

APPLYING DATA SCIENCE ON CHARGING INFRASTRUCTURE BENCHMARKING 5 REGIONS IN THE NETHERLANDS

AVERE E-mobility conference

April 13th 2016

Session: Interoperability of charging infrastructure

Robert van den Hoed
Professor Energy and Innovation
Urban Technology research programme
University of Applied Sciences Amsterdam

CREATING TOMORROW

o Faso G

AMSTERDAM

Start *febr 2012*

Charge Stations 824

Charge Sessions 901.390

Monthly *42.643*

THE HAGUE

Start juni 2013

Charge stations 429

Charge Sessions 217.872

Monthly *15.664*

ROTTERDAM

Start dec 2012

Charge Stations ~500

Charge Sessions 288.924

Monthly 19.079

UTRECHT

Start dec 2013

263

Charge Stations

Charge Sessions 169.166

Monthly *11.601*

METROPOLE REGION

Start feb 2014
Charge Stations 722
Charge Sessions 390.423

Monthly *51.121*

GRAND TOTAL

Charge Stations 2855

Charge Sessions *1.967.775*

Monthly **140.108**

#CHARGING STATIONS USED MONTHLY: STEADY INCREASE

- Amsterdam and MRA leading
- Den Haag and Rotterdam close followed by Utrecht

#CHARGING SESSIONS MONTHLY

- Variance from 12.000-20.000 (Utrecht, Den Haag, Rotterdam) to 40.000 (Amsterdam) sessions per month
- Seasonal influences

ELECTRICITY CHARGED (KWH)

 Monthly between 100 MWh (Utrecht, Den Haag, Rotterdam) to 400MWh (Amsterdam) charged

CHARGE SESSIONS PER CHARGE STATION

- Relative high scores for Amsterdam and Utrecht
- Car2Go increase # of sessions by ~25%

70-120KWH CHARGED PER WEEK PER CHARGE STATION

Again: high averages in Amsterdam and Utrecht

TO WHAT EXTENT ARE CHARGING POINTS OCCUPIED?

OCCUPANCY RATE BETWEEN 20% AND 40%

- Occupancy rate at peak times can be very high.
- Note that *charging rate* is (significantly) lower than occupancy rate

CONCLUDING BENCHMARK

Success factors:

- Car2Go (Amsterdam)
- Electric taxis (Amsterdam)
- Dense/urban areas (Amsterdam)
- High level of active users / ~income? (Utrecht, Amsterdam)
- Relative scarcity of charging points (relative to # of users)
 (Utrecht)
- On-demand placement (versus strategic placement) (most cases)

Importance of deeper analysis of charging patterns.

CHARGING PROFILES OF USERS: DISTINCT DIFFERENCES CAN BE SEEN IN HOW PEOPLE CHARGE

- Major part of EV user population is highly predictable.
- Can support in optimizing charging infrastructure

SMART ROLL-OUT STRATEGIES: OPTIMIZING LOCATIONS SELECTION

- Selecting locations with multiple user profiles
- Understanding utilization of charging infra, requires insight in user profiles

USER SEGMENTS: ILLUSTRATION

 80 commissioned electric taxi's responsible for 4-fold increase in kWh charged in an Amsterdam district (new west)

THE ISSUE OF LONG-CHARGERS

- <3% of all charge sessions responsible for 20% of occupation
- Incentives or social charging initiatives can improve effectiveness

VULNERABILITY OF CHARGE INFRASTRUCTURE:

CAN I CHARGE MY CAR IF MY PREFERRED CHARGING POINT IS NOT AVAILABLE?

<u>Amsterdam – December 2015 45.000 charging sessions</u>

First Order Vulnerability: available alternative for start time of charge session

Second Order Vulnerability: available alternative for full charge session

failure: No relevant charge station within a radius of 500m is available

Vulnerability analysis can support in deciding logical new charging station locations

INTERCITY TRAFFIC: LARGE CITIES HAVE SUPPORTING ROLE FOR SUBURBS

CONCLUDING

- Instrumental role of data science in roll out of charging infrastructure:
 - Monitoring
 - Benchmarking
 - Pattern recognition
 - Anomaly detection
 - Forecasting
 - Simulation
 - Policy evaluation
- For more information: www.idolaad.nl

