

BMW iX5 HYDROGEN.

THE EV WITH FAST REFUELING.

DR. JÜRGEN GULDNER

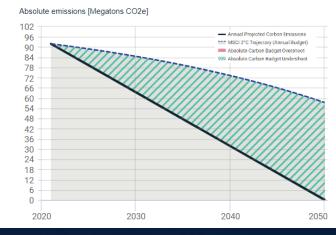
General Program Manager Hydrogen Technology

THE BMW GROUP IS COMMITTED TO THE PARIS AGREEMENT AND THE 1.5 °C TARGET.

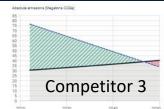
- > First German OEM to join the "Ambition for 1.5 °C".
- > Goal: climate neutrality along the entire value chain by 2050.
- > Also part of the UN "Race to Zero" program.

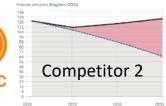
... this requires:

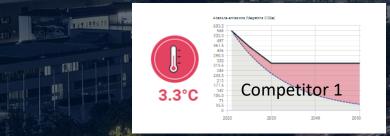
- > The use of all available technologies, including BEVs and FCEVs.
- > Decarbonization of the entire value chain and life cycle.



MSCI – IMPLIED TEMPERATURE RISE INDEX. MSCI 😂 BMW GROUP aligned with Paris Agreement target.


BMW GROUP


Decarbonisation data from 4. January 2023



THE DECARBONIZATION CHALLENGE.

Direct use of electricity (grid, batteries)

Industry, machines, tools

Public transport in cities

Urban deliveries

The challenge of electrification

Passenger Car, Urban & Commuter

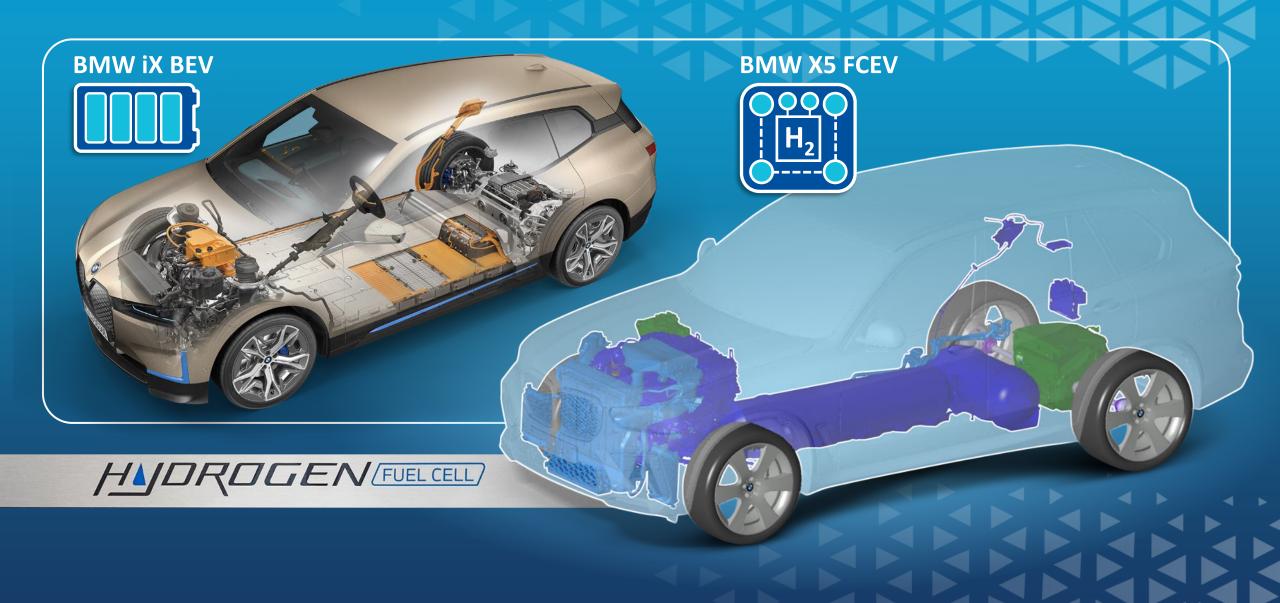
Large passenger cars (long-distance)

Indirect use of electricity (H₂, e-fuels)

Coaches, light commercial vehicles

Heavy-duty trucks

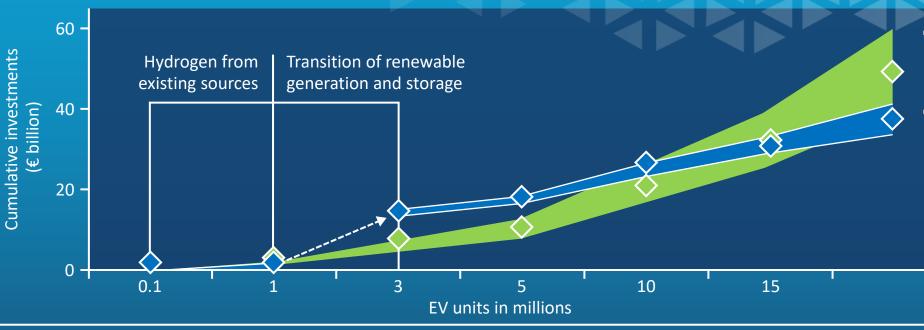
Aviation & maritime


Industry (high heat)

BEVS AND FCEVS COMPLEMENT EACH OTHER.

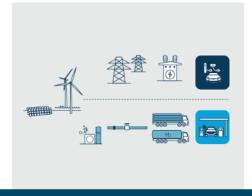
- > Technology: both are EVs – FCEV enables fast refueling.
- > Customer:
 BEVs fulfill most use cases but not all.
 FCEV and BEV combined can help to decarbonize faster.
- > Infrastructure: 2 are cheaper than 1.
- > Energy system:
 Cost and feasibility are more important than efficiency.
- > Raw materials: diversity increases resilience.

TWO ELECTRIC VEHICLES – DIFFERENT ENERGY STORAGE.



CUSTOMER USE CASES OF HYDROGEN VEHICLES.

INFRASTRUCTURE PERSPECTIVE: 2 ARE MORE ECONOMICAL THAN 1. EXAMPLE: GERMANY.



>>> Conclusions

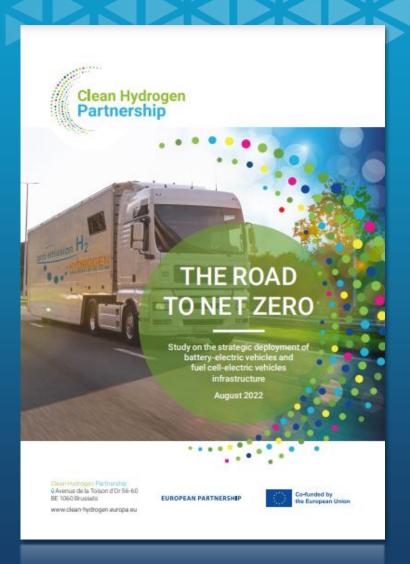
- > Initial cost for **electric charging** is low but it increases non-linearly with the number of vehicles.
- > The cost for a hydrogen refueling station depends mainly on the size and remains constant in the roll-out.

Comparative Analysis of Infrastructures: Hydrogen Fueling and Electric Charging of Vehicles

Martin Robinius, Jochen Linßen, Thomas Grube, Markus Reuß, Petei Konstantinos Syranidis, Patrick Kuckertz and Detlef Stolten

Energie & Umwelt / Energy & Environment Band / Volume 408 ISBN 978-3-95806-295-5


^{*} Source: "Comparative Analysis of Infrastructures for Germany" (FZ Jülich).


INFRASTRUCTURE PERSPECTIVE: 2 ARE MORE ECONOMICAL THAN 1. EXAMPLE: EUROPE.

- > "Low" scenario costs 20% less than 100% BEV.
- > "High" scenario with costs 34% less than 100% BEV.

A combined H₂ refueling infrastructure for commercial vehicles and passenger cars is most cost efficient.

Source: "The Road to net Zero" (McKinsey for Clean Hydrogen Partnership 2022).

A GLOBAL INFRASTRUCTURE NETWORK OF HYDROGEN REFUELING STATIONS IS DEVELOPING WORLDWIDE (AS OF 3/2023).

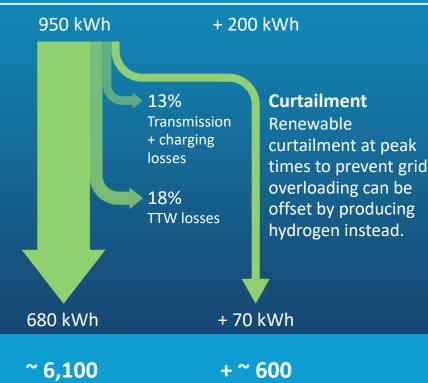
ENERGY SYSTEM: "SUN-TO-WHEEL".

- > BEVs are more efficient than FCEVs due to the conversion losses.
- > Higher yield of renewable energy production in certain regions compensates for the losses.
- > Cost and feasibility are more important than efficiency.

FCEV powered with imported renewable hydrogen

BEV charged using

Source: "Roadmap towards zero emissions" (McKinsey for Hydrogen Council 2021).


ENERGY SYSTEM. CURTAIL OR PRODUCE H₂?

- ➤ Renewable energy production fluctuates → more production capacity required than average consumption.
- > Excess energy can be curtailed or used to produce hydrogen.
- > 10% extra is available at least almost for free (after the investment).
- > ~ 5,8 TWh not fed into the grid in 2022.
- > ~ 100.000 tons of

BEV charged using local PV panel; peak supplies renewable hydrogen for FCEV fuelling.

1 kW × 11 + 2% Solar panel, Load Germany factor

Sources:

"Roadmap towards zero emissions" (McKinsey for Hydrogen Council 2021). https://de.statista.com/statistik/daten/studie/617949/umfrage/einspeisemanagemen t-in-deutschland/

HIGHER PERSPECTIVE THAN EFFICIENCY: GREEN HOUSE GAS EMISSION LIFE CYCLE ANALYSIS.

- > FCEV and BEV are similar in LCA, as several studies and assessments have shown.
 - > BEVs and FCEVs only help decarbonise road transport when produced and operated with renewable or low-carbon energy.
 - > Even when accounting for the additional emissions from long-distance LH₂ shipping, FCEV and BEV have similar lifecycle emissions.

Production — Recycling

¹ ADAC: https://www.adac.de/verkehr/tanken-kraftstoff-antrieb/alternative-antriebe/klimabilanz/

² Fraunhofer: https://www.ise.fraunhofer.de/content/dam/ise/de/documents/news/2019/ISE_LCA-BEV-FCEV-Results.pdf

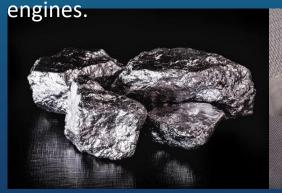
³ HydrogenCouncil: https://hydrogencouncil.com/wp-content/uploads/2021/10/Transport-Study-Full-Report-Hydrogen-Council-1.pdf

LIFE CYCLE AND RAW MATERIALS PERSPECTIVE: DIVERSITY INCREASES RESILIENCE.

> Diversity increases resilience and decreases risk.

important import

Circularity is important for BEVs and FCEVs alike.


> FCEV need > 100kg less raw materials than BEVs.

> FCEV batteries need 90% less critical raw materials than BEV batteries.

> Platinum (main raw material for fuel cells) already has high recycling rate, which will increase with phase-out of combustion

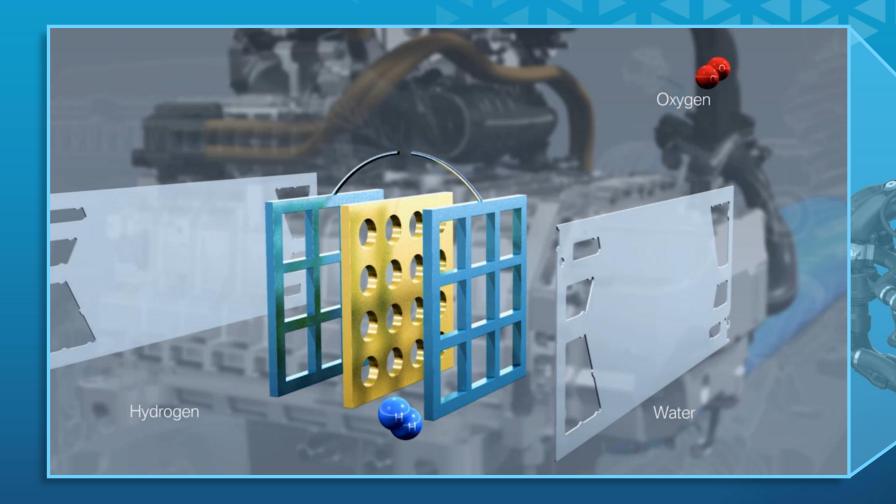
BMW iX5 HYDROGEN.

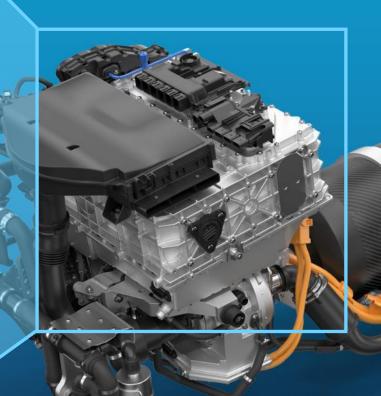
THE EV WITH FAST REFUELING.

ROBERT HALAS

Project Manager iX5 Hydrogen

BMW iX5 HYDROGEN. ALL ADVANTAGES OF ELECTRIC DRIVING COMBINED WITH FAST FUELING.


- >>> Great acceleration >>>> Zero emission >>>>> Smooth, silent ride >>>>> 3-4 minutes fueling



BMW iX5 HYDROGEN. FUEL CELL TECHNOLOGY.

BMW iX5 HYDROGEN. TECHNICAL DATA.

Electrical power fuel cell

Total power output

Hydrogen tank capacity

Range (WLTP)

Maximum speed

Acceleration (0-100 km/h)

Vehicle weight

125 kW / 170 hp

295 kW / 401 hp

≈ 6 kg

≈ 500 km

≈ 185 km/h

< 6 s

≈ comparable PHEV

< comparable BEV

BMW iX5 HYDROGEN. SPECIFIC EXTERIOR AND INTERIOR DESIGN ELEMENTS.

THE BMW iX5 HYDROGEN PILOT FLEET VEHICLES FULFILL ALL SAFETY STANDARDS REQUIRED.

- >> The iX5 Hydrogen fulfills highest safety standards as any other vehicle of the BMW Group like:
 - > Crash tests.
 - > Hydrogen leakage tests.
 - > Cold and hot climate tests.
 - > Vehicle life time endurance and stress tests.
- >> Rigorous certification according to international regulations for H₂-components (GTR, R 134 etc.) implemented,
 - e.g
 - Pressure tests.
 - Life time cycling tests.
 - Fire tests.

BMW iX5 HYDROGEN EXTENSIVE TESTING OVER THE PAST 4 YEARS HAS BEEN SUCCESSFULLY COMPLETED.

