BLINO

RESTORING TRUST IN PASSWORDS

BlindHash
Architecture & Deployment

August, 2017

Foreword

The Limits of Computational Hashing

Introducing BlindHash
Data Pool Architecture
Scalability
Virtual Private Data Pools
Security by Obesity
BlindHash Request Flow
BlindHash API
Data Pool Versioning
Automatic Upgrades
Breach Recovery
BlindHash Request Processing
Integration and Deployment
Client Libraries
Side-by-Side Mode
Staged Rollouts
Version Tracking

Example Code

Architecture & Deployment Guide | © 2017

© W OV 00 N O 0O o Uu p»~ W

e S = N = S S SO WY
A W W wWw N N N O

Passwords have become a lucrative target for hackers; administrative passwords can be leveraged to
gain deeper access within a company network, while customer passwords can be used to target end
users for fraud and identity theft. Passwords grant access to an ever-increasing trove of emails,
documents, photos, and sensitive financial data. Since users tend to reuse the same password across
sites, the fallout from a breach can be widespread and carry deeply personal consequences.

Responding to a password database breach is a time consuming and complex process which begins with
identifying the means of access and remediating any ongoing compromise, resetting passwords and
notifying users of the breach. Companies will experience significantly increased customer support
requirements as users are notified of the breach and their passwords are reset. Some users may find
themselves locked out of their accounts if password reset options are no longer accessible. Many users
will struggle to understand how even a “salted and hashed” password breach puts them at risk, and will
leave the same password in place on other services. Beyond the direct remediation costs in the
immediate aftermath of a breach, companies may suffer damage to their brand and reputation, as well
as risk of regulatory scrutiny from agencies such as the FTC.

To try to protect passwords, industry best practice has been to use hashing functions which are designed
to add cost and latency to each attempt to verify a password. These hashing functions have become
increasingly sophisticated to allow their cost factors to be tuned over time, to best utilize the CPU and
memory hardware available on common web servers, and to resist optimizations which an attacker
might bring to bear, such as employing GPUs. A password hashing function must run slowly enough on
an attacker’s hardware (or botnet) to impose a tangible cost of cracking each password, but crucially the
hash must also run fast enough on the defender’s hardware to allow a site’s users to login during heavy
load, creating a difficult and dynamic balancing act.

Notably, the cost to crack a password depends not just on the complexity and cost factors of the hash
function, but also on the complexity of the password itself. Attackers optimize their attacks by creating
sorted dictionaries of the most common passwords, and then testing them against every salted hash in
order. Simple passwords employed by the majority of users can be cracked quickly and cheaply even
with the most robust hashing. The industry has embarked on myriad attempts to increase password
complexity through everything from public education campaigns, creative user interface design, and
even draconian password policies which can ultimately lead to user frustration, forgotten passwords,
site abandonment, even increased support costs and decreased conversions. This might buy some time
in responding to a breach, but unfortunately the end result is unchanged; companies must assume that
every stolen salt and hash will ultimately be cracked, and they must instruct their customers to act
accordingly.

BlindHash’s BlindHashing fundamentally changes this equation by completely preventing offline attacks,
regardless of the complexity of the password, even if a site’s password database is stolen. This
document provides details on the design and cryptographic principles underlying BlindHash, as well as
an implementation guide to help organizations deploy BlindHash to protect their own passwords.

Architecture & Deployment Guide | © 2017 3

Standard practice for storing passwords is to generate a random value for each user (called a ‘salt’), hash
the salt and password together with a suitably slow hashing function, and save the resulting ‘hash’ along
with the ‘salt’. When verifying a password, the application will retrieve the user’s stored salt and hash,
perform the same hashing function with the submitted password, and check if the calculated hash
matches the stored value. The key pitfalls of this standard password hashing are threefold;

Managing ‘Cost Factors’: The hashing function must complete fast enough to responsively login your
users, and yet slow enough to impose a tangible cost to an attacker. This core trade-off, where security
can only be increased at the expense of performance, puts an effective upper-limit on the hashing cost
which can be employed in large scale web applications. Cost factors must be carefully chosen to account
for the peak authentication load a server may experience, in addition to the capacity required to actually
serve users beyond simply logging them in. Cost factors must also be actively managed over time (and
existing hashes strengthened) to keep pace with the ever-declining cost of computation.

Offline Attacks: When salts and hashes are stolen by an attacker, the attacker can then independently
test candidate passwords and verify if they have guessed correctly, by simply calculating the hash for
each guess. Once a salt and hash are stolen, the only limit to running this so-called offline dictionary
attack is the time and computing power available to the attacker. Each guess at the password requires
running the hash function once, so the ultimate cost to crack a password depends on the run-time cost
of the hash function multiplied by the complexity (the so-called ‘guessability’) of each user’s password.

Breach Exposure: Password hashes are designed to be small and portable, but this technical feature also
makes them extremely efficient to transfer over the network. Any vulnerability in a site’s defensive
perimeter could allow an attacker to exfiltrate millions of salts and hashes in only a matter of seconds,
and thus begin their offline attack. Unless we know the password was randomly generated with
sufficient entropy (in which case we would call it a ‘token’, not a ‘password’), we must assume once a
salt and hash are stolen that the password will eventually be cracked. Crucially, this means that standard
password hashing does not actually protect passwords in the event of a breach, but rather hashing is
merely a delaying tactic to hopefully allow time to detect and respond to the breach. Since users are
highly likely to reuse their passwords across multiple sites, even resetting passwords after a breach does
not close the attack window, meaning users must be promptly notified and educated about the risk of
ever trying to use that password again.

Architecture & Deployment Guide | © 2017 4

BlindHash provides an additive layer of security for your existing password hashes in order to completely
prevent offline dictionary attacks, even if your hashes and salts are stolen, and regardless of the
complexity of your user’s passwords.

BlindHash is designed to overcome the weaknesses inherent in computational hashing by providing
durable security guarantees even in the event of a breach. This is accomplished by using a highly
scalable cost factor which actually increases the cost to an attacker while simultaneously decreasing
runtime latency. Instead of trading security for performance, BlindHash allows increasing security and
performance in tandem, fundamentally altering the nature of how passwords are secured.

At the heart of BlindHash is something we call the BlindHash Data Pool. Using a cryptographically secure
random number generator, we produce a massive array of completely random data. We store this data
in racks of solid-state drives, located in secure data centers, and replicated across several geographic
locations. The data pool is sized large enough so that simply trying to transfer the entire pool over the
network would take years at full line rate. As we increase the size of the data pool by generating more
random data and adding more solid state drives, overall performance is increased, both in terms of
higher throughput and lower latency for BlindHash requests. At the same time, greater security is
achieved, by increasing the amount of data which must be stolen in order to attack a protected
password.

To perform a blind hash, you start by taking a user’s password, generating a secure random salt, and
applying the hashing function of your choice, perhaps scrypt, bcrypt, or even Argon2. But then instead of
storing the salt and hash together in your user database where they could be stolen and attacked
offline, we provide a simple APl which entangles your hash with the BlindHash Data Pool so that an
attacker trying to run an offline attack would have to steal both your hashes and salts, as well as the
data pool before they could even attempt to crack even a single password. The hashes are effectively
blinded by the data pool, while the data pool itself does not contain any information whatsoever about
the hashes it protects.

In the next sections, we will walk-through how the BlindHash Data Pool is created and maintained, and
how multiple sites can securely share and benefit from a single massive data pool. We will show how
you can add BlindHash to the back-end authentication function of your site, and detail how the
BlindHash Server actually calculates a blind hash response.

Architecture & Deployment Guide | © 2017 5

Maintaining the integrity and security of the data pool is the most mission-critical aspect of BlindHash’s
operation. Multiple layers of protection are deployed at the hardware, filesystem, and application
layers, along with complete redundancy within each data center, and across multiple data centers.

The data content of the data pool is generated from a cryptographically secure random number
generator and written onto encrypted storage. When this data is first generated, a combination of
application-layer checksums, hashes, and parity data are calculated and stored alongside the random
data to ensure the integrity of the data pool, and to allow the Data Pool Server to detect and correct any
bit errors that may occur. This application-layer protection is in addition to the error correcting and data
integrity mechanisms already provided by the hardware and filesystem.

For example, each individual BlindHash operation verifies a checksum stored alongside each 64-byte
block as it is read from the data pool. Each instance of the data pool is regularly scanned to verify the
cryptographic checksum of every file within the data pool. Parity data spread across each instance of the
data pool allows error correction and online recovery in the event of any page-level or block-level
failures of an SSD.

A key benefit of BlindHash is its inherently scalable nature — a larger data pool spread across an
increasing number of solid state drives increases the overall performance (IOPS) of the storage system.
Since each BlindHash request is uniformly distributed across the data pool, the load is naturally balanced
across all available drives. As IOPS increases, the latency of each individual BlindHash request decreases,
while the maximum throughput (Blind Hashes per second) increases. As the size of the data pool
increases, it also becomes easier to defend in terms of the amount of data an attacker must steal, and
the time available to detect and shut down an attack before enough data can be captured.

Maintaining an exceptionally large data pool would be too costly for most sites, but BlindHash makes it
possible to share a single massive data pool across any number of sites, and each site gains the full
security benefit of BlindHash. If two sites were allowed to directly share the same data pool, one site
could attack another site by simply using the service to run their attack (effectively an online attack).
Instead we can generate an unlimited number of virtual private data pools by using randomly generated
keys to uniquely transform the data pool for each site.

For each site using the BlindHash service, the BlindHash Server generates two cryptographically secure
pseudorandom 64-byte values; one is called the ‘AppID’ and is shared with the site to be used as an
authentication token, and the other is a private key (k) which is associated with the AppID but kept
secret within the data pool. The private key is used to transform a single shared data pool into a private
data pool for each AppID. We will also show how this private key can be used to provide additional
protection in case your site is ever breached.

Architecture & Deployment Guide | © 2017 6

Security by Obesity

In order to compute the correct
response for a BlindHash request, we
read from multiple uniformly
distributed locations across the entire
data pool. If any one of the reads
cannot be completed, the BlindHash
request will fail. Increasing the
number of independent reads which
are made as part of a single request
makes any missing data exponentially

more likely to stop an offline attack. % 10% % % 40% 50% 60% 70%
(%) Data Pool Available to Attacker

)
3
2

a

=

Q
o
=

[}
e
=

P

Q

b

@

o

3
0
-

=

]

3

?

a

o
[- N

For example, imagine an attacker was
able to steal “only” 8TB out of a 16TB
data pool (50% of the total pool). If we needed to read only one location in the data pool to complete a
BlindHash request, the attacker would be capable of completing 50% of their offline guesses. By
expanding each BlindHash request into 64 independent data pool reads, now the attacker would only be
able to complete the calculation with a probability of (.5)64, or 5.42 x 10-20. Trying to calculate a blind
hash with half of the data pool is like flipping a coin 64 times and needing to get heads every time. Even
if an attacker could steal 80% of the data pool, with 64 lookups they would still only be able to check less
than 1 in a million guesses.

4 ——8 16 32

This provides a key defensive advantage — no longer can an attacker steal a small amount of data and
then crack a small number hashes. Stealing anything but the vast majority of the data pool is useless.

Consider that each BlindHash Request involves receiving a 64-byte hash value and returning a 64-byte
result. Ultimately this means that 64-bytes of data will be transmitted upstream from our Data Pool for
each request. By imposing a physical limit on the network uplink, we can make a simple calculation;

Days to Steal = Maximum Number of Blind Hashes / Second * 64 Bytes / Data Pool Size;

For example, a 16TB data pool supporting up to 10,000 blind hashes per second, rate limited to 640,000
bps, means that it would take an attacker 289 days to steal at full-line rate. By counting every byte and
every packet which traverses our network, and correlating the observed traffic with the expected load
based on the number of BlindHash requests actually processed, we can immediately detect and
investigate any unexpected traffic. The sheer size of the data pool provides a window of defense where
attacks can be detected and thwarted long before they become dangerous.

Architecture & Deployment Guide | © 2017 7

User Site Blind Hashing Server

user, pass =3 {user: 5alt,, Hash, }
H, = Hash (Salt,, Pass)
Salt, = BlindHash (AppID , H;) —— 5 i=HMAC (AppID, H,)
r=FromPool (kp, i)
€ HMAC (AppID,)
H, = Hash (Salt, , H,)
H, ==? Hash,

To step through the figure above, first the user submits their username and password to your site’s own
login form, just as they normally would. The entire BlindHash process is invisible to end-users, allowing
sites to maintain complete control of the user experience.

On your site’s server, the username is used to retrieve Salt1l and Hash2 from your database. You then
perform traditional hashing with Saltl and the password to calculate H1, just as usual, using the hash
function of your choice.

Next, however, instead of storing H1 in your database directly, you perform BlindHash on H1. The
BlindHash APl is a single function which takes a 64-byte ‘ApplID’ and a 64-byte ‘Hash’. The AppID
identifies your server and authenticates your BlindHash request. The ‘Hash’ being blinded is H1. The
return value of the function is also a 64-byte value, which we call Salt2. You use the returned Salt2 and
perform an additional hash, typically a simple HMAC, to calculate H2. The last step is to compare the
calculated H2 against the Hash2 from your database. A match means the password was correct and the
user should be logged in.

BlindHash is designed to respect your site’s privacy and autonomy. Your site maintains complete control
over verifying whether a user should be authenticated, and the BlindHash server does not see any
personal information about your users. The BlindHash server does not even know if any given login
attempt will ultimately succeed or fail. Notably, even a malicious BlindHash server could not cause an
invalid login attempt to appear valid, because your site performs the final hash of Salt2 with H1 and
verifies the result.

The connection between your server and the BlindHash Server is protected by TLS 1.2 with a pinned
certificate, or alternatively, a dedicated encrypted channel such as ‘stunnel’. The H1 value sent to the
BlindHash Server is keyed by your Salt1 value, meaning the ‘H1’ value on its own is indistinguishable
random data. Since the Saltl is being used as a key, we recommend you generate salts as 64-byte
cryptographically secure random values.

The immediate impact of adding BlindHash is that the values stored in your database, Saltl and Hash2,
can no longer be used on their own to perform an offline attack. Regardless of how simple the
password, an attacker cannot even attempt to crack a hash without being able to also execute the
BlindHash() function.

Architecture & Deployment Guide | © 2017 8

The BlindHash API acts like a deterministic hash function — given any AppID and Hash input, the hash
output will always be a 64-byte uniformly distributed pseudo-random value. Given the exact same set of
inputs, BlindHash will always produce the exact same hash output. However, flipping even a single bit of
the input value will produce a completely uncorrelated output value.

To submit a BlindHash request, issue an HTTPS GET request to a BlindHash server with a path of
‘/<ApplID>/<Hash>’. The <AppID> is a 64-byte token which identifies and authorizes the site making the
request, and <Hash> is the hash to be blinded. Values must be hex-encoded. An example request;

https://api.BlindHash.co/cdafb61b3473a8df704bfbadaae43a355576715d5a8baf176c54df059c41a7d816fat
3b697d235ec8512d56c44403aa672145029fbcf4529a626e2e8f37b2b3e/f607aeaaa87al229abec33c5b1e78c98a8
faaefc9954dcd3b6822db010e228e7a44b7852a547bf7c51faa9d45176ab5a743b80b288e0798c96015d448ae6c609

The response is a JSON encoded object with two values; ‘h’” is the blind hash result, a 64-byte value in
hexadecimal notation, and ‘v’ is a positive integer representing the data pool version number.

{"h":"612fbd62142f6095d7bd67376411a23e0Paleed5272719aab3ccOf33fd42804f16a820bddlebba23a8d3d8eb
476deel40c969dc2987ed516d9cada68ac6fbeed”, "v":2}

BlindHash regularly increases the total size of the BlindHash Data Pool over time, to support ever higher
performance, and higher levels of security. Of course we cannot simply add or change the data within
the data pool, because that would alter the result of the BlindHash function. In order to support growing
the data pool over time, we only ever append new random data to the existing data pool, and never
alter existing data.

After deploying additional data pool capacity, we make that capacity available, first to internal AppIDs
used to verify the new data pool operation and performance, and then later to customer production
ApplDs. To stage and track how much of the data pool to expose, each ApplD keeps a versioned set of
the size of its data pool over time.

If no version number is provided, by default a BlindHash request will be issued against the latest
deployed version, i.e. the largest data pool size available. Every BlindHash response includes an integer
value ‘v’ which is the latest version of the data pool when that request was issued. This version number
is then saved alongside ‘H2’ in your user database.

When making a request to verify an existing password, you include the version number at the end of the
URL, which instructs the BlindHash Server to use the exact sized data pool as existed at that time the
original request was made. If a larger data pool has been deployed, the BlindHash Response will also
automatically include two additional values; ‘new_v’ — the latest version number, and ‘new_h’ —the
BlindHash result using the full available capacity of the current data pool.

For example; the following request explicitly specifies a BlindHash against version ‘2’ of the Data Pool;

https://api.BlindHash.co/cdafb61b3473a8df704bfbadaae43a355576715d5a8baf176c54df059c41a7d816fat
3b697d235ec8512d56c44403aa672145029fbcf4529a626e2e8f37b2b3e/f607aeaaa87al229abec33c5b1e78c98a8

Architecture & Deployment Guide | © 2017 9

faaefc9954dcd3b6822db010e228e7a44b7852a547bf7c51faa9d45176ab5a743b80b288e0798c96015d448ae6c609
/2

In this case the response includes only ‘h’ and ‘v’ indicating that version 2 is still the latest version of the
data pool;

{"h":"612fbd621426095d7bd67376411a23e00aleed5272719aab3ccOf33fd42804f16a820bddlebba23a8d3d8eb
476deel40c969dc2987ed516d9cada68ac6fbeed”, "v":2}

If later we issue the same request after the data pool capacity has been expanded for this ApplD, now
the response will include the original ‘h’ value using the original sized data pool, but also a ‘new_h’ and a
‘new_V’ as well. We include the ‘new_h’ and ‘new_V’ values within the same response to allow easily
upgrading existing hashes to use the new expanded data pool without having to complete an additional
BlindHash request or network round-trip.

{"h":"612fbd62142f6095d7bd67376411a23e0Paleed5272719aab3ccOf33fd42804f16a820bddlebba23a8d3d8eb
476deel40c969dc2987ed516d9cada68ac6fbeed”,"v":2, " new_h":"368555904635836dfbfla3ca59bca5fb91649
61453a39f4782ef419a23420a7d47d7c6cav48039919ea3c47f44d40e7a85a96e9d87abat332937d2655alafcas", "
new_v":3}

Your site will use the ‘h’ value to complete the authentication request and verify the password. Then,
only if the authentication succeeds (the calculated H2 matches your stored Hash2 value) you can then
use the ‘new_h’ value to calculate a new H2, and update your database with the ‘new_v’ and Hash2.

With traditional password hashing, if an attacker is able to pierce the perimeter defenses and gain
access to the salts and hashes, the site has effectively been breached. With no way to recover or
invalidate the stolen data, the site is forced to take immediate action to reset passwords and notify their
customers. However, when password hashes are protected with BlindHash, a compromise against the
site alone, or a compromise of the data pool alone does not expose the passwords to any risk of an
offline attack. An attacker would need to compromise both the site and the BlindHash Data Pool
together in order to even start an offline attack. This independent and additive layer of security is
particularly effective against insider threats, or in the case where a site’s administrative credentials are
compromised.

If your site ever were to experience a breach, with BlindHash you can also perform a simple breach
recovery procedure which makes any stolen salts and hashes forever and completely useless. Breach
Recovery effectively invalidates any stolen data an attacker might possess, and ensures customer
passwords remain completely safe. To achieve this additional level of protection, we will add one step to
the BlindHash Request Flow;

Architecture & Deployment Guide | © 2017 10

User Site Blind Hashing Server

user, pass —3 {user: Salt,, Hash,, E; }
H, = Hash (Salt,, Pass)
E, = Encrypt (H,, publicKey)
Salt, = BlindHash (ApplD , H;) =———> i=HMAC (AppID,H,)
r=FromPool (k, i)
€———— HMAC (AppID,r)
H, = Hash (Salt, , H,)
H, ==? Hash,

The added step is simply to keep a public key on your site which is used to encrypt H1 when a new
password is registered, and to keep a copy of the encrypted result E1 in your database along with Saltl
and Hash2. The corresponding private key, which would allow the recovery of H1, must be keptin a
secure offline location, so it is not subject to attack over the network.

In the event a breach is detected, after the vulnerability is patched and systems are re-established, you
first request a new ApplID from the BlindHash Server. Next, as an independent background process and
without requiring end-users to login, you decrypt each E1 value to recover H1, run BlindHash() using the
new ApplID and H1, calculate a new H2, and update the ‘Hash2’ in your database.

Once all your hashes have been re-blinded using your new ApplD, you can instruct the BlindHash Server
to delete the old ApplD, and destroy the corresponding private key (k). Once the private key is
destroyed, it will be forever impossible to execute a BlindHash using the old AppID, and any stolen
Hash2 values which were based on that ApplID are turned into nothing more than useless random data.

In this fashion, even if an attacker can steal your hashes and salts, the breach can be fully contained.
Users’ passwords remain entirely safe, without requiring a password reset or even for users to re-login
to your site.

For particularly sensitive applications, it may even be advisable to proactively rotate your ApplID using
the same process, which could effectively guard against even an undetected breach.

Architecture & Deployment Guide | © 2017 11

Within BlindHash'’s servers, the first step in processing a BlindHash request is to validate the AppID and
authorize the request. After the ApplD token is validated, additional site-specific validation steps may
include verifying the source IP address of the request against a whitelist, or enforcing a rate limit on the
allowed number of requests per second.

Once a request is authorized, we execute a HMAC-SHA512 using the specified ‘Hash’ and ‘ApplD’. The
64-byte result is used as a random seed in order to generate 64 uniformly distributed pseudorandom
indices, or ‘offsets’ to locations within the data pool. We then dispatch requests across the data pool to
read 64 bytes of data starting at each of the calculated offsets, collecting a total of 4096 bytes into an
array.

As data is read from each of the specified locations within the data pool, we use HMAC-SHA512 with the
64-byte private key (k) associated with the ApplID, to transform each data pool block being read into the
virtual private data pool block for that AppID. Notably, we use a cryptographic one-way function rather
than symmetric encryption to generate the virtual private data pool blocks, because we do not want the
operation to be reversible. This also supports the special case where a customer may wish to obtain a
copy of their own virtual private data pool. In this case, we can provide the virtual private data pool to
the customer, and still be certain that even with the private key (k) the original shared data pool could
never be reconstructed.

After all of the 64 independent reads complete, we will have filled the 4096 byte array with random data
from the virtual private data pool. The final step is to execute an HMAC-SHA512 using the ApplID and the
filled 4096 byte array, to produce a single 64-byte result, which is returned in the HTTP response.
Hashing the 64 reads all together in this manor ensures that the entire set of reads must succeed in
order to produce the correct result, while the actual bytes read from the data pool are never exposed
outside the BlindHash server.

BlindHash is designed to be easy to integrate with your existing authentication code, and simple to stage
and deploy into production. BlindHash is developing click-to-install plugins for standard web platforms
such as Wordpress, which will deploy BlindHash without a single line of custom code. BlindHash also
provides open source client libraries which allow integrating BlindHash with any existing authentication
framework with just a few lines of code.

BlindHash client libraries are available on GitHub (https://github.com/BlindHash) with separate
repositories for each programming language. Each repository contains a Quick Start guide showing the
commands required to setup and perform BlindHash, as well as examples of integrating BlindHash into
an existing authentication framework. Client libraries may also be obtained through your language’s
package manager, such as ‘npm’ or ‘NuGet’ when available.

Each client library exposes a simple API call to perform BlindHash. Internally, the library will maintain
redundant connections to BlindHash’s Data Pool servers, issue BlindHash requests and parse the

Architecture & Deployment Guide | © 2017 12

https://github.com/TapLink

response. The client library will also track request latency, and optionally report latency statistics for
display in the Web Admin Panel.

When staging an initial deployment, instead of directly replacing the ‘Hash1’ value in your database with
the new ‘Hash2’ value, keep your existing Hash1 values stored as-is, and add a new column or field to
store the new blinded hash ‘Hash2’ value separately in your database.

By keeping your old schema intact, your existing authentication code can continue to function
unchanged, unaware of the new ‘Hash2’ data. Then as you progressively deploy updated authentication
code, you can track and assess the real-world performance and reliability of the BlindHash API in your
environment. The original ‘Hash1’ value will also act as a fail-safe to allow users to login, even if a
BlindHash request fails. At any point in the future, you can then either drop or encrypt the ‘Hash1’ value
to enable the security of BlindHash.

A common approach for large deployments is to stage a roll-out, both in terms of which servers are
running the new authentication code, as well as which existing users within your system should have
their passwords protected by BlindHash.

A simple approach for staging deployment across your user-base is for your authentication code to first
attempt to retrieve the ‘Saltl’, ‘Hash1’, and ‘Hash2’ values for a specified user. Then, perform your initial
hashing in any case, but only perform the Blind Hash if a ‘Hash2’ value exists. Otherwise, simply use the
‘Hash1’ value to verify the password as usual. For applications where strict timing consistency is
required, you can perform the Blind Hash even if a ‘Hash2’ value is not stored for the specified user,
calculate a ‘Hash2’ value using the result, but still perform the ultimate comparison against ‘Hash1’ for
users which do not have a stored ‘Hash2’.

With this approach, your authentication code does not handle the special-case of adding BlindHash for
any existing users. Instead, we will use a separate command-line program specifically for this purpose,
which will allow you to enable BlindHash for a given set of existing users. In this case the program will
select a set of users, retrieve their existing ‘Hash1’, perform a Blind Hash with ‘Hash1’ and calculate
‘Hash?2’, and then store the calculated ‘Hash?2’ value for the user. Since BlindHash can be added to an
existing password hash without requiring access to the user’s password, this tool can be run on-demand
and as needed, including rate limiting to ensure a smooth roll-out across even massive user bases.

BlindHash maintains the security and integrity of the Data Pool, and over time we deploy additional
storage capacity and expand the Data Pool with new random data. To expose the expanded data pool to
existing applications, we use a simple incrementing integer, or VersionID, which you store along with
each ‘Hash2’ value.

When you first create an ApplID with BlindHash, your application will use the full capacity of the Data
Pool, as it exists at that time, and the VersionID will be set to ‘1’. As additional Data Pool capacity is
rolled out, your App may be configured to either enable this new capacity automatically, or require
manual confirmation through our Web Admin Panel. With each new ‘generation’ of the Data Pool that is
deployed, the VersionID is incremented.

Architecture & Deployment Guide | © 2017 13

By default, a BlindHash request will always use the latest version of the data pool if no VersionID is
specified. Previous generations of the Data Pool are always accessible by simply specifying the desired
VersionlID at the end of the URL (.../<VersionID>) or providing a Version ID when making the API call.

We recommend serializing the VersionID as a 16-bit unsigned integer (ushort) and storing it along-side
the 64-byte ‘Hash2’ value. When you retrieve the ‘Hash2’ value for an existing user, the version number
will come with it, and you simply pass it along to the BlindHash API.

When you request a Blind Hash for a prior version of the Data Pool, the response will automatically
include the 64-byte ‘hash’ for the requested Data Pool version, as well as an additional 64-byte
‘new_hash’ which is calculated using the latest version of the Data Pool, and the corresponding
VersionID as ‘new_vid’. In this case, your application will verify the user’s password by calculating
‘Hash2’ using the original ‘hash’ value, and then only if the authentication is successful, calculate and
store a new ‘Hash2’ using ‘new_hash’. This allows you to upgrade your Blind Hashes as the Data Pool
grows over time, without incurring the latency of an additional network round-trip.

To add BlindHash to an existing authentication code path, we will make a few simple modifications to
check if BlindHash should be used, apply the Blind Hash, and handle Data Pool upgrades as needed.

The following pseudo-code shows how existing ‘login’ and ‘register’ functions might look using
PBKDF2-based iterative hashing;

struct PasswordInfo {
byte[] Salt;
byte[] Hash;
}
bool login(string username, string password) {
PasswordInfo pwInfo = GetPassInfo(username);
byte[] hashl = PBKDF2(password, pwInfo.Salt, ITERATIONS);
return slowEquals(pwInfo.Hash, hashl);
}
void register(string username, string password) {
PasswordInfo pwInfo = new PasswordInfo();
pwInfo.Salt = CS-PRNG.GetBytes(64);
pwInfo.Hash = PBKDF2(password, pwInfo.Salt, ITERATIONS);
pwInfo.Save();
}

To setup BlindHash, first we will modify our ‘PasswordInfo’ structure to include fields for ‘Hash2’ and
‘Version’. The ‘GetPassInfo()’ function will populate this structure for the specified user, based on your
particular data store. Note that ‘Hash2’ and ‘Version’ may be serialized into a single field in your
database, and that field should be optional or null-able, and empty by default.

struct PasswordInfo {
byte[] Salt;
byte[] Hash;
byte[] Hash2;
ushort Version;

Architecture & Deployment Guide | © 2017 14

Next, we will add code in the ‘login’ function to perform BlindHash. Note that users without a ‘Hash2’
value will be authenticated using the original ‘Hash’ value as described above to support staged rollouts.

bool login(string username, string password) {
PasswordInfo pwInfo = GetPassInfo(username);
byte[] hashl = PBKDF2(password, pwInfo.Salt, ITERATIONS);

// If BlindHash is not active for this user, use ‘hashl’
if (pwInfo.Hash2 == null)
return slowEquals(pwInfo.Hash, hashl);

// Perform the Blind Hash and check the result
BlindHash.HashResult blindHash = BlindHash.BlindHash(APP_ID, hashl, pwInfo.Version);
if (blindHash.Complete) {

// Verify the password using ‘hash2’

byte[] hash2 = HMAC-SHA512(blindHash.Hash, hashl);

bool success = slowEquals(pwInfo.Hash2, hash2);

// If password was valid, perform an upgrade if needed

if (success && result.HasUpgrade) {
pwInfo.Version = blindHash.NewVersion;
pwInfo.Hash2 = HMAC-SHA512(blindHash.NewHash, hashl);
pwInfo.Save();

}

return success;

}

// If the Blind Hash did not complete, use ‘hashl’
return slowEquals(pwInfo.Hash, hashl);
}

These changes are all that are required to support an initial deployment using ‘side-by-side’ mode with
automatic fallback to using ‘Hash1’ for authentication. The ‘BlindHash.BlindHash’ function will
automatically connect to your preferred server list (configured through the Web Admin panel),
keep-alive the TLS sessions to ensure fast response times, and retry any timeouts on redundant servers.
The client library will also keep a histogram of request latencies, and optionally provide the latency
histogram on the BlindHash Web Admin panel.

Enhancing the ‘register’ function to protect all new user registrations with BlindHash involves similar
code, except without any need to handle a Data Pool upgrade;

void register(string username, string password) {
PasswordInfo pwInfo = new PasswordInfo();
pwInfo.Salt = CS-PRNG.GetBytes(64);
pwInfo.Hash = PBKDF2(password, pwInfo.Salt, ITERATIONS);

BlindHash.HashResult blindHash = BlindHash.BlindHash(APP_ID, pwInfo.Hash);
if (blindHash.Complete) {

pwInfo.Version = blindHash.Version;

pwInfo.Hash2 = HMAC-SHA512(blindHash.Hash, pwInfo.Hash);

Architecture & Deployment Guide | © 2017 15

pwInfo.Save();

Architecture & Deployment Guide | © 2017

16

