE THE UT ELECTRONICS CONTROL MODULE WITH HOT SURFACE IGNITION.
Vent Tables

Balanced Direct Vent Systems

PVC, CPVC

<table>
<thead>
<tr>
<th>Model Number</th>
<th>2"</th>
<th>3"</th>
<th>4"</th>
</tr>
</thead>
<tbody>
<tr>
<td>EFR-1-60T120</td>
<td>60'</td>
<td>120'</td>
<td>170'</td>
</tr>
<tr>
<td>EF60T125, EF100T150</td>
<td>30'</td>
<td>120'</td>
<td>170'</td>
</tr>
<tr>
<td>EF60T150, EF100T199</td>
<td>30'</td>
<td>100'</td>
<td>150'</td>
</tr>
<tr>
<td>EF60T199</td>
<td>30'</td>
<td>80'</td>
<td>130'</td>
</tr>
<tr>
<td>EF100T250</td>
<td>N/A</td>
<td>80'</td>
<td>130'</td>
</tr>
<tr>
<td>EF100T300</td>
<td>N/A</td>
<td>60'</td>
<td>110'</td>
</tr>
<tr>
<td>EF100T399</td>
<td>N/A</td>
<td>50'</td>
<td>100'</td>
</tr>
</tbody>
</table>

Power Vented Systems

PVC, CPVC

<table>
<thead>
<tr>
<th>Model Number</th>
<th>2"</th>
<th>3"</th>
<th>4"</th>
</tr>
</thead>
<tbody>
<tr>
<td>EFR-1-60T120</td>
<td>60'</td>
<td>120'</td>
<td>170'</td>
</tr>
<tr>
<td>EF60T125, EF100T150</td>
<td>30'</td>
<td>120'</td>
<td>170'</td>
</tr>
<tr>
<td>EF60T150, EF100T199</td>
<td>30'</td>
<td>100'</td>
<td>150'</td>
</tr>
<tr>
<td>EF60T199</td>
<td>30'</td>
<td>80'</td>
<td>130'</td>
</tr>
<tr>
<td>EF100T250</td>
<td>N/A</td>
<td>80'</td>
<td>130'</td>
</tr>
<tr>
<td>EF100T300</td>
<td>N/A</td>
<td>60'</td>
<td>110'</td>
</tr>
<tr>
<td>EF100T399</td>
<td>N/A</td>
<td>50'</td>
<td>100'</td>
</tr>
</tbody>
</table>

Unbalanced Direct Vent Systems

Air intake CAN NOT exceed exhaust by more than 30 feet

WARNING! The EF100T250 and EF100T300 models are not approved for 2 inch diameter vent pipe. Venting with 2 inch pipe on these models may result in damage to the water heater or cause an unsafe condition. DO NOT use 2 inch Vent or Air Intake Pipe on EF100T250/300 models.

Notes:

1) Multiply the total number of 90° elbows (intake and exhaust) by 5 feet. Do not include the termination fittings or 3" condensate elbow.
2) Multiply the total number of 45° elbows (intake and exhaust) by 2 ½ feet.
3) Add this to the total length of straight pipe - intake and exhaust.
4) The sum total of all elbows and straight pipe - intake and exhaust must not exceed maximum lengths from tables above.

Example: EF100T199

A 3" Balanced Direct vent system has 30 feet of straight exhaust pipe and 30 feet of straight intake pipe. It has 3- 90° elbows in the exhaust and 3- 90° elbows in the intake. It has 1- 45° elbow in the exhaust and 1- 45° elbow in the intake.

Therefore:

- 6- 90° elbows x 5 feet = 30 feet.
- 2- 45° elbows x 2 ½ feet = 5 feet.
- 60 feet of straight pipe + 30 feet + 5 feet = 95 feet.

System is within “Maximum Combined Length” from table above.
Thermostat calls for heat.
- Prior to energizing blower, ignition module checks safety circuits for normal switch positions:
 a) Vent temp switch normally closed.
 b) Intake pressure switch normally closed.
 c) Exhaust pressure switch normally open.

If the vent temp switch is open, the control waits indefinitely for temp switch to close (green light stays on).

If the exhaust pressure switch contacts are closed (not in normal position), the ignition module will wait 45 seconds for pressure switch contact to open before energizing blower. If after 45 seconds and pressure switch contacts do not open, the ignition module locks out with the PURGE light flashing indicating pressure switch fault.

Blower energizes.

Pressure switch proves blower/vent system operation.
- If the N.O. contacts of the exhaust pressure switch do not close within 5 minutes of the blower being on, the control locks out with the PURGE light flashing indicating pressure switch fault.

Blower pre-purge period (5 seconds) indicated by the PURGE LED on the module.

Igniter warm up (18 seconds), indicated by the IGNITER LED on the module.

Trial for ignition (4 seconds, three trials).
- Flame establishing period (2.5 seconds) gas valve and igniter on, indicated by the IGNITER and VALVE LED on the module.
- Burner on, flame proving period (1.5 seconds, looking for minimum of 1 micro amps), indicated by the FLAME & VALVE LED on the module.

Steady state operation.
Ignition module monitors:
- Thermostat circuit.
 - When thermostat opens, gas valve is shut down and post purge begins.
- Safety circuit.
 - If vent temp switch opens, gas valve is shut down, system will post purge and wait for switch to close before attempting re-ignition.
 - If either pressure switch opens, Gas valve is shut down, Blower is shut down for 30 seconds after which blower is re-energized and system attempts re-ignition starting at pressure switch proving mode.
- Flame sensor circuit.
 - If flame is lost, gas valve is shut down, system will post purge and system attempts re-ignition starting at pressure switch proving mode.

Thermostat satisfies.

Burner off.

Blower post purge (15 seconds).
Lockout Conditions

If normally closed pressure switch contacts open during burner operation, gas valve closes, burner shuts off. Blower restarts after 30 seconds and runs 5 minutes to wait for pressure switch to close. If not, locks out.

The system will go into lock out mode for the following reasons:

- Pressure switches stuck open or closed.
 a) Check for exhaust or intake obstructions.
 b) Check for compliance with vent tables.
 c) Check for evidence of moisture or condensate present in pressure switch tubing or pressure switch.

- No ignition after 3 attempts.
 a) Check gas pressures.
 b) Igniter resistance too high (lower resistance preferred <150 Ohms).
 c) Check venturi screw adjustment (6 ½ turns from bottom)
 d) Flame sense micro amp not present (1 to 5 micro amps required).

Lock out reset is accomplished by shutting OFF the line voltage to the system or opening the 24V thermostat circuit for at least 2 seconds.

System will automatically reset lockout after 1 hour of continuous call for heat from the thermostat. Three ignition trials will be attempted each hour until the thermostat is satisfied.

Ignition Module Specifications

Control Functions:
- Ignition & heating functions in response to thermostat.
- Hot surface ignition using a microprocessor to control timing, flame sensing using flame rectification & ignition retries.
- Monitoring of system pressure switches and limit switches.
- Control of gas valve, inducer motor, and hot surface igniter element based on thermostat demand and status of safety inputs.
- Diagnostic indicators to provide information on power to control and control status.
- Non-interchangeable polarized plug-in connectors for all interconnections.

Control Inputs:
- Thermostat call for heat.
- Limit Switch Circuit (normally closed)
- Pressure Switch Circuit (normally open)
- Flame sensing.
- Low voltage supply.
- Line voltage supply.

Control Outputs:
- Inducer motor
- Hot surface igniter
- Gas valve
- Status indicator LEDs
 - Power - Green
 - Purge - Red
 - Igniter - Red
 - Valve - Red
 - Flame - Red

WIRING DIAGRAM
Thermostat calls for heat.

Prior to energizing blower, ignition module checks to make sure the vent temperature switch is in the normally closed position. If the vent temperature switch is open, the control waits indefinitely for the temperature switch to close.

Blower energizes, pressure switch contacts are normally closed. If the pressure switch contacts are open, blower operates for up to 5 minutes waiting for contacts to close, then blower stops and flashes red PURGE LED indicating lock-out condition.

Blower pre-purge period (5 seconds) indicated by PURGE LED on the module

Igniter warm up (18 seconds), indicated by the IGNITER LED on the module. **Note: The blocked vent pressure switch must be in the normally closed position for the ignition cycle to start.**

Trial for Ignition (4 seconds, 3 trials).

a) Flame establishing period (2.5 seconds), gas valve and igniter on, indicated by the IGNITER and VALVE LED on the module.

b) Burner on, flame proving period (1.5 seconds, looking for minimum of 1 micro amps), indicated by the FLAME & VALVE LED on the module.

Steady state operation.

Ignition module monitors:
- Thermostat circuit.
 - When thermostat opens, gas valve is shut down and post purge begins.
- Safety circuit.
 - If vent temperature switch opens, gas valve is shut down, system will post purge and wait for switch to close before attempting re-ignition.
 - If the blocked vent pressure switch opens, indicating a blocked exhaust vent condition, the gas valve is shut down, blower shuts down for 30 seconds and is re-energized and system attempts re-ignition if the pressure switch is closed. Blower operates for 5 minutes to wait for pressure switch to close, then shuts off with purge light flashing (lock-out). Will restart in 1 hour to attempt to close the switch and restart ignition sequence.
 - Flame sensor circuit.
 - If flame is lost, gas valve is shut down, system will post purge and system attempts re-ignition.

Thermostat satisfied.

Burner off.

Blower post purge (15 seconds).
Lockout Conditions

The system will go into lock out mode for the following reasons:
- Blocked vent pressure switch contacts open:
 - Check for obstruction in exhaust pipe and vent terminal.
 - Check for blocked condensate trap or drain line. In cold climates, make sure drain is not frozen.
- No ignition after 3 attempts:
 - a) Check inlet and outlet gas pressures (pressure taps located on top of gas valve).
 - b) Igniter resistance too high (lower resistance preferred < 150 ohms).
 - c) Misadjusted venturi screw (should be 6.5 turns out from bottom).
 - d) Flame sense microamp not present (1.0 microamps minimum, should be 5 microamps or more). If burner lit, check flame rod for deposits.
 - e) Check burner tube condition. Refer to section EF-III for Burner Tube Inspection and Replacement.

Ignition Module Specifications

Control Functions:
- Ignition & heating functions in response to thermostat.
- Hot surface ignition using a microprocessor to control timing, flame sensing using flame rectification & ignition retries.
- Monitoring of system pressure switches and limit switches.
- Control of gas valve, inducer motor, and hot surface igniter element based on thermostat demand and status of safety inputs.
- Diagnostic indicators to provide information on power to control and control status.
- Non-interchangeable polarized plug-in connectors for all interconnections.

Control Inputs:
- Thermostat call for heat.
- Blocked vent pressure switch (normally closed)
- Flame sensing.
- Low voltage supply.
- Line voltage supply.

Control Outputs:
- Inducer motor
- Hot surface igniter
- Gas valve
- Status indicator LEDs
 - Power - Green
 - Purge - Red
 - Igniter - Red
 - Valve - Red
 - Flame - Red

WIRING DIAGRAM
Sequence of Operation
For models with Honeywell Integrated Control System w/ Direct Spark Ignition

Serial Numbers including and AFTER GB13006174 and ALL EFR models
(Excluding EF100T399 model series)

1. Thermostat calls for heat.
2. Combustion blower starts.
3. Blower pre-purge period of 30 seconds.
4. Trial for Ignition. (5 seconds, 3 trials).
 - Flame establishing period (3 seconds), gas valve opens, sparks from spark rod to burner surface to ignite the gas.
 - Burner on, flame proving period (2 seconds). Requires a minimum of 0.8 microamp through flame sense rod to prove flame.
 - If either blocked vent safety switch contacts (normally closed) or blocked vent pressure switch contacts (normally closed) are open, then the ignition sequence will not start and an error code 29 (Pressure switch failed to close or open) will be shown on the display.
5. Steady State Operation: Burner continues to operate until:
 - Thermostat circuit opens, gas valve closes, blower continues to operate for 30 second post-purge period.
 - If the normally closed blocked vent pressure switch opens, the gas valve closes, the blower continues to operate indefinitely and error code 29 will be displayed after a couple minutes with “Service Needed”, “Pressure Switch”.
 - If the normally closed 1st Pass Collector vent safety switch opens, the gas valve closes, the blower post-purges, then shuts off with error code 26 displayed in a lockout condition.
6. Thermostat satisfied
7. Gas valve closes, burner extinguished.
8. Blower post purge for 30 seconds.
Lockout Conditions

The system will go into lock out mode for the following reasons:

1. **ERROR CODE 62 or 63**

 Control board will go into “Soft Lockout” if the main burner cannot be lit or fails to prove flame after 3 ignition trials. The water heater display indicates a lockout condition by showing an error code number (62 or 63) with “Service Needed” in the control display window. Refer to error codes in the diagnostic section of this Service Manual. In a “Soft Lockout” condition, the control will wait for 60 minutes and then make 3 more attempts to light the main burners. Soft lockout reset is accomplished by depressing the lower right button under “Reset” for 3 seconds.

2. **ERROR CODE 65**

 If the top of the tank should exceed 200°F, then the high limit control will shut off the burner and the water heater will go into a “Hard Lockout”. Error code 65 will be shown in the water heater display. The control can only be reset in the “Service Mode”, which is detailed in the “Troubleshooting” section of this Service Manual.

3. **ERROR CODE 29**

 If the exhaust terminal becomes blocked or the condensate elbow fails to drain condensate, the normally closed exhaust pressure switch will open, the gas valve closes, and error code 29 will appear on the control display. When the condition is corrected, the error code will disappear and the water heater will resume normal operation. No resetting of the control display is needed for the pressure switch error code.

4. **ERROR CODE 26**

 If the vent safety switch located near the exhaust pressure switch should open, the gas valve will close, the blower will post-purge and error code 26 will appear on the display. The lockout condition will reset once the problem is corrected and the switch reset. Refer to “Vent Safety Switch Testing and Replacement” in this Service Manual.

CONNECTION/WIRING DIAGRAM
Is front panel power switch light on, indicating power? Y N
Position front panel power switch to "ON" position. Y N
Is there 120VAC across switch? (see photo at right) Y
Light burned out, replace switch. Y N
Is there 120VAC across terminal block? (see photo at right) Y
Repair/replace wire harness to switch. Y N
Determine power source problem and correct. Y N

Is ignition module power light on? Y N
Refer to ignition module illustration, is there 120VAC going to module at locations P7(1) and P7(3)? Y
Refer to ignition module illustration, is there 120VAC between P1(1) and P1(3)? Y
Refer to ignition module illustration, is there 24VAC going to module at locations P2(1) and P2(2)? Y
 Replace ignition module. (see "Ignition Module Replacement") Y N
Replace ignition module. (see "Ignition Module Replacement") Y N
Replace transformer. (see "Transformer Replacement") Y N

Is ignition module power and flame light flashing? Y N
Supply voltage polarity is incorrect. Y
Reset heater by interrupting power. Y N
Reestablish power and Adjust thermostat to call for heat, tank must be cold. Y N
Allow heater to run through heating cycle. Y N
Did heater complete heating cycle and did blower post purge? Y
See next page Y N
System is OK. Y N

WARNING
120 volt potential exposure. Use caution making voltage checks to avoid personal injury.
Determine failure mode by observing flashing LED status on ignition module.
LED status and probable cause shown below.

* Denotes conditions that may require the water heater to be isolated from the vent system to determine root cause.

LED STATUS
Only power light is on and water heater will not function.

Probable Cause
Exhaust pressure switch. (see "Exhaust Pressure Switch Testing and Replacement")

LED STATUS
Purge light flashing.

Probable Cause
Exhaust pressure switch. (see "Exhaust Pressure Switch Testing and Replacement")

LED STATUS
Valve light flashing.

Probable Cause
Hot surface igniter. (see "Hot Surface Igniter Testing and Replacement")

LED STATUS
Power & flame light flashing.

Probable Cause
Supply voltage polarity.

Probable Cause
Thermostat circuit. (see "Thermostat Circuit Testing and Replacement")

Probable Cause
Vent safety switch. (see "Vent Safety Switch Testing and Replacement")

Probable Cause
Blower. (see "Blower Testing and Replacement")

Probable Cause
Combustion system. (see "Combustion System Testing and Replacement")

Probable Cause
Flame sensor. (see "Flame Sensor Testing and Replacement")

Probable Cause
Intake pressure switch. Only for models prior to CF serial number (see "Intake Pressure Switch Testing and Replacement")

Probable Cause
Exhaust pressure switch. (see "Exhaust Pressure Switch Testing and Replacement")

Probable Cause
Vent safety switch. (see "Vent Safety Switch Testing and Replacement")
System Observation
For models with Direct Spark Ignition

Water Heater Fault: Water heater does not operate
Display Error Code: Water heater display does not operate - blank display

Check main power supply to water heater - fuse, circuit breaker, plug receptacle, line cord or wiring to water heater.

Check to make sure switch on front of control panel is in the ON position

Verify Primary voltage at the control board.

Verify Secondary voltage at the control board.

Refer to Control Board illustration. Voltage at primary pins P2(1) & P2(3) will be 110-120. If not, check Line In pins P3(1) & P3(4). Check line cord with volt meter. Replace line cord if defective.

Refer to Control Board illustration. Voltage at secondary pins P4(1) & P4(2) will be 24VAC. If not, check transformer. Replace transformer or wire harness.

Does water heater display operate?
Does the combustion blower start to operate? Increase thermostat setting if tank is warm.

Display Operates - See next page

Is 24VAC present between RED and BLACK wire pin connections on the back of Control Display?

Check wires for proper termination to control display. Are wire terminations connected properly to control display?

Is 24VAC present between E-COM screw terminals P9(2) & P9(3) on the Control Board.

Check wire harness for proper continuity

Make proper wire terminations

Replace Control Board

Replace Control Display.

120 volt potential exposure. Use caution making voltage checks to avoid personal injury.

Use caution not to damage connectors when making voltage measurements or jumping terminals

CAUTION
Use caution not to damage connectors when making voltage measurements or jumping terminals

Y
N

Y
N

Y
N

Y
N

Y
N

Y
N

Y
N

Y
N

Y
N

Y
N

Y
N

Y
N
For models with Direct Spark Ignition

Does combustion blower operate?

Y

Replace blower.

N

Check the voltage at the connection to the blower. Is there 110-120 VAC present?

Y

Check the voltage at the connection to the blower. Is there 110-120 VAC present?

N

Replace wire harness.

Can sparking be seen/heard at the spark rod to the burner?

Y

Does Main Burner Light?

N

Check continuity of spark rod and spark rod gap to burner.

Y

Check to see if control display shows any other error codes (29, pressure switch, 26, vent safety switch, or 65, high limit). If so, refer to the appropriate section for testing and replacement.

N

Remove high voltage wire connected at the spark rod and hold approximately 1/4" from metal ground with insulated pliers during the ignition cycle (3 second spark trial period). Is there spark to ground?

N

Check resistance of high voltage cable. Resistance should be 0-1 ohms. If resistance is high, replace spark cable. If spark cable is good, replace Control Board.

N

Error code #63 on display. (see "Combustion System Testing and Replacement")

Y

Does burner continue until thermostat set point is reached? See setting display in Service Mode and displaying temperature sensors.

Y

Does blower post-purge for 30 seconds?

Y

System okay

N

Error code #29 on display. Refer to Control Board illustration. Measure voltage between terminals P7(3) & P7(5) on the "inducer" output (make sure the control display shows "heating" in the status mode, if not increase the setpoint). Is there 110-120 VAC?

Y

Replace control board if display shows "heating" and no voltage is present to the blower harness. Make sure there are no error codes for the temperature sensors (following sections) before replacing control board.

N

Error code #62 on display. See main burner lights, no flame signal in section "Combustion System Testing and Replacement"
The display has a “service mode” for changing the maximum setpoint and accessing information in aiding servicing of the water heater. This procedure is for service and installation personnel only. To enter the Service Mode, follow the steps illustrated below:

Step 1: Press “Select” and “Temperature Up” buttons together and hold for 3 seconds until “Max Setpoint” is shown in the display.

Step 2: Pressing “Select” button will change display to next mode

The following is the sequence of modes available in “Service Mode” by pressing the “Select” button:

Error Code Number (Display/Reset). This is only shown if there is an operating error in the “User Mode”.

Error Code Shown in Water Heater Display
1. Max Setpoint (Display/Change)

![Max Setpoint value in Water Heater Display](image)

2. Tank Sensor Temperature Displayed Water Temperature Average.

![Tank Sensor Temperature Displayed Water Temperature Average](image)

3. Flame Current of Burner Flame Sensor (Displays only in the Heating Cycle)

![Flame Current of Burner Flame Sensor](image)
4. Setpoint (Display/Change)

5. °F/°C (Display/Change)

6. Differential (Display only - shows the differential of the thermostat)
7. Software Version (Display only)

8. Error Code History (Displays if there are present error codes or up to 10 previous error codes). Water Heater Display will show a “--” if there are no error codes.

To change the Maximum Setpoint Limit (Max Setpoint) for the temperature setpoint:
 Step 1: In service mode press the “Select” button until “Max Setpoint” is displayed.

WARNING
Setting the water temperature to the maximum set point can result in scalding hot water delivered to the faucets. It is highly recommended that the maximum setpoint be adjusted to the lowest temperature possible for the needs of the installation. Make sure the water heater control display is not in a public area that can result in the temperature settings being improperly adjusted.
Step 2: Press “Set” button to enter setting mode. “Max Setpoint” will flash to indicate setting mode.

Step 3: Press the “UP” or “DOWN” buttons to change the maximum setpoint value. This will limit the maximum setpoint the user can select. Note: The maximum setpoint is approximately 180°F.

Step 4: Press “Set” button to confirm new “Max Setpoint” value and stop setting mode.
Step 5: 30 Seconds after the last button press, the Water Heater Display will go back to "User Mode". It will read "Max Setpoint" without showing a temperature value if the temperature setpoint is at the maximum setting. The Water Heater Display can be set back to the "User Mode" immediately by pressing both the "Temperature Up" and "Select" buttons together for 3 seconds.

Display of Water Temperature:

Step 1: In Service Mode, Press the “Select” button until “Water Temp” is displayed in the upper right section of the water heater display. This is the reading for the sensor.
To Display Flame Sense Current of the Pilot Flame Sensor:

The pilot flame sense current is available only when the burners are in operation. Step 1: Make sure the status displays "Heating" or draw enough hot water to start the burners. Step 2: Enter the “Service Mode” described previously. Step 3: Press the “Select” button until a number value is displayed with "Flame Current" to the right of the number. The value displayed is in microamps (μA).

To Display and Change Temperature Setpoint:

Step 1: In “Service Mode” press the “Select” button until “Setpoint” is shown in the water heater display
Step 2: Press the “Set” button to enter the setting mode. “Setpoint” will flash in the water heater display.

[Diagram of water heater display with “Setpoint” Flashes]

Step 3: To raise the temperature setpoint, press the “Temperature Up” button until the desired temperature is shown on the water heater display.

WARNING
Setting the water temperature to the maximum set point can result in scalding hot water delivered to the faucets. It is highly recommended that the maximum setpoint be adjusted to the lowest temperature possible for the needs of the installation. Make sure the water heater control display is not in a public area that can result in the temperature settings being improperly adjusted.

NOTICE
The maximum temperature that can be set in the Water Heater Display is limited to the “Max Setpoint” described previously. To change the “Max Setpoint”, refer to the procedure “To Change the Maximum Setpoint Limit…” described previously under “Accessing the Service Mode on the Water Heater Display”.

Step 4: To lower the temperature setpoint, press the “Temperature Down” button until the desired temperature is shown on the water heater display.

[Diagram of water heater display with “Setpoint” Flashes]
Step 5: When the desired setpoint is reached on the water heater display, press the “Set” button to confirm the new setpoint. “Setpoint” stops flashing in the water heater display.

To Display and Change Temperature Format (°F/°C):

To Change Temperature Format in Display from °F to °C or °C to °F:

Step 1: While in “Service Mode”, press “Select” button until “°F/°C” is shown in the upper right portion of the water heater display.

Step 2: Press “Set” button to change temperature format. “°F/°C” symbol will flash in the water heater display.
Step 3a: Press “Temperature Up” button to change temperature format to °C

Changes to “°C”
“°F/°C” Flashes

Step 3b: Press “Temperature Down” button to change temperature format to °F

Changes to “°F”
“°F/°C” Flashes

Step 4: Press “Set” button to confirm °F or °C format. °F/°C will stop flashing

“°F/°C” Symbol Stops Flashing
Step 5: Pressing “Select” button will return display to setpoint in format selected (°F or °C) immediately.

Error Codes and Error History Display:

If there is an operating problem with the water heater, an error code number will appear on the water heater display with “Service Needed” to the right of the “Status” indicator. The error code label is located under the Water Heater Display and the following section in this Service Manual explains the error codes with corrective actions to repair the water heater.

Error Code History:

In “Service Mode” pressing the “Select” button after the “Software Version” (item 8 in the previously described sequence of service modes) will show an error code history, if there have been any previous operating problems with the water heater. If the display shows --, there is not a current error code.

The Water Heater Display will provide up to 10 previous error codes. The oldest error code will be stored in code index #1 and the most recent in code index #10.
To view previous error codes:

Step 1: In “Service Mode” press the “Select” button until the next display after the “Software Version”. If there are no current error codes, the display will show -- .

Step 2: Press the “Temperature Down” button to select the error code index, starting with the most recent error code “10”.

Step 3: Press the “Select” button to view the error code for “code 10”. If there is a number displayed, note what the number is. The label next to the water heater display will identify the code number. If no number is displayed with only a “--” in the water heater display, then there has not been an error code for error code index 10.
Step 4: Press the “Temperature Down” button to change to the previous code index, code #9.

Step 5: Press the “Select” button for code index #9 to view if there are any code numbers.

Step 6: Continue pressing the “Temperature Down” button to change to the next error code index and press “Select” to view the error code number, if any, for that index number. Continue on to index #1, the oldest error code index. The water heater display will store up to 10 error codes with the oldest code starting in code index #1 with the most recent code in code index #10.

Step 7: 10 seconds after the last button press, the Water Heater Display will revert back to the current error code display. To exit Service Mode, either wait 30 seconds or press Temperature Up button and Select Button for 3 seconds.
ERROR CODE DEFINITIONS

If the water heater has an operating problem, there will be a number in the water heater display with “Service Needed” shown below the error code number. Note the error code and the definition in the chart below. This label appears on the control box under the water heater display. The following sections will provide instructions for servicing each error code.

<table>
<thead>
<tr>
<th>ERROR CODE</th>
<th>DEFINITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>LOW FLAME SENSE CURRENT</td>
</tr>
<tr>
<td>6</td>
<td>FLAME SENSED OUT OF NORMAL SEQUENCE (BEFORE OPENING GAS VALVE OR AFTER CLOSING GAS VALVE)</td>
</tr>
<tr>
<td>23</td>
<td>FLAME DETECTED BEFORE IGNITION</td>
</tr>
<tr>
<td>24</td>
<td>FLAME DETECTED AFTER A HEATING CYCLE COMPLETES</td>
</tr>
<tr>
<td>29</td>
<td>PRESSURE SWITCH FAILED TO CLOSE OR OPEN (STUCK OPEN)</td>
</tr>
<tr>
<td>32</td>
<td>LOWER SENSOR READINGS FAULTY</td>
</tr>
<tr>
<td>57</td>
<td>FLAME ROD SHORTED TO GROUND</td>
</tr>
<tr>
<td>58</td>
<td>AC LINE FREQUENCY ERROR - SIGNAL TOO NOISY OR FREQUENCY INCORRECT</td>
</tr>
<tr>
<td>59</td>
<td>LINE VOLTAGE TOO LOW OR HIGH</td>
</tr>
<tr>
<td>61</td>
<td>DC OUTPUT VOLTAGE UNSTABLE</td>
</tr>
<tr>
<td>62</td>
<td>MAXIMUM NUMBER OF RETRIES DETECTED</td>
</tr>
<tr>
<td>63</td>
<td>MAXIMUM NUMBER OF IGNITION RECYCLES DETECTED</td>
</tr>
<tr>
<td>64</td>
<td>ELECTRONICS FAILURE</td>
</tr>
<tr>
<td>65</td>
<td>HIGH WATER TEMPERATURE (OVER 200°F)</td>
</tr>
</tbody>
</table>

If any of the above codes appear on the control display, contact your plumber or qualified service agent for service of the water heater.
Resetting Error Codes
For models with Honeywell Integrated Control

WARNING
The following procedure is for service and installation personnel only. Resetting lockout conditions without correcting the malfunction can result in a hazardous condition.

If an error code is displayed (except for #4, low flame sense current), the water heater will be in a “lockout condition” with the water heater display showing the error code number and “Service Needed” in the status section of the display window. Error codes 62 (maximum number of retries detected) and 63 (maximum number if ignition recycles detected) are “Soft Lockouts” in which the control can be reset in the “User Mode” by pressing the lower right button under “Lockout Reset” shown in the lower right portion of the display. The control will also go through 3 attempts to relight the burners every hour in the soft lockout condition.

All other error codes will put the water heater into a “Hard Lockout” condition, in which the water heater will not operate and cannot be reset in the “User Mode”. To reset a hard lockout, first enter the “Service Mode” described earlier by pressing both the “Temperature Up” and “Select Buttons” at the same time for 3 seconds. Then press the lower right button under “Lockout Reset” in the water heater display and hold for 3 seconds.

Resetting Error Codes in Hard Lockout Condition

Step 1: Press for 3 seconds to enter service mode.
Step 2: Press for 3 seconds to reset control in service mode.
IMPORTANT NOTE: This procedure assumes a cool tank

Condition: Water Heater Not Operating
Display shows error code “32” (Sensor Reading Faulty)

Unplug or disconnect electrical power to the water heater

Check continuity of wire harness to sensor. Resistance of harness should be close to 0 ohms. Replace wire harness if high resistance is measured (over 0.5 ohms). Check wires for intermittent connections, shorts, frayed insulation. Replace if necessary

If wire harness is O.K., check sensor resistance detailed in “Appendix - A: sensor resistance at various temperatures” at the end of the thermostat testing and replacement section. Replace sensor if needed.

Turn power ON to water heater. Run water heater through heating cycle and verify proper operation. Sensor temperature can be viewed when burner shuts off (see section on viewing the display in “Service Mode”).

Condition: Water Heater Not Operating
Display shows error code “65”
High Water Temperature (over 200 °F)

WARNING
Do not reset the display from the hard lockout state without correcting the cause of the overheating condition

Turn power “OFF”. Draw water to cool tank below 120 °F

Check sensor. Sensor is held in place with a clip fastened to the well (see photo). Check sensor wire for potential damage or breaks in the wire insulation. Is the sensor fully inserted into the well?

Y
Check Sensor Resistance (See Sensor Resistance Testing, following section)

N
If sensor clip is damaged replace clip. Replace sensor if damaged.

Continued on next page

WARNING
120 volt potential exposure. Use caution making voltage checks to avoid personal injury.

CAUTION
Use caution not to damage connectors when making voltage measurements or jumping terminals
Condition: Water Heater Not Operating
Display shows error code “65”
High Water Temperature (over 200 °F)
(Continued from previous page)

Once cause of overheating condition has been diagnosed and corrected, the control may be reset.

- Reconnect and switch on power to the water heater.
- Enter service mode on the water heater display (see illustration).
- Press button under “Lockout Reset” and hold for 3 seconds.
- Set thermostat to the desired setting.
- Water heater will start.
- Monitor temperatures for one complete heating cycle making sure the maximum tank temperature remains well below 200 °F.

WARNING
Do not operate water heater without verifying that the overheating condition has been corrected.

This water heater is equipped with a manual reset type gas shutoff device designed to shut off the gas to the burners if excessive water temperature occurs. To reset the control, first press the “temperature up” and “select” buttons on the water heater display for 3 seconds to enter service mode. Then press the lower right button under “RESET” in the display for 3 seconds.

Error code 65 indicates high limit lockout condition.

Step 1: Press for 3 seconds to enter service mode.

Step 2: Press for 3 seconds to reset control.
For models with Hot Surface Ignition

IMPORTANT NOTE: This procedure assumes a cool tank

![Diagram of IGNITION MODULE](image)

WARNING
120 volt potential exposure. Use caution making voltage checks to avoid personal injury.

Refer to ignition module illustration, Is there 24VAC between P3(7) and P3(8)?

- **Y** Thermostat not calling
- **N** OK, thermostat is calling for heat.

Turn off power to heater. Disconnect YELLOW and RED wires from the thermostat board at location N.O. and COM shown in photo at right. Use a jumper to connect these two wires together as shown in photo at right. Restore power to heater. Did heater cycle on?

- **Y** Check thermostat sensor for proper resistance (OHMS) across blue wires. (See Appendix A, sensor resistance) Are readings correct? (see photo at right)
- **N** Replace thermostat sensor. (see Thermostat Sensor Replacement Procedure)

Check sensor harness continuity. Is there continuity?

- **Y** Check temperature dial for proper resistance (OHMS) (See Appendix B, temperature dial resistance) Are readings correct? (see photo at right)
- **N** Replace temperature dial (potentiometer). (see Thermostat Potentiometer Replacement Procedure)
- **Y** Check temperature dial harness continuity. Is there continuity?
- **N** Replace harness.
- **Y** Replace thermostat circuit board. (see Thermostat Board Replacement Procedure)

See page 39
APPENDIX - A

Sensor Resistance at Various Temperatures

Be Careful When Making Voltage Measurements or Jumping Terminals Not to Damage or Deform Connectors or Connector Pins.

Draw Water From The T&P Valve. Compare Temperature With Temperature Ohms Chart Below.

Example: If temperature of sensor is 84°F, then the resistance through the sensor would be 8449 (see shaded area).

NOTE: Sensor resistance increases as the temperature falls.

<table>
<thead>
<tr>
<th>°F</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>26109</td>
<td>25400</td>
<td>24712</td>
<td>24045</td>
<td>23399</td>
<td>22771</td>
<td>22163</td>
<td>21573</td>
<td>21000</td>
<td>20445</td>
</tr>
<tr>
<td>50</td>
<td>19906</td>
<td>19383</td>
<td>18876</td>
<td>18383</td>
<td>17905</td>
<td>17440</td>
<td>16990</td>
<td>16553</td>
<td>16128</td>
<td>15715</td>
</tr>
<tr>
<td>60</td>
<td>15314</td>
<td>14925</td>
<td>14548</td>
<td>14180</td>
<td>13823</td>
<td>13477</td>
<td>13140</td>
<td>12812</td>
<td>12494</td>
<td>12185</td>
</tr>
<tr>
<td>70</td>
<td>11884</td>
<td>11592</td>
<td>11308</td>
<td>11032</td>
<td>10763</td>
<td>10502</td>
<td>10248</td>
<td>10000</td>
<td>9760</td>
<td>9526</td>
</tr>
<tr>
<td>80</td>
<td>9299</td>
<td>9078</td>
<td>8862</td>
<td>8653</td>
<td>8449</td>
<td>8250</td>
<td>8057</td>
<td>7869</td>
<td>7685</td>
<td>7507</td>
</tr>
<tr>
<td>90</td>
<td>7333</td>
<td>7165</td>
<td>7000</td>
<td>6839</td>
<td>6683</td>
<td>6531</td>
<td>6383</td>
<td>6238</td>
<td>6098</td>
<td>5961</td>
</tr>
<tr>
<td>100</td>
<td>5827</td>
<td>5697</td>
<td>5570</td>
<td>5446</td>
<td>5326</td>
<td>5208</td>
<td>5094</td>
<td>4982</td>
<td>4873</td>
<td>4767</td>
</tr>
<tr>
<td>110</td>
<td>4663</td>
<td>4562</td>
<td>4464</td>
<td>4368</td>
<td>4274</td>
<td>4183</td>
<td>4094</td>
<td>4006</td>
<td>3922</td>
<td>3839</td>
</tr>
<tr>
<td>120</td>
<td>3758</td>
<td>3679</td>
<td>3602</td>
<td>3527</td>
<td>3453</td>
<td>3382</td>
<td>3312</td>
<td>3244</td>
<td>3177</td>
<td>3112</td>
</tr>
<tr>
<td>130</td>
<td>3048</td>
<td>2986</td>
<td>2925</td>
<td>2866</td>
<td>2808</td>
<td>2752</td>
<td>2697</td>
<td>2643</td>
<td>2590</td>
<td>2538</td>
</tr>
<tr>
<td>140</td>
<td>2488</td>
<td>2439</td>
<td>2391</td>
<td>2344</td>
<td>2298</td>
<td>2253</td>
<td>2209</td>
<td>2166</td>
<td>2124</td>
<td>2083</td>
</tr>
<tr>
<td>150</td>
<td>2043</td>
<td>2004</td>
<td>1966</td>
<td>1928</td>
<td>1891</td>
<td>1856</td>
<td>1820</td>
<td>1786</td>
<td>1753</td>
<td>1720</td>
</tr>
<tr>
<td>160</td>
<td>1688</td>
<td>1656</td>
<td>1625</td>
<td>1595</td>
<td>1566</td>
<td>1537</td>
<td>1509</td>
<td>1481</td>
<td>1454</td>
<td>1427</td>
</tr>
<tr>
<td>170</td>
<td>1402</td>
<td>1376</td>
<td>1351</td>
<td>1327</td>
<td>1303</td>
<td>1280</td>
<td>1257</td>
<td>1235</td>
<td>1213</td>
<td>1191</td>
</tr>
<tr>
<td>180</td>
<td>1170</td>
<td>1150</td>
<td>1129</td>
<td>1110</td>
<td>1090</td>
<td>1071</td>
<td>1053</td>
<td>1035</td>
<td>1017</td>
<td>999</td>
</tr>
<tr>
<td>190</td>
<td>982</td>
<td>965</td>
<td>949</td>
<td>933</td>
<td>917</td>
<td>901</td>
<td>886</td>
<td>871</td>
<td>857</td>
<td>842</td>
</tr>
<tr>
<td>200</td>
<td>828</td>
<td>814</td>
<td>801</td>
<td>788</td>
<td>775</td>
<td>762</td>
<td>749</td>
<td>737</td>
<td>725</td>
<td>713</td>
</tr>
</tbody>
</table>

APPENDIX - B

Temperature Dial Resistance

Proper Readings Should Be 5400-6600 Ohms at Minimum Setting And 0-50 Ohms at Maximum.

Be Careful When Making Voltage Measurements or Jumping Terminals Not to Damage or Deform Connectors or Connector Pins.
Thermostat circuit. (continued from page 37)

For models with Hot Surface Ignition

WARNING
120 volt potential exposure. Use caution making voltage checks to avoid personal injury.

Refer to ignition module illustration, is there 120VAC between P1(1) and P1(3)?

- Y: Replace ignition module. (see “Ignition Module Replacement”)
- N: Refer to ignition module illustration, is there 120VAC between P7(3) and P7(1)?

- Y: Replace transformer. (see Transformer Replacement)
- N: Replace ignition module. (see “Ignition Module Replacement”)

Check AC source to determine why there is no power.

Check continuity through ECO, red wires of thermostat sensor. Check at temperature less than 160°F Is there continuity? (see photo at right)

Check wire harness continuity. Replace thermostat sensor or wire harness as necessary. (see “Thermostat Sensor Replacement Procedure”)

Replace thermostat circuit board. (see “Thermostat Board Replacement Procedure”)

Check 24VAC between P3(9) and P2(1).

- Y: Replace thermostat circuit board. (see “Thermostat Board Replacement Procedure”)
- N: Replace transformer. (see Transformer Replacement)

Replace ignition module. (see “Ignition Module Replacement”)

Check 22 - 27VAC between P2(1) and P2(2).

- Y: Replace transformer. (see Transformer Replacement)
- N: Replace ignition module illustration, is there 24VAC between P3(9) and P2(1).

Replace ignition module. (see “Ignition Module Replacement”)

Refer to ignition module illustration, is there 120VAC between P2(1) and P2(2)?

Check 120VAC between P1(1) and P1(3).

Check 120VAC between P7(3) and P7(1).

Check 24VAC between P3(9) and P2(1).

Refer to ignition module illustration, is there 120VAC between P7(3) and P7(1)?

Check continuity through ECO, red wires of thermostat sensor. Check at temperature less than 160°F Is there continuity? (see photo at right)

Check wire harness continuity. Replace thermostat sensor or wire harness as necessary. (see “Thermostat Sensor Replacement Procedure”)

Replace thermostat circuit board. (see “Thermostat Board Replacement Procedure”)

Check 120VAC between P1(1) and P1(3).

Replace transformer. (see Transformer Replacement)
Thermostat Board Replacement Procedure (Hot Surface Ignition)

Step 1. Position main power switch to “OFF”

Step 2. Disconnect (unplug) water heater from 120 volt power source.

Step 3. Un-latch and remove top surround cover from top of heater.

Step 4. Locate thermostat board on control panel. (see photo at right)

Step 5. Carefully disconnect all wires from thermostat board.

 Note: it may be necessary to identify wires for proper re-connection.

Step 6. Remove the two screws (Phillips head screw driver) that secure thermostat board to control panel.

Step 7. Install new thermostat board to control panel using screws from step 6.

Step 8. Carefully reconnect wiring per the wire diagram below. Reconfirm wire connections are correct prior to putting heater back in service.

Step 9. Restore 120 volt power supply to water heater and confirm proper operation following the lighting instructions on the lighting instruction label or the lighting instruction located in the installation and operating instruction manual.

Step 10. Replace surround cover on top of heater.

WARNING
120 volt potential exposure. Isolate the appliance and reconfirm power is disconnected using a multi-meter.

WIRING DIAGRAM
For models prior to CF serial number

WIRING DIAGRAM
For models starting with CF serial numbers and later.
Thermostat Potentiometer Replacement Procedure

Step 1. Position main power switch to “OFF”

Step 2. Disconnect (unplug) water heater from 120 volt power source.

Step 3. Un-latch and remove top surround cover from top of heater.

Step 4. Loosen set screw of adjusting knob (small blade screw driver) and remove adjusting knob from potentiometer. (see photos at right)

Step 5. Remove retaining nut (½” wrench) and washer from potentiometer. (see photos at right)

Step 6. From inside of surround area, remove potentiometer with gasket from side of surround. Notice how indexing tab on potentiometer assembles into locating hole of surround. (see photos below)

Step 7. Disconnect potentiometer wire leads. (see photo at right)

Step 8. Install new potentiometer with gasket into side of surround. Be sure to assemble with indexing tab inserted into locating hole on side of surround (see photos above).

Step 9. Reconnect wires to potentiometer. Note: Wire leads are interchangeable with either wire.

Step 10. Restore 120 volt power supply to water heater and confirm proper operation following the lighting instructions on the lighting instruction label or the lighting instruction located in the installation and operating instruction manual.

Step 11. Replace surround cover on top of heater.

WARNING
120 volt potential exposure. Isolate the appliance and reconfirm power is disconnected using a multi-meter.
Thermostat Sensor (Thermister) Replacement Procedure

Step 1. Position main power switch to “OFF”

Step 2. Disconnect (unplug) water heater from 120 volt power source.

Step 3. **Hot Surface Ignition Models**: Drain water heater down to a point below the top of the tank.

Step 4. Un-latch and remove top surround cover from top of heater.

Step 5. Fold back insulation just in front of burner to expose temperature sensor (see photo below).

Step 6. Disconnect temperature sensor from harness (see photos at right).

Step 7. **Hot Surface Ignition Models**: Remove temperature sensor (1-1/16” hex, deep well socket) from heater. **Direct Spark Ignition Models**: Unclip sensor from well and pull sensor to remove, do not remove well.

Note: Using a deep well socket will allow room inside socket for sensor connector and wires.

Step 8. **Hot Surface Ignition Models**: Apply thread sealing tape or applicable thread lubricant to threads of new sensor. Install new thermostat sensor and Connect to wire harness from step 6. **Direct Spark Ignition Models**: Install new sensor completely into well and reinstall sensor clip.

Step 9. Fold insulation back into place. Be sure there are no wires in contact with burner.

Step 10. Restore 120 volt power supply and water supply to water heater, check and repair any leaks found. Confirm proper operation following the lighting instructions on the lighting instruction label or the lighting instruction located in the installation and operating instruction manual.

Step 11. Replace surround cover on top of heater.
Observe burner operation through the sight glass located on the combustion insert mounting flange. Normal burner operation should ignite smoothly, without evidence of coughing or huffing upon ignition. The burner flame should be a blue flame near the burner surface in a uniform flame pattern. Occasional yellow or white streaks are normal.

For models with Hot Surface Ignition System

Note: On higher input models using metal fiber mesh burner (serial number “CK” and later) a red glow from the burner surface is normal.

- **Verify Minimum Gas Supply Piping Requirements of:** Minimum 1" NPT for EF100T399, all others use ¾" NPT. (Schedule 40 black Iron Pipe recommended).
- **With manometer, check inlet gas pressure. Is it stable between 7" & 14" W.C. static? (heater not running) (see illustrations at right)**
 - Y: Inadequately sized regulator.
 - N: Is gas supply pressure regulator adjustable to maintain proper and stable setting?
 - Y: Adjust gas supply regulator.
 - N: Reconfigure gas supply piping.
- **Does inlet gas pressure drop more than 2" W.C. during burner ignition?**
 - Y: Replace ignition module. (see “Ignition Module Replacement Procedure”)
 - N: Volt meter set to OHM setting

WARNING

- 120 volt potential exposure. Use caution making voltage checks to avoid personal injury.
- **Remove screw from inlet gas pressure tap will immediately allow gas to flow from pressure tap.**

CHECK IGNITER RESISTANCE

WARNING

- **Do you see the igniter glowing through burner site glass during the warm up period?**
 - Y: Refer to ignition module illustration below, is there 120VAC across terminals P6(1) and P6(2)? (Note: Igniter LED must be lit during this check).
 - N: Is igniter resistance less than 150 Ohms (cold)? (see check igniter illustration)
 - Y: Proceed to next page
 - N: Replace hot surface igniter. (see “Hot Surface Igniter Replacement Procedure”)
- **With Volt meter set to OHM setting**
 - **Meter probe**
 - **Hot surface igniter**
Observe burner operation through the sight glass located on the combustion insert mounting flange. Normal burner operation should ignite smoothly, without evidence of coughing or huffing upon ignition. The burner flame should be a blue flame near the burner surface in a uniform flame pattern. Occasional yellow or white streaks are normal.

For models with Hot Surface Ignition System

WARNING

120 volt potential exposure. Isolate the appliance and reconfirm power is disconnected using a multi-meter.

Refer to ignition module illustration below. Is there 24VAC between P3(2) and P3(5) (blue and brown wires) during the flame establishing period? (Note: Valve LED must be lit during this check)

N → Replace ignition module. (see "Ignition Module Replacement Procedure")

Y → Can you hear or feel gas valve energize?

N → Replace Rectifier harness and/or gas valve. (see "Gas Valve Replacement Procedure")

Y → Turn VENTURI set screw clockwise until its bottomed out. Turn screw counter-clockwise 6½ turns from bottom (see illustration below). Note: EF100T399 models do not have a venturi screw. The gas regulator setting should be 1 - 1 ¼ turns out from bottom.

N → Clear obstruction

Y → Inspect burner tube, (see "Burner Tube Inspection and Replacement")

Turn VENTURI set screw clockwise until its bottomed out. Turn screw counter-clockwise 6½ turns from bottom (see illustration below). Note: EF100T399 models do not have a venturi screw. The gas regulator setting should be 1 - 1 ¼ turns out from bottom.

For models with Hot Surface Ignition System

Observe burner operation through the sight glass located on the combustion insert mounting flange. Normal burner operation should ignite smoothly, without evidence of coughing or huffing upon ignition. The burner flame should be a blue flame near the burner surface in a uniform flame pattern. Occasional yellow or white streaks are normal.
Observe burner operation through the sight glass located on the combustion insert mounting flange. Normal burner operation should ignite smoothly, without evidence of coughing or huffing upon ignition. The burner flame should be a blue flame near the burner surface in a uniform flame pattern. Occasional yellow or white streaks are normal.

Note: On higher input models using metal fiber mesh burner a red glow from the burner surface is normal.

WARNING
- 120 volt potential exposure. Use caution making voltage checks to avoid personal injury.

WARNING
- Removing screw from inlet gas pressure tap will immediately allow gas to flow from pressure tap.

SERIAL NUMBERS INCLUDING AND AFTER GB13006174 AND ALL EFR MODELS

Verify Minimum Gas Supply Piping Requirements of:
Minimum ¾” NPT. (Schedule 40 black Iron Pipe recommended).

- **N**
- **Y**

With manometer, check inlet gas pressure. Is it stable between 7” & 14” W.C. static? (heater not running) (see illustrations at right)

- **N**
- **Y**

Does inlet gas pressure drop more than 2” W.C. during burner ignition?

- **N**
- **Y**

Inadequately sized regulator.

- **N**
- **Y**

Is gas supply pressure regulator adjustable to maintain proper and stable setting?

- **N**
- **Y**

Adjust gas supply regulator

Remove high voltage wire connected at the spark rod and hold approximately ¼” from metal ground with insulated pliers during the ignition cycle (3 second spark trial period). Is there spark to ground?

- **N**
- **Y**

Check continuity of spark rod. Is reading 0-1 Ohm?

- **N**
- **Y**

 Replace Spark Rod (see "Spark Rod Gap Inspection and Replacement")

Check spark gap to burner (see "Spark Rod Gap Inspection")

Proceed to next page
SERVICE PROCEDURE EF-II
Combustion System Testing and Replacement

Observe burner operation through the sight glass located on the combustion insert mounting flange. Normal burner operation should ignite smoothly, without evidence of coughing or huffing upon ignition. The burner flame should be a blue flame near the burner surface in a uniform flame pattern. Occasional yellow or white streaks are normal.

WARNING
120 volt potential exposure. Isolate the appliance and reconfirm power is disconnected using a multi-meter.

Serial Numbers including and AFTER GB13006174 and ALL EFR models

Refer to control board illustration, is there 24VAC between P5(5) and P5(8) (blue and brown wires) during the flame establishing period? (Note: Control Display must show “Heating” for operating status)

- **Y** Replace Control Board
- **N** Replace Rectifier harness and/or gas valve. (see “Gas Valve Replacement Procedure”)

Can you hear or feel gas valve energize?

- **N** Replace Rectifier harness and/or gas valve. (see “Gas Valve Replacement Procedure”)
- **Y** Turn VENTURI set screw clockwise until it bottomed out. Turn screw counter-clockwise 6-½ turns from bottom. (Note: Venturi adjustment screw is not on the EF100T399 models)

Does burner light smoothly, without evidence of coughing or huffing?

- **N** Does burner operate normally until thermostat is satisfied?
- **Y** Call for technical support

Call for technical support

- **Y** Does burner operate normally until thermostat is satisfied?
- **N** Check for obstruction at inlet of gas valve. Is inlet free of obstruction?

Check for obstruction at inlet of gas valve. Is inlet free of obstruction?

- **Y** System OK
- **N** Clean obstruction

Clear obstruction

- **Y** Does burner stay lit?
- **N** Check flame sensor, Is there 1 to 5 micro amps (min.) during 1.5 second flame proving period? (Value may be displayed on the control display by accessing “Service Mode”)

Check flame sensor, Is there 1 to 5 micro amps (min.) during 1.5 second flame proving period? (Value may be displayed on the control display by accessing “Service Mode”)

- **Y** System OK
- **N** Replace flame sensor (see “Flame Sensor Replacement Procedure”)

Replace flame sensor (see “Flame Sensor Replacement Procedure”)

WARNING
120 volt potential exposure. Isolate the appliance and reconfirm power is disconnected using a multi-meter.

WARNING
120 volt potential exposure. Isolate the appliance and reconfirm power is disconnected using a multi-meter.
Combustion System Removal Procedure

Step 1. Position main power switch to “OFF”.

Step 2. Disconnect (unplug) water heater from 120 volt power source.

Step 3. Turn off gas supply to water heater.

Step 4. Un-latch and remove surround cover from top of heater.

Step 5. From the gas valve, disconnect the gas connection, PVC venting, Silicone tubing and wire harness.

Step 6. Disconnect wire harnesses flame sensor and blower.

For Hot Surface Ignition models, disconnect wire harness from hot surface igniter.

For Direct Spark Ignition models, disconnect high voltage cable from spark rod connection.

Step 7. Remove the 5 bolts (¼" socket) holding the burner mounting insert in place.

Step 8. Carefully remove combustion assembly with gasket from water heater.

Step 9. See next page for combustion system installation procedure.

WARNING

Heater components may be **HOT** when performing the following steps in this procedure. Take necessary precaution to prevent personal injury.

WARNING

120 volt potential exposure. Isolate the appliance and reconfirm power is disconnected using a multi-meter.
Combustion System Replacement Procedure

Step 1. Fully inspect burner mounting insert gasket for the following:
 a) Tears
d) Dirt or debris
b) Missing material
e) Other imperfections that would inhibit proper seal
c) Cracks

If gasket is NOT affected by any of the above, gasket replacement is not required.

Step 2. Install combustion assembly using new gasket or fully inspected gasket from step 1.
 Secure combustion assembly at the burner mounting insert using screws from step 6 on previous page. Tighten screws evenly.

Step 3. Reconnect wire harnesses to hot surface igniter or high voltage cable to spark rod, flame sensor, blower and gas valve.

Step 4. Reconnect PVC venting, gas supply and silicone tubing to gas valve. Turn on gas supply to heater and check for gas leaks, repair any gas leaks found.

Step 5. Restore 120 volt power supply to water heater and confirm proper operation following the lighting instructions on the lighting instruction label or the lighting instruction located in the installation and operating instruction manual.

Step 6. Replace surround cover on top of water heater.
Burner Tube Removal Procedure

Step 1. Position main power switch to "OFF".

Step 2. Disconnect (unplug) water heater from 120 volt power source.

Step 3. Turn off gas supply to water heater.

Step 4. Un-latch & remove surround cover from top of heater.

Step 5. From the gas valve, disconnect the gas connection, PVC venting, wire harness and silicone tubing.

Step 6. Disconnect wire harness from blower assembly.

Step 7. Remove the two screws holding each the hot surface igniter and flame sensor in place (long reach magnetic Phillips screw driver). Carefully remove hot surface igniter and flame sensor from combustion assembly. For Direct Spark Ignition models, remove the two screws on the spark rod bracket and remove the spark rod.

Step 8. Remove the 4 nuts (7/16" wrench) holding the burner transition in place. Lift the blower/gas valve transition assembly from burner mounting insert, remove gasket and set aside.

Step 9. Remove burner tube from burner mounting insert. See next page for burner tube inspection procedure.
Burner Tube Inspection

Step 1. Inspect burner tube as follows (BSI ceramic fiber mesh burner, water heaters prior to serial number “CK”):
 a) Visually inspect ceramic fiber mesh, mesh should be uniform in appearance without large gaps, tears or fraying. Mesh should have uniform pattern allowing for unrestricted gas flow.
 b) Gently squeeze burner tube, Burner tube should feel firm without any soft areas around the sides or at the bottom.
 c) Visually inspect inside burner tube, Burner tube should be intact with no areas of deterioration. Ports should be free of any debris.

 Inspect burner tube as follows (Acotech metal fiber mesh burner, water heaters with "CK" serial number or later).
 a) Outer fiber mesh should be uniform with no tears or deterioration.

Step 2. If burner tube is affected by any of the above, replacement is required. Refer to burner tube replacement procedure below.

Burner Tube Replacement Procedure

Note: New metal fiber mesh burner (Acotech) is the replacement burner for the BSI ceramic fiber sock burner. The length of burner will not be the same as the previous BSI burner. Provide the model and serial number for the correct replacement burner.

Step 1. Fully inspect burner flange gaskets, igniter and flame sensor gaskets for the following:
 a) Tears
 b) Missing material
 c) Cracks
 d) Dirt or debris
 e) Other imperfections that would inhibit proper seal

 If gaskets are NOT affected by any of the above, gasket replacement is not required.

Step 2. Install burner tube with gaskets into burner mounting insert. Be sure gasket surfaces are free of debris.

Step 3. Reconnect the blower/gas valve/transition assembly to burner mounting insert. Secure using nuts from step 8 on previous page.

Step 4. Carefully reinstall flame sensor with gasket and hot surface igniter with gasket and secure with screws from step 7 on previous page. Reconnect wire harnesses to sensor and igniter.

Step 5. Reconnect wire harnesses to blower motor and to gas valve.

Step 6. Reconnect PVC venting, gas supply and silicone tubing to gas valve. Turn on gas to heater and check for gas leaks, repair any gas leaks found.

Step 7. Restore 120 volt power supply to water heater and confirm proper operation following the lighting instructions on the lighting instruction label or the lighting instruction located in the installation and operating instruction manual.

Step 8. Replace surround cover on top of water heater.
Gas Valve Replacement Procedure

Step 1. Position main power switch to “OFF”.
Step 2. Disconnect (unplug) water heater from 120 volt power source.
Step 3. Turn off gas supply to water heater.
Step 4. Un-latch & remove surround cover from top of heater.
Step 5. From the gas valve, disconnect the gas connection, PVC venting, wire harness and silicone tubing.
Step 6. Remove the 2 gas valve mounting screws (Torx bit) located at the 11:00 O-clock & 5:00 O-clock position on the venturi mounting flange and remove gas valve from water heater.
Step 7. Remove any residual gasket material from blower and venturi mounting flange.
Step 9. Reconnect PVC venting, gas supply, silicone tubing & wire harness to gas valve. Turn on gas supply to heater and check for gas leaks, repair any gas leaks found.
Step 10. Restore 120 volt power supply to water heater and confirm proper operation following the lighting instructions on the lighting instruction label or the lighting instruction located in the installation and operating instruction manual.
Step 11. Replace surround cover on top of water heater.

WARNING
120 volt potential exposure. Isolate the appliance and reconfirm power is disconnected using a multi-meter.
Service Procedure EF-V

Blower Testing and Replacement

Hot Surface Ignition Models:
- Are safety circuits in normal position?
- Direct Spark Ignition Models:
 - Is collector high limit switch and pressure switch in normally closed position?

Does blower energize?
- (For Direct Spark Ignition models, ensure control display shows “Heating”, raise temperature setpoint if necessary)

Is there 120VAC across the white and black wires at the terminal block?

Check amp draw through BLACK wire lead of blower motor. Is there .6 to 3.0 amps?

Is Blower wheel secured to blower motor shaft?
- Call technical support.

Refer to ignition module/control board illustration.
- Hot Surface Ignition Models:
 - Is there 120VAC between P5(1) and P5(3)?
 - Direct Spark Ignition Models:
 - Is there 120VAC between P7(5) and P7(3)?

Is there 120VAC across the white and black wires at the terminal block?
- (see photo at right)

120VAC check at Terminal Block
- Black wire leading to blower motor looped through amprobe.

热 Surface Ignition Models ONLY:
- Are safety circuits in normal position?
- Direct Spark Ignition Models:
 - Is collector high limit switch and pressure switch in normally closed position?

Thermostat not calling for heat.
- (see “Thermostat Circuit Testing”)

Correct safety circuit problem per safety circuit trace
- (section “Blocked Vent Pressure Switch Testing”).

Replace ignition module/control board.

Replace blower.
- (see “Blower Replacement Procedure”)

Repair/replace wire harness.

Replace blower.
- (see “Blower Replacement Procedure”)

120VAC check at Terminal Block
- Black wire leading to blower motor looped through amprobe.

Checking for 120VAC (Black & White Wires)

Is there 120VAC across the white and black wires at the terminal block?
- (see photo at right)
Blower Replacement Procedure

Step 1. Position main power switch to “OFF”.
Step 2. Disconnect (unplug) water heater from 120 volt power source.
Step 3. Turn off gas supply to water heater.
Step 4. Un-latch & remove surround cover from top of heater.
Step 5. Disconnect wire harness from blower.
Step 6. Disconnect intake vent and gas supply from gas valve assembly.
Step 7. Remove the 2 gas valve mounting screws (Torx bit) located at the 11:00 O-clock & 5:00 O-clock position on the venturi mounting flange.
Step 8. Remove The 4 blower flange mounting screws (5/32 Allen wrench) and remove blower from transition flange.
Step 9. Remove any residual gasket material from venturi mounting flange and transition flange.
Step 10. Install new blower with new gasket provided. Secure blower in place using screws from step 8.
Step 11. Reconnect gas valve assembly to blower with new gasket provided. Secure gas valve in place using screws from step 7.
Step 12. Reconnect intake vent and gas line to gas valve assembly and check for gas leaks repair any leaks found.
Step 13. Reconnect wire harness to blower assembly, restore 120 volt power supply & Gas supply to water heater and confirm proper operation following the lighting instructions on the lighting instruction label or the lighting instructions located in the installation and operating instruction manual.
Step 14. Replace surround cover on top of water heater.
Sequence of Operation:
With the thermostat calling for heat, prior to energizing the blower, the ignition module checks the exhaust pressure switch for normal switch position of normally open. If the exhaust pressure switch contacts are closed (not in normal position), the ignition module waits 45 seconds for the pressure switch contacts to open. If the pressure switch contacts do not open after 45 seconds, the ignition module locks out with the PURGE LED flashing indicating a pressure switch fault.

LED Status
Only power LED is on, or Purge LED flashing.

Does Blower Energize?
Y

Call Technical Support.
N

Depress Reset Button on Vent Safety Switch. Is there continuity across high limit switch? (see photo below)
Y

Replace Vent Safety Switch. (see "Vent Safety Switch Replacement Procedure")
N

Check Pressurize LED status.

On Within 5 Minutes?
Y

Pressure Switch is OK.
N

Flashing After 5 Minutes?
N

Call for Technical Support.
Y

Check Blower for Proper Operation (see page 27) Is Blower OK?
Y

Refer to "Check Collector Pressure" (see next page)
N

Is there continuity through GREY wire leads of heater side safety circuit harness? (see photo below)

Is there continuity through RED wire leads of heater side safety circuit harness? (see photo below)

Check PURGE LED status on ignition module, Flashing after 45 seconds?

Replace exhaust pressure switch (see "Exhaust Pressure Switch Replacement Procedure")

Safety Circuit Trace

WARNING
120 volt potential exposure. Use caution making voltage checks to avoid personal injury.
Check Collector Pressure

Check exhaust collector pressure at the exhaust collector pressure tap location (see illustration below). Is there positive pressure equal to or greater than pressure switch settings below?

EXHAUST PRESSURE SWITCH SETTINGS:
- EF(60,100)T199 +2.55" W.C.
- EF100T150 +1.50" W.C. (see note 1)
- EF60T150.EF100T250 +1.22" W.C.
- EF60T125 +2.08" W.C.
- EF100T300 +0.55" W.C. (see note 2)

Note 1: +5.6" W.C. on serials prior to AH5039107
Note 2: +0.8" W.C. on serials prior to AK5288269

With monometer, take a reading at the exhaust tube pressure tap location. Is value negative (-)?

Is exhaust venting system blocked or obstructed?

Is vent system total length compliant with vent tables in the instruction manual?

Replace exhaust pressure switch. (see “Exhaust Pressure Switch Replacement Procedure”)

Clear obstruction. Determine cause and correct.

Reconfigure vent system to be compliant with vent tables (see “Specifications”).

Check exhaust collector pressure at the exhaust collector pressure tap location (see illustration below). Is there positive pressure equal to or greater than pressure switch settings below?

EXHAUST PRESSURE SWITCH SETTINGS:
- EF(60,100)T199 +2.55" W.C.
- EF100T150 +1.50" W.C. (see note 1)
- EF60T150.EF100T250 +1.22" W.C.
- EF60T125 +2.08" W.C.
- EF100T300 +0.55" W.C. (see note 2)

Note 1: +5.6" W.C. on serials prior to AH5039107
Note 2: +0.8" W.C. on serials prior to AK5288269

Inspect the area housing the combustion system and control panel located at the top of the heater. Does the area show signs of corrosion and/or excessive heat?

Remove combustion assembly (see “Combustion System Removal Procedure”).
Inspect combustion chamber for blockage or debris accumulation.

Call for technical support

Call for technical support

Call for technical support

Clear obstruction. Determine cause and correct.

Clear obstruction. Determine cause and correct.

Clear obstruction. Determine cause and correct.

Clear obstruction. Determine cause and correct.
Exhaust Pressure Switch Replacement Procedure

Step 1. Position main power switch to “OFF” position.

Step 2. Loosen adhesive backed rubber escutcheon from service panel access cover and slide escutcheon back along exhaust pipe to allow for removal of cover.

Step 3. Remove screws from service panel access cover (¼” nut driver) and remove cover from heater. (see photos at right)

Step 4. Disconnect silicone tubing and wire leads from pressure switch. (see photos at right)

Step 5. Remove pressure switch mounting screws (5/16” wrench) and remove pressure switch.

Step 6. Assemble new pressure switch to heater using screws from step 5.

Step 7. Reconnect wire leads. Note: wire leads are interchangeable with either terminal.

Step 8. Reconnect silicone tubing to pressure switch as follows:
 a) Exhaust pipe tubing connects to negative (-) side of switch identified by the (-) symbol located on switch.
 b) Exhaust collector tubing connects to positive (+) side of switch identified by the (+) symbol located on the switch.

Step 9. Restore 120 volt power supply to water heater and confirm proper operation following the lighting instructions on the lighting instruction label or the lighting instructions located in the installation and operating instruction manual.

Step 10. Reinstall service panel access cover and rubber escutcheon.
Sequence of operation:
The blocked vent pressure switch monitors the pressure in the exhaust tube. The switch contacts are normally closed and will not open unless there is a blockage in the exhaust venting or terminal (snow, ice, debris). If the blocked vent pressure switch contacts open after the thermostat initiates the blower, the blower will remain on for up to 5 minutes waiting for the contacts to close. If the contacts remain open, the blower will stop and the PURGE LED will flash for hot surface ignition models, or error code 29 will display for direct spark ignition models.

LED Status
Only power LED is on, or Purge LED flashing. **Error Code 29 or 26** (Direct Spark Ignition Models)

Safety Circuit Trace

- Does blower energize?
 - **Y**
 - **N**
 - Call technical support.
 - **N** Does heater function?
 - **Y** Verify proper switch operation. (see "Vent Safety Switch Testing and Replacement")
 - **N** Replace vent safety switch. (see "Exhaust Pressure Switch Replacement Procedure")

Hot Surface Ignition Models: Check PURGE LED status. Direct Spark Ignition Models: Check control display

- On within 5 minutes?
 - **Y** Pressure switch is OK.
 - **N** Flashing after 5 minutes? Error code 29 again?
 - **Y** Check blower for proper operation (see "Blower Testing and Replacement") Is blower OK?
 - **Y** Refer to "Check Collector Pressure" (see next page)
 - **N** Correct blower problem (see "Blower Testing and Replacement")
 - **N** Call for technical support.
 - Replace exhaust pressure switch (see "Exhaust Pressure Switch Replacement Procedure")

Note: HOT SURFACE IGNITION MODELS ONLY - The blocked vent pressure switch must be used with the revised ignition control, identified with a yellow label.

WARNING
120 volt potential exposure. Use caution making voltage checks to avoid personal injury.

- Is there continuity through GREY wire leads of heater side safety circuit harness? (see photo below)
 - **Y** Depress reset button on vent safety switch. Is there continuity across high limit switch? (see photo below)
 - **N** Replace exhaust pressure switch (see "Exhaust Pressure Switch Replacement Procedure")

- Is there continuity through RED wire leads of heater side safety circuit harness? (see photo below)
 - **Y** Check PURGE LED status on ignition module, Flashing after 45 seconds?
 - **Y** Replace exhaust pressure switch (see "Exhaust Pressure Switch Replacement Procedure")
 - **N** Replace vent safety switch. (see "Vent Safety Switch Replacement Procedure")
 - **N** Correct blower problem (see "Blower Testing and Replacement")

WARNING
Make sure exhaust collector compartment is not overheating (350°F) before resetting vent safety switch. If there is evidence the collector compartment is overheating, CALL TECHNICAL SUPPORT.
Check Exhaust Tube Pressure

With monometer, take a reading at the **exhaust tube pressure tap** location. Is value negative (-) or slightly positive (see illustration below).

- **Y**: Is exhaust venting system blocked or obstructed? Also check condensate elbow and drain.
 - **N**: Clear obstruction. Determine cause and correct.
 - **Y**: Replace blocked vent switch. (see “Blocked Vent Switch Testing and Replacement”)

With ohmmeter check pressure switch for continuity. Contacts should be closed.

- **N**: Is vent system total length compliant with vent tables in the instruction manual?
 - **Y**: Reconfigure vent system to be compliant with vent tables (see “Specifications”).
 - **N**: Is pressure in exhaust tube near 2.7" w.c. or more? If so, correct blockage (above). If exhaust pressure is low (0.40" or less), replace pressure switch.

Exhaust Tube pressure tap location

Exhaust tube at bottom of heater
Exhaust Pressure Switch Replacement Procedure

Step 1. Position main power switch to “OFF” position.

Step 2. Loosen adhesive backed rubber escutcheon from service panel access cover and slide escutcheon back along exhaust pipe to allow for removal of cover.

Step 3. Remove screws from service panel access cover (¼” nut driver) and remove cover from heater. (see photos at right)

Step 4. Disconnect silicone tubing and wire leads from pressure switch. (see photos at right)

Step 5. Remove pressure switch mounting screws (5/16” wrench) and remove pressure switch.

Step 6. Assemble new pressure switch to heater using screws from step 5.

Step 7. Reconnect wire leads. Note: wire leads are interchangeable with either terminal.

Step 8. Reconnect silicone tubing to pressure switch as follows:
 a) Exhaust pipe tubing connects to single tap located on switch

Step 9. Restore 120 volt power supply to water heater and confirm proper operation following the lighting instructions on the lighting instruction label or the lighting instructions located in the installation and operating instruction manual.

Step 10. Reinstall service panel access cover and rubber escutcheon.
Hot surface Igniter Testing Procedure

Is igniter resistance less than 150 Ohms (cold)?
(see “check igniter resistance” below)

- **Y**
 - Refer to ignition module illustration below, is there 120VAC across terminals P6(1) and P6(2)?
 (Check during igniter warm up period, indicated by the igniter LED glowing on the ignition module).
 - **Y**
 - Check harness connection from igniter to ignition module.
 - **N**
 - Replace ignition module.
 (see “Ignition Module Replacement Procedure”)

- **N**
 - Replace hot surface igniter
 (see “Hot Surface Igniter Replacement Procedure”)

Volt meter set to OHM setting

Meter probe

Hot surface igniter

WARNING
120 volt potential exposure. Use caution making voltage checks to avoid personal injury. Igniter may be too hot to handle, take necessary precautions.

IGNITION MODULE
Hot Surface Igniter Replacement Procedure

Step 1. Position main power switch to “OFF”

Step 2. Disconnect (unplug) water heater from 120 volt power source.

Step 3. Un-latch & remove surround cover from top of heater.

Step 4. Fold back insulation in front of combustion assembly to expose hot surface igniter. (see photo at right)

Step 5. Disconnect igniter wire leads from ignition module.

Step 6. Remove the 2 igniter mounting screws (magnetic tip, long reach Phillips screw driver) and remove igniter and gasket from transition base flange.

Step 7. Remove any residual gasket material from transition base flange.

Step 8. Install new igniter with new gasket provided using screws from step 5. Arrange igniter flange with off-center hole towards front of heater.

Step 9. Reconnect igniter wire harness.

Step 10. Fold insulation back into place. Be sure no wires are in contact with burner flange.

Step 11. Restore 120 volt power supply to water heater and confirm proper operation following the lighting instructions on the lighting instruction label or the lighting instructions located in the installation and operating instruction manual.

Step 12. Replace surround cover on top of water heater.

Note:
New replacement igniter will not have a shield over element. Handle carefully to prevent breakage.

Note:
Do not handle igniter element or allow foreign material to come in contact with element.

WARNING
120 volt potential exposure. Isolate the appliance and reconfirm power is disconnected using a multi-meter.

IMPORTANT:
Handle hot surface igniter carefully to prevent breakage.

Heater front
Off-center mounting hole
Igniter mounting screws
Igniter flange
Igniter gasket
Igniter filament
Transition base flange
Flame Sensor Testing Procedure

Refer to illustration below, is there a minimum of 1 micro amp during 1.5 second flame proving period?

Y:

With flame sensor Disconnected from ignition module, check continuity to ground. Is there continuity to ground?

N:

Remove flame sensor from water heater. Check continuity from tip of flame sensor to end of wire lead. Is there continuity?

Y:

Is flame sensor free of oxidation?

N:

Clean or replace flame sensor. (see “Flame Sensor Replacement Procedure”)

Y:

Is ceramic of flame sensor cracked?

N:

Replace flame sensor. (see “Flame Sensor Replacement Procedure”)

Y:

Volt meter set to Micro amps setting (μA)

Meter probe

Flame sensor terminal

HOT SURFACE IGNITION MODELS

DIRECT SPARK IGNITION MODELS

WARNING
120 volt potential exposure. Use caution making voltage checks to avoid personal injury. Flame sensor may be too hot to handle, take necessary precautions.
Flame Sensor Replacement Procedure

Step 1. Position main power switch to “OFF”
Step 2. Disconnect (unplug) water heater from 120 volt power source.
Step 3. Un-latch & remove surround cover from top of heater.

Step 4. Fold back insulation in front of combustion assembly to expose flame sensor. (see photo at right)
Step 5. Disconnect wire lead from flame sensor.
Step 6. Remove the 2 sensor mounting screws (magnetic tip, long reach Phillips screw driver) and remove flame sensor & gasket from transition base flange.
Step 7. Remove any residual gasket material from transition base flange.

Step 8. Install new flame sensor with new gasket provided using screws from step 6. Arrange flame sensor with hook towards burner.

Step 9. Reconnect flame sensor wire.
Step 10. Fold insulation back into place. Be sure no wires are in contact with burner flange.

Step 11. Restore 120 volt power supply to water heater and confirm proper operation following the lighting instructions on the lighting instruction label or the lighting instructions located in the installation and operating instruction manual.

Step 12. Replace surround cover on top of water heater.

WARNING
120 volt potential exposure. Isolate the appliance and reconfirm power is disconnected using a multi-meter.
Spark Rod Gap Inspection and Adjustment

SERVICE PROCEDURE EF-IX
Spark Rod Gap Adjustment and Replacement

Step 1. Remove combustion system as described in “Combustion System Removal Procedure”.

Step 2. Measure spark gap between the spark rod and burner tube. Acceptable spark gap is between 3/16” - 1/4” (see photo below).

Step 3. If spark gap is not between 3/16” - 1/4”, the spark rod may be carefully bent by supporting the end near the ceramic insulator with pliers and bending the end near the burner tube with needle nose pliers (see photo below). Ensure and verify spark gap is between 3/16” - 1/4” after bending.

Step 5. Reinstall the combustion system per “Combustion System Replacement Procedure” and check several ignitions to ensure the burner lights smoothly.

WARNING
Spark gap must be set to 3/16” to 1/4”. Failure to set and verify proper spark gap may result in a delayed ignition resulting in damage to the water heater.

CAUTION
Use caution while performing these steps to prevent stressing or cracking the ceramic insulator.
Spark Rod Replacement Procedure

Step 1. Position main power switch to “OFF”

Step 2. Disconnect (unplug) water heater from 120 volt power source.

Step 3. Un-latch & remove surround cover from top of heater.

Step 4. Fold back insulation in front of combustion assembly to expose spark rod. (see photo at right)

Step 5. Disconnect wire lead from spark rod.

Step 6. Remove the 2 mounting screws (magnetic tip, long reach Phillips screw driver) and remove spark rod & gasket from transition base flange.

Step 7. Remove any residual gasket material from transition base flange.

Step 8. Install new spark rod with new gasket provided using screws from step 6. Arrange spark rod with hook towards burner (off-center mounting hole towards the front of the water heater).

Step 9. Remove combustion system following “Combustion System Removal Procedure”, and verify spark gap following “Spark Rod Gap Inspection and Adjustment”.

Step 9. Reassemble combustion system following “Combustion System Replacement Procedure”.

Step 10. Fold insulation back into place. Be sure no wires are in contact with burner flange.

Step 11. Restore 120 volt power supply to water heater and confirm proper operation following the lighting instructions on the lighting instruction label or the lighting instructions located in the installation and operating instruction manual.

Step 12. Replace surround cover on top of water heater.

WARNING

Spark gap must be set to 3/16” to 1/4”. Failure to set and verify proper spark gap may result in a delayed ignition resulting in damage to the water heater.

WARNING

120 volt potential exposure. Isolate the appliance and reconfirm power is disconnected using a multi-meter.

If spark rod is replaced for any reason, the combustion system MUST be removed and the spark gap to the burner measured and adjusted properly.
Ignition Module Replacement Procedure

Step 1. Position main power switch to “OFF”.

Step 2. Disconnect (Unplug) water heater from 120 Volt power source.

Step 3. Un-latch & remove surround cover from top of water heater.

Step 4. Locate Ignition module on control panel inside surround area. (see photo below)

Step 5. Carefully disconnect all wire harness connection to ignition module. Connection are non-interchangeable to insure proper reinstallation.

Step 6. Remove the 3 screws (Phillips screw driver) holding the ignition module in place and remove ignition module from control panel.

Step 7. Install new ignition module and secure in place with screws from step 6.

Step 8. Carefully reconnect all wire harness connection to ignition module. Connection are non-interchangeable to insure proper reinstallation.

Step 9. Restore 120 volt power supply to water heater and confirm proper operation following the lighting instructions on the lighting instruction label or the lighting instruction located in the installation and operating instruction manual.

Step 10. Replace surround cover on top of water heater.

Note: Replacement hot surface ignition module works on all EF models prior to and later than “CF” serial numbers. Direct spark ignition models use a different control board (detailed in following section).

WARNING
120 volt potential exposure. Isolate the appliance and reconfirm power is disconnected using a multi-meter.
Control Board Replacement (Honeywell Integrated Control w/ Direct Spark Ignition)

Step 1. Position main power switch to “OFF”

Step 2. Disconnect (unplug) water heater from 120 volt power source.

Step 3. Un-latch and remove top surround cover from top of water heater.

Step 4. Locate control board.

Step 5. Carefully disconnect all wire connections from control board.

Note: It may be necessary to identify wires for proper re-connection.

Step 6. Depress the plastic tabs on the blower side of the control board first.

Step 7. Tilt the control panel and slide control hook tabs from slots in the control panel (see photo at right).

Step 8. Replace control board and all wire connections.

Step 9. Restore 120 volt power supply to water heater and confirm proper operation following the lighting instructions on the lighting instruction label or the lighting instruction located in the installation and operating instruction manual.

Step 10. Replace surround cover on top of water heater.

WARNING
120 volt potential exposure. Isolate the appliance and reconfirm power is disconnected using a multi-meter.
Transformer Replacement Procedure

Step 1. Position main power switch to “OFF”.

Step 2. Disconnect (Unplug) water heater from 120 Volt power source.

Step 3. Un-latch & remove surround cover from top of water heater.

Step 4. **For Hot Surface Ignition models**, refer to ignition module illustration below, Disconnect wire harness P1 labeled “PRIMARY” and P2 labeled “SECONDARY” from ignition module.

Step 5. **For Hot Surface Ignition models**, Disconnect secondary leads (blue & yellow wire) from thermostat board. Note the blue wire is connected to 24 volt “HOT” terminal. (see photo below)

For Direct Spark Ignition models, Disconnect primary leads (black & white) and secondary leads (blue & yellow) from the transformer. (leads are different sizes to prevent interchanging)

Step 6. Remove the 2 screws (short Phillips screw driver) holding the transformer in place and remove transformer from control panel. (see photo below)

Step 7. Install new transformer and secure in place with screws from step 6.

Step 8. **For Hot Surface Ignition models**, Reconnect wire harness P1 & P2 connections are non-interchangeable to insure proper reconnection.

For Direct Spark Ignition models, Reconnect primary and secondary wires to transformer. (leads are different sizes to prevent interchanging)

Step 9. **For Hot Surface Ignition models**, Reconnect blue & yellow wire leading from the P2 connection on ignition module to thermostat board. Note the blue wire must connect to the 24 volt “HOT” terminal. (see photo at right)

Step 10. Restore 120 volt power supply to water heater and confirm proper operation following the lighting instructions on the lighting instruction label or the lighting instruction located in the installation and operating instruction manual.

Step 11. Replace surround cover on top of water heater.

WARNING

120 volt potential exposure. Isolate the appliance and reconfirm power is disconnected using a multi-meter.
Is there continuity through the normally closed intake pressure switch? (see photo at right)

Y

Replace intake pressure switch. (see "Intake Pressure Switch Replacement Procedure")

Does purge LED illuminate on the ignition module?

Y

Switch OK.

N

With manometer, take a reading from the inlet tube pressure tap. Is reading negative (-)1.2" W.C. or more? (see illustration below)

Y

Is there continuity through the normally closed intake pressure switch? (see photo above)

Y

Remove hose from intake pressure switch and Restart heater. Does purge LED illuminate?

Y

See "Exhaust Pressure Switch Testing and Replacement" or "Blower Testing and Replacement"

N

Isolate (disconnect) heater from intake vent system and Restart heater. Does purge LED illuminate?

Y

Is intake vent system obstructed?

Y

Clear obstruction.

N

Call for technical support.

N

Disconnect red wire leads from pressure switch and check continuity through switch.
Intake Pressure Switch Replacement Procedure

Step 1. Position main power switch to “OFF”.

Step 2. Disconnect (Unplug) water heater from 120 Volt power source.

Step 3. Un-latch & remove surround cover from top of water heater.

Step 4. Locate intake pressure switch on control panel inside surround area (see photos below).

Step 5. Disconnect red wire leads from pressure switch (see photo at right).

Step 6. Disconnect silicone tubing from pressure switch (see photos above).

Step 7. Remove the two screws (Phillips screw driver) holding the intake pressure switch in place and remove pressure switch from control panel (see photos above).

Step 8. Install new pressure switch and secure in place with screws from step 7.

Step 9. Reconnect silicone tubing (from step 6) to pressure switch.

Step 10. Reconnect red wires (from step 5) to pressure switch. Note: wires are interchangeable with either switch terminal.

Step 11. Restore 120 volt power supply to heater & verify proper heater operation following the instructions on the lighting instruction label or the lighting instructions located in the installation & operation manual.

Step 12. Replace surround cover on top of heater.
Sequence of operation:

For **Hot Surface Ignition models**, with the thermostat calling for heat, prior to energizing blower, the ignition module checks the vent safety switch for normal switch position of normally closed. If the vent safety switch contacts are open, (not in normal position), the ignition module waits indefinitely for contact to close. The vent safety switch must be manually reset to close the switch contacts.

For **Direct Spark Ignition models**, error code 26 will display indicating an open circuit for the vent safety switch. Determine if temperature has reached 350°F before resetting switch and restoring operation. If evidence of extreme temperature is present, call technical support.

WARNING

120 volt potential exposure. Use caution making voltage checks to avoid personal injury.

- Locate harness connection. (see photo at right)
- Is there continuity Through GREY Lead wires of heater side harness? (see photo at right)
 - Y: Replace vent safety switch (see “Vent Safety Switch Replacement Procedure”)
 - N: Call technical support.
- Depress reset button on high limit switch. Is there continuity across high limit switch? (see photo below)
 - Y: Reset heater, observe heating cycle. Does switch open?
 - N: Does switch open prior to 350°F?
 - Y: Replace vent safety switch (see “Vent Safety Switch Replacement Procedure”)
 - N: System OK
- Is temp over 350°F?
 - Y: DO NOT OPERATE HEATER System over heating, immediately contact technical support.
 - N: Is temp over 350°F?
- Reset button

WARNING

Make sure exhaust collector compartment is not overheating (350°F) before resetting vent safety switch. If there is evidence the collector compartment is overheating, CALL TECHNICAL SUPPORT.
Vent Safety Switch Replacement Procedure

Step 1. Position main power switch to “OFF”.

Step 2. Loosen adhesive backed rubber escutcheon from service panel access cover and slide escutcheon back along exhaust pipe to allow for removal of cover (see photos at right).

Step 3. Remove screws from service panel access cover (¼” nut driver) and remove cover from heater (see photos at right).

Step 4. Disconnect wire leads from vent safety switch (see photo at right).

Step 5. Remove the 2 switch mounting screws (Phillips screw driver) and nuts (5/16 wrench) and remove switch from heater.

Step 7. Reconnect wire leads. Note: wire leads are interchangeable with either switch terminal.

Step 8. Restore 120 volt power supply to water heater and confirm proper operation following the lighting instructions on the lighting instruction label or the lighting instruction located in the installation and operating instruction manual.

Step 9. Reinstall service panel access cover and rubber escutcheon.
Disassembly Procedure for Access to Anodes & Flue Baffles

⚠️ WARNING
Heater components may be HOT when performing the following steps in this procedure. Take necessary precaution to prevent personal injury.

Step 1. Position main power switch to “OFF”.

Step 2. Disconnect (Unplug) water heater from 120 Volt power source.

Step 3. Un-latch & remove surround cover from top of heater.

Step 4. Disconnect wire harnesses to allow for removal of control panel. Note: Where ever possible, rather than disconnecting at the control panel, follow wire harness away from control panel and disconnect at control component location.

Step 5. Remove the three control panel mounting screws (¼” nut driver) and remove control panel from the water heater (see photos below).

Step 6. Completely remove insulation (two pieces) from top of heater to expose collector cover

Step 7. Remove all collector cover screws (5/16” socket) and remove collector cover (see photos at right).

Step 8. Photo 44 shows heater with collector cover removed allowing access to anode rods and flue baffles.

a) for anode service, see “Anode Inspection and Replacement”
b) for flue baffle service, see “Flue Baffle Inspection and Replacement”
c) for powered anode service, see “Powered Anode Replacement”

⚠️ WARNING
120 volt potential exposure. Isolate the appliance and reconfirm power is disconnected using a multi-meter.

Note: EF100T399 models have only 1 anode rod under the 2nd pass collector cover.
Anode inspection and replacement

⚠️ WARNING
Heater components and stored water may be HOT when performing the following steps in this procedure. Take necessary precaution to prevent personal injury.

Step 1. Turn off water supply and drain water heater.

Step 2. Disassemble water heater per “Disassembly Procedure for Access to Andoes & Flue Baffles”.

Step 3. Locate and remove anode rods from heater (1-1/16 hex socket).

Step 4. Visually inspect anode rod. Anode rod should show signs of depletion, this is normal. If the depletion is ½ of the original diameter (approximately ¾” diameter), replacement is recommended. If any of the steel core of the anode is exposed, replacement is recommended.

Step 5. Upon completion of inspection or subsequent replacement, apply thread sealing tape or other thread compound to threads of anode and reinstall into heater. Restore water supply and check for and repair any leaks found.

Step 6. Reinstall collector cover per “Collector Cover Installation Procedure”.

Step 7. Reinstall collector insulation and control panel, reconnect control panel wire harnesses.

Step 8. Restore 120 volts to water heater and verify proper heater operation following the instructions on the lighting instruction label or the lighting instruction located in the installation and operating instruction manual.

Step 9. Replace surround cover on top of water heater.
Flue baffle inspection and replacement

WARNING

Heater components may be **HOT** when performing the following steps in this procedure. Take necessary precaution to prevent personal injury.

Step 1. Disassemble heater per “Disassembly Procedure for Access to Anodes & Flue Baffles”.

Step 2. Remove flue baffles from heater (pliers) (8 two inch baffles & 2 four inch baffles).

Step 3. Visually inspect flue baffles. Flue baffles should show signs of oxidation, this is normal. If the oxidation has deteriorated any portion of the flue baffle, replacement is recommended. If any restrictors are missing, replacement is recommended.

Step 4. Upon completion of inspection or subsequent replacement, reinstall flue baffles into heater.

Step 5. Reinstall collector cover per “Collector Cover Installation Procedure”.

Step 6. Reinstall collector insulation and control panel, reconnect control panel wire harnesses.

Step 7. Restore 120 volts to water heater and verify proper heater operation following the instructions on the lighting instruction label or the lighting instruction located in the installation and operating instruction manual.

Step 8. Replace surround cover on top of water heater.
Service Procedure EF-XIV
Powered Anode Replacement for EF100T399 only

Powered Anode Replacement EF100T399 models only

⚠ WARNING
Heater components may be HOT when performing the following steps in this procedure. Take necessary precaution to prevent personal injury.

The powered anode control module is located on the right vertical side of the control panel inside the surround panel. The control has a LED indicator light to show the status of operation. When the tank is filled with water and the power supply is on to the water heater, the light should have a steady green glow to indicate that protection current is flowing and operating normally. If the indicator light is not glowing, the power supply to the water heater or powered anode system is disconnected.

Step 1. Check the power supply or wire connections to the powered anode control.

Step 2. Indicator light diagnostic codes:
 a) If the control is flashing red, then there is a malfunction with the powered anode system. Make sure there are no bare spots in the wire insulation to the powered anode rods.

Step 3. Check all electrical connections. The powered anode rods are insulated from the water heater tank in the bushing.
 a) With an ohmeter, check continuity between the powered anode terminal and the bushing. There should not be continuity. If there is continuity, replace the powered anode assembly.
Collector Cover Installation Procedure

Step 1. Remove old silicone from top surface of collector flange and collector cover.

Step 2. Apply ¼" bead of Ultra Copper Silicone around entire collector flange surface. Allow caulk to “cure” for 10 minutes.

Step 3. Carefully reinstall collector cover, tighten screws evenly.

Step 4. Allow a minimum of 6 hours before putting heater back in service.
Product Handling - Carefully uncrate the heater. Move in place with a hand truck (Do not use the venting pipes for handles).

Electrical Requirements - Make sure there is 120 volts line voltage. Line voltage must be properly polarized. Adequate ground supplied to the heater.

Venting Requirements - All venting must stay within the required lengths and diameter (see table below). Proper support of the venting pipe is a MUST (every 5ft vertical and 3ft horizontal). Termination must be located to prevent re-circulation of flue gases. Medium to long sweep 90° elbows or straight exhaust terminal coupling recommended.

Gas Requirements - Gas piping sized adequately, ¾" or larger to heater or 1" or larger for EF100T399 models. Install a properly sized regulator (if unknown, assure an adequate volume of gas is available). 7" W.C. is required when the unit is running. Gas pressure must stay below 14" W.C. static pressure. Pressure drops between static pressure and operating flow should be less than 3" W.C.

Condensate Requirements - Condensate line needs to slope to a drain at a minimum of ¼" per foot. Make sure the condensate line does not have the potential to freeze. If using more than one heater and using a common condensate line, make sure the condensate line is properly sized.

Service/Mechanical Room - Provide adequate space for servicing heater. Leave room to get to the top and bottom pressure switches as well as enough overhead room to remove the anode rods for servicing (18" min.).

Vent tables

Balanced Direct Vent Systems

<table>
<thead>
<tr>
<th>Model Number</th>
<th>2"</th>
<th>3"</th>
<th>4"</th>
</tr>
</thead>
<tbody>
<tr>
<td>EFR-1-60T120</td>
<td>60'</td>
<td>120'</td>
<td>170'</td>
</tr>
<tr>
<td>EF60T125, EF100T150</td>
<td>30'</td>
<td>120'</td>
<td>170'</td>
</tr>
<tr>
<td>EF60T150, EF100T199</td>
<td>30'</td>
<td>100'</td>
<td>150'</td>
</tr>
<tr>
<td>EF60T199</td>
<td>30'</td>
<td>80'</td>
<td>130'</td>
</tr>
<tr>
<td>EF100T250</td>
<td>N/A</td>
<td>80'</td>
<td>130'</td>
</tr>
<tr>
<td>EF100T300</td>
<td>N/A</td>
<td>60'</td>
<td>110'</td>
</tr>
<tr>
<td>EF100T399</td>
<td>N/A</td>
<td>50'</td>
<td>100'</td>
</tr>
</tbody>
</table>

Unbalanced Direct Vent Systems

Air intake CAN NOT exceed exhaust by more than 30 feet.

Note: each 3" & 4" 90° Elbow is equivalent to 5 feet of straight pipe.

Note: each 3" & 4" 45° Elbow is equivalent to 2.5 feet of straight pipe.

Power Vented Systems

<table>
<thead>
<tr>
<th>Model Number</th>
<th>2"</th>
<th>3"</th>
<th>4"</th>
</tr>
</thead>
<tbody>
<tr>
<td>EFR-1-60T120</td>
<td>60'</td>
<td>120'</td>
<td>170'</td>
</tr>
<tr>
<td>EF60T125, EF100T150</td>
<td>30'</td>
<td>120'</td>
<td>170'</td>
</tr>
<tr>
<td>EF60T150, EF100T199</td>
<td>30'</td>
<td>100'</td>
<td>150'</td>
</tr>
<tr>
<td>EF60T199</td>
<td>30'</td>
<td>80'</td>
<td>130'</td>
</tr>
<tr>
<td>EF100T250</td>
<td>N/A</td>
<td>80'</td>
<td>130'</td>
</tr>
<tr>
<td>EF100T300</td>
<td>N/A</td>
<td>60'</td>
<td>110'</td>
</tr>
<tr>
<td>EF100T399</td>
<td>N/A</td>
<td>50'</td>
<td>100'</td>
</tr>
</tbody>
</table>

WARNING! The EF100T250 and EF100T300 models are not approved for 2 inch diameter vent pipe. Venting with 2 inch pipe on these models may result in damage to the water heater or cause an unsafe condition. DO NOT use 2 inch Vent or Air Intake Pipe on EF100T250/300 models.
Date ______________________

Service Provider ______________________
Phone Number ______________________

Model Number ______________________
Serial Number ______________________

Venting (PVC, CPVC):
Vent size 3” or 4”
Intake 90’s (qty) __________ Intake 45’s (qty) __________ Length of straight pipe (intake) __________
Exhaust 90’s (qty) __________ Exhaust 45’s (qty) __________ Length of straight pipe (exhaust) __________

Gas Line:
Size & material ______________________
Distance from meter to water heater ______________________

Gas Pressure:
Static __________
Running Inlet __________

Venturi:
Setting from Bottom in Turns __________

Electrical:
Line Voltage __________
Low Voltage __________
Polarity __________
Igniter Resistance: __________
Flame Sense Micro -Amps: __________
Spark Gap: __________
LED Flashing Y or N Which One(s) ______________________
Error Codes on Control Display (Direct Spark Ignition System Only): ______________________

Condensate Line:
Size & Material ______________________
Length ______________________
Is trap provided Y or N

Exhaust Collector Pressure:
Positive Inches W.C. ______________________

Combustion:
CO2 __________
CO __________

Installation Site Name & Address:

Installation Site Contact Name & Phone Number:

Parts List

Models prior to “CF” serial number

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Combustion Surround Assy.</td>
</tr>
<tr>
<td>2</td>
<td>Burner Assy</td>
</tr>
<tr>
<td>3</td>
<td>2nd Pass Top Collector Cover</td>
</tr>
<tr>
<td>4</td>
<td>Screw 10-16 x 3/4</td>
</tr>
<tr>
<td>5</td>
<td>Vent Termination Elbow</td>
</tr>
<tr>
<td>6</td>
<td>Thermostat Sensor Probe</td>
</tr>
<tr>
<td>7</td>
<td>Baffle 4” Flue</td>
</tr>
<tr>
<td>8</td>
<td>Anode</td>
</tr>
<tr>
<td>9</td>
<td>Baffle 2” Flue</td>
</tr>
<tr>
<td>10</td>
<td>Wire Harness Service Panel</td>
</tr>
<tr>
<td>11</td>
<td>Plastisert Nipple 1-1/2” NPT</td>
</tr>
<tr>
<td>12</td>
<td>Plug</td>
</tr>
<tr>
<td>13</td>
<td>Nipple</td>
</tr>
<tr>
<td>14</td>
<td>T&P Relief Valve</td>
</tr>
<tr>
<td>15</td>
<td>Exhaust Pipe (PVC) w/Hose Barb</td>
</tr>
<tr>
<td>16</td>
<td>Condensate Trap Elbow</td>
</tr>
<tr>
<td>17</td>
<td>Silicone Hose</td>
</tr>
<tr>
<td>18</td>
<td>Outer Door Service Panel</td>
</tr>
<tr>
<td>19</td>
<td>Vent Pipe Support Bracket</td>
</tr>
<tr>
<td>20</td>
<td>NSF Escutcheon</td>
</tr>
<tr>
<td>21</td>
<td>Exhaust Pressure Switch</td>
</tr>
<tr>
<td>22</td>
<td>Nut</td>
</tr>
<tr>
<td>23</td>
<td>Hi-Limit Switch</td>
</tr>
<tr>
<td>24</td>
<td>Screw 6-32x 3/8</td>
</tr>
<tr>
<td>25</td>
<td>Cleanout Access Cover</td>
</tr>
<tr>
<td>26</td>
<td>Cleanout Gasket</td>
</tr>
<tr>
<td>27</td>
<td>Screw 5/16-18 x 3/8</td>
</tr>
<tr>
<td>28</td>
<td>Cleanout Cover</td>
</tr>
<tr>
<td>29</td>
<td>Cold Water Inlet</td>
</tr>
<tr>
<td>30</td>
<td>No Handle Brass Drain Valve</td>
</tr>
<tr>
<td>31</td>
<td>Coaxial Vent System</td>
</tr>
<tr>
<td>32</td>
<td>ASSE Approved Mixing Valve</td>
</tr>
</tbody>
</table>

Customer must specify complete model number and serial number when ordering service parts.
Customer must specify complete model number and serial number when ordering service parts.

Parts List

Models prior to “CF” serial number

<table>
<thead>
<tr>
<th>Reference</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA</td>
<td>Latch Assy</td>
</tr>
<tr>
<td>BB</td>
<td>Screw 8-32 x ½ RHCR</td>
</tr>
<tr>
<td>CC</td>
<td>Ignition Control Assy</td>
</tr>
<tr>
<td>DD</td>
<td>Jacket Head</td>
</tr>
<tr>
<td>EE</td>
<td>Main Power Switch</td>
</tr>
<tr>
<td>FF</td>
<td>Potentiometer</td>
</tr>
<tr>
<td>GG</td>
<td>Combustion Surround</td>
</tr>
<tr>
<td>JJ</td>
<td>Surround Base</td>
</tr>
</tbody>
</table>

1A | Combustion Surround Assy. |
2A | Blower Gas Valve Assy |
3A | Burner Assy |
4A | Blower EBM |
5A | Silicone Hose |
6A | Hose Tee Fitting |
7A | Screw 10-32 x 3/4 |
8A | Gasket & Screw |
9A | Gas Valve |
10A | Nipple ½" NPT x 3" |
11A | Reducer ¼ x ½ NPT |
12A | Nipple 3/8 NPT x 6" |
13A | 2" dia. Flex Reducer |
14A | Inlet (PVC) |
15A | Gasket Blower Transition |
16A | Screw 8-32 x ½ RHCR |
17A | Gasket Flame Sensor |
18A | Flame Sensor |
19A | Transition Tube |
20A | Nut Hex Washer |
21A | Gasket Hot Surface Igniter |
22A | Hot Surface Igniter |
23A | Burner Mounting Gasket |
24A | Burner Tube |
25A | Burner Mounting Gasket |
26A | Burner Mounting Insert |
27A | Burner Mounting Insert Gasket |
Customer must specify complete model number and serial number when ordering service parts.
Customer must specify complete model number and serial number when ordering service parts.
Customer must specify complete model number and serial number when ordering service parts.

<table>
<thead>
<tr>
<th>Part</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA</td>
<td>Latch Assy</td>
</tr>
<tr>
<td>BB</td>
<td>Screw 8-32 x ½ RHCR</td>
</tr>
<tr>
<td>CC</td>
<td>Ignition Control Assy</td>
</tr>
<tr>
<td>DD</td>
<td>Jacket Head</td>
</tr>
<tr>
<td>EE</td>
<td>Main Power Switch</td>
</tr>
<tr>
<td>FF</td>
<td>Potentiometer</td>
</tr>
<tr>
<td>GG</td>
<td>Combustion Surround</td>
</tr>
<tr>
<td>JJ</td>
<td>Surround Base</td>
</tr>
<tr>
<td>1A</td>
<td>Combustion Surround Assy. (specify model)</td>
</tr>
<tr>
<td>2A</td>
<td>Blower Gas Valve Assy (specify model)</td>
</tr>
<tr>
<td>3A</td>
<td>Burner Assy (specify model)</td>
</tr>
<tr>
<td>4A</td>
<td>Blower EBM (specify model)</td>
</tr>
<tr>
<td>5A</td>
<td>Silicone Hose</td>
</tr>
<tr>
<td>6A</td>
<td>Burner Mounting Insert Gasket</td>
</tr>
<tr>
<td>7A</td>
<td>Screw 10-32 x3/4</td>
</tr>
<tr>
<td>8A</td>
<td>Gasket & Screw</td>
</tr>
<tr>
<td>9A</td>
<td>Gas Valve (specify model)</td>
</tr>
<tr>
<td>10A</td>
<td>Nipple (specify model)</td>
</tr>
<tr>
<td>11A</td>
<td>Reducer (specify model)</td>
</tr>
<tr>
<td>12A</td>
<td>Nipple (specify model)</td>
</tr>
<tr>
<td>13A</td>
<td>2” dia. Flex Reducer (or PVC reducer for 399)</td>
</tr>
<tr>
<td>14A</td>
<td>Inlet (PVC)</td>
</tr>
<tr>
<td>15A</td>
<td>Gasket Blower Transition (specify model)</td>
</tr>
<tr>
<td>16A</td>
<td>Screw 8-32 x ½ RHCR</td>
</tr>
<tr>
<td>17A</td>
<td>Gasket Flame Sensor</td>
</tr>
<tr>
<td>18A</td>
<td>Flame Sensor</td>
</tr>
<tr>
<td>19A</td>
<td>Transition Tube</td>
</tr>
<tr>
<td>20A</td>
<td>Nut Hex Washer</td>
</tr>
<tr>
<td>21A</td>
<td>Gasket Hot Surface Igniter</td>
</tr>
<tr>
<td>22A</td>
<td>Hot Surface Igniter</td>
</tr>
<tr>
<td>23A</td>
<td>Burner Mounting Gasket</td>
</tr>
<tr>
<td>24A</td>
<td>Burner Tube</td>
</tr>
<tr>
<td>25A</td>
<td>Burner Mounting Gasket</td>
</tr>
<tr>
<td>26A</td>
<td>Burner Mounting Insert</td>
</tr>
</tbody>
</table>
For models with “CF” serial or later.

Customer must specify complete model number and serial number when ordering service parts.

<table>
<thead>
<tr>
<th>Part</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1C</td>
<td>Electronic Control Module</td>
</tr>
<tr>
<td>2C</td>
<td>Screw 8-32 x 1/2</td>
</tr>
<tr>
<td>3C</td>
<td>Control Mounting Panel</td>
</tr>
<tr>
<td>4C</td>
<td>Thermostat PC Board</td>
</tr>
<tr>
<td>5C</td>
<td>Transformer 120VAC x 24VAC x 40VA</td>
</tr>
<tr>
<td>6C</td>
<td>Terminal</td>
</tr>
<tr>
<td>7C</td>
<td>Terminal Strip</td>
</tr>
<tr>
<td>8C</td>
<td>Power Cord</td>
</tr>
<tr>
<td>9C</td>
<td>Control Wire Harness</td>
</tr>
<tr>
<td>10C</td>
<td>Thermostat Wire Harness</td>
</tr>
<tr>
<td>11C</td>
<td>Rectifier Harness (specify model)</td>
</tr>
<tr>
<td>12C</td>
<td>Blower Wire Harness (specify model)</td>
</tr>
<tr>
<td>13C</td>
<td>Power Switch Wire Harness</td>
</tr>
<tr>
<td>14C</td>
<td>Flame Sensor Wire Harness</td>
</tr>
<tr>
<td>15C</td>
<td>Powered Anode Control Harness (399 only)</td>
</tr>
<tr>
<td>16C</td>
<td>Powered Anode Harness (399 only)</td>
</tr>
<tr>
<td>17C</td>
<td>Powered Anode Control (399 only)</td>
</tr>
</tbody>
</table>
For models with Direct Spark Ignition

Customer must specify complete model number and serial number when ordering service parts.

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Combustion Surround Assembly</td>
</tr>
<tr>
<td>2</td>
<td>Burner Assembly (specify model)</td>
</tr>
<tr>
<td>3</td>
<td>2nd Pass Top Collector Cover</td>
</tr>
<tr>
<td>4</td>
<td>Screw 10-16 x 3/4</td>
</tr>
<tr>
<td>5</td>
<td>Vent Termination Elbow</td>
</tr>
<tr>
<td>6</td>
<td>Thermostat Sensor Probe</td>
</tr>
<tr>
<td>7</td>
<td>Baffle 4" Flue (specify model)</td>
</tr>
<tr>
<td>8</td>
<td>Anode Rod Assembly</td>
</tr>
<tr>
<td>9</td>
<td>Baffle 2" Flue</td>
</tr>
<tr>
<td>10</td>
<td>Wire Harness Service Panel</td>
</tr>
<tr>
<td>11</td>
<td>Plastisert Nipple 1-½" NPT</td>
</tr>
<tr>
<td>12</td>
<td>Plug</td>
</tr>
<tr>
<td>13</td>
<td>Nipple</td>
</tr>
<tr>
<td>14</td>
<td>T&P Relief Valve</td>
</tr>
<tr>
<td>15</td>
<td>Exhaust Pipe (PVC) w/Hose Barb</td>
</tr>
<tr>
<td>16</td>
<td>Condensate Trap Elbow (specify model)</td>
</tr>
<tr>
<td>17</td>
<td>Silicone Hose</td>
</tr>
<tr>
<td>18</td>
<td>Outer Door Service Panel (specify model)</td>
</tr>
<tr>
<td>19</td>
<td>Vent Pipe Support Bracket</td>
</tr>
<tr>
<td>20</td>
<td>NSF Escutcheon</td>
</tr>
<tr>
<td>21</td>
<td>Exhaust Pressure Switch</td>
</tr>
<tr>
<td>22</td>
<td>Nuts</td>
</tr>
<tr>
<td>23</td>
<td>Collector Temperature Limit Switch</td>
</tr>
<tr>
<td>24</td>
<td>Screw 6-32x 3/8</td>
</tr>
<tr>
<td>25</td>
<td>Cleanout Access Cover</td>
</tr>
<tr>
<td>26</td>
<td>Cleanout Gasket</td>
</tr>
<tr>
<td>27</td>
<td>Screw 5/16-18 x ¾ HH Grade 5</td>
</tr>
<tr>
<td>28</td>
<td>Cleanout Cover</td>
</tr>
<tr>
<td>29</td>
<td>Cold Water Inlet (Hydrojet) Assembly</td>
</tr>
<tr>
<td>30</td>
<td>No Handle Brass Drain Valve</td>
</tr>
<tr>
<td>31</td>
<td>Concentric Vent System (optional)</td>
</tr>
<tr>
<td>32</td>
<td>ASSE Approved Mixing Valve (optional)</td>
</tr>
<tr>
<td>33</td>
<td>Thermal Well</td>
</tr>
<tr>
<td>34</td>
<td>Clip</td>
</tr>
<tr>
<td>35</td>
<td>Hole Closure</td>
</tr>
<tr>
<td>36</td>
<td>Reducer</td>
</tr>
</tbody>
</table>
Customer must specify complete model number and serial number when ordering service parts.
Customer must specify complete model number and serial number when ordering service parts.
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC</td>
<td>Alternating Current</td>
</tr>
<tr>
<td>BTU/H</td>
<td>British Thermal Units</td>
</tr>
<tr>
<td>CO</td>
<td>Carbon Monoxide</td>
</tr>
<tr>
<td>CO2</td>
<td>Carbon Dioxide</td>
</tr>
<tr>
<td>DC</td>
<td>Direct Current</td>
</tr>
<tr>
<td>DSI</td>
<td>Direct Spark Ignition</td>
</tr>
<tr>
<td>ECO</td>
<td>Energy Cut Off</td>
</tr>
<tr>
<td>GFI</td>
<td>Ground fault interrupt</td>
</tr>
<tr>
<td>GPM</td>
<td>Gallons per Minute</td>
</tr>
<tr>
<td>HSI</td>
<td>Hot Surface Igniter</td>
</tr>
<tr>
<td>Hz</td>
<td>Hertz</td>
</tr>
<tr>
<td>LED</td>
<td>Light Emitting Diode</td>
</tr>
<tr>
<td>NOx</td>
<td>Oxides of Nitrogen</td>
</tr>
<tr>
<td>NPT</td>
<td>National Pipe Thread</td>
</tr>
<tr>
<td>PSI</td>
<td>Pounds per Square Inch</td>
</tr>
<tr>
<td>RPM</td>
<td>Revolutions per Minute</td>
</tr>
<tr>
<td>VA</td>
<td>Volt Amps</td>
</tr>
<tr>
<td>VAC</td>
<td>Volts Alternating Current</td>
</tr>
<tr>
<td>W.C.</td>
<td>Inches of Water Column</td>
</tr>
<tr>
<td>°C</td>
<td>Degrees Centigrade</td>
</tr>
<tr>
<td>°F</td>
<td>Degrees Fahrenheit</td>
</tr>
<tr>
<td>μA</td>
<td>Micro Amp</td>
</tr>
</tbody>
</table>

NOTES

__

__

__

__

__

__

__

__

__

__
BRADFORD WHITE®
WATER HEATERS
Ambler, PA

For U.S. and Canada field service, contact your professional installer or local Bradford White sales representative.

Sales/800-523-2931
Fax/215-641-1670
Parts Fax/215-641-2180

Technical Support/800-334-3393
Fax/269-795-1089

Warranty/800-531-2111
Fax/269-795-1089

International:
Telephone/215-641-9400
Telefax/215-641-9750

BRADFORD WHITE-Canada Inc.
Mississauga, ON
Sales/866-690-0961
905-238-0100
Fax/905-238-0105
Technical Support/800-334-3393

Email
parts@bradfordwhite.com
techserv@bradfordwhite.com

www.bradfordwhite.com