

Presenter:

Nizar Eldaher

PhD Candidate in AECM School of Architecture

Why?

To remove barriers impeding design and adoption of GSI

Remove Planning Barriers	Remove Decision Barriers
. Assist in developing the plan	. Assist in adopting the plan (by
(performed by the Planner)	the community and stakehold-
. Generate GSI Strategies	ers)
. Assess their hydrology, costs	. Meet the planning objectives
& benefits.	. Minimize costs & maximize
	benefits
	. Evaluate outcome variability

O	ther E	xternalities (envir	onmental,	Benefit Category	Impact
sc	social)				Improve water quality:
	Eco	Economic Externalities		Hydrology	Nutrien, Sediments & TSS, Dissolved solids, Bacterial & Other Toxins Fresh water availability
Full Cost Economic Cost	Opportunity Cost			Reduce flood risks Increase ground recharge	
	Operating and Maintenance Costs Production Cost First Cost (Price) Development Cost	aintenance	Trees And Green space	Reduce aquatic thermal impacts Reduce Energy demand Carbon sequestration Air purification	
				Noise Reduction Reduce runoff Water Preserve natural habitat	
		Investment	Employment opportunities, Tax Revenues		

Structural BMPs	GSI Elements	Hydrologic Functions					
		Infiltration	Detention	Reuse	Conveyance	Evapotranspiration	
Pervious Pavement	Alley, Parking, Walkway	•	•				
Swales	Grass, Bio.		•		•		
Bioretention	With or without underdrain	•	•			•	
Green Roofs	Intensive, Extensive		•			•	
Infiltration Strategies	Wells, Trenches, Chambers, Basins	•					
Rainwater Harvesting	Rain Barrels, Cisterns			•			
Planter Box	Planter Box						
Vegetated Filter Strip	Vegetated Filter Strip				•		

Green Storm-Water Infrastructure (GSI) Strategy Generation & Assessment Tool

For Urban & Regional Comprehensive Planning

Hydrology Module

Planning Unit:

Neighborhood and Watershed

Hydrologic Formulation:

- Runoff volume
- Peak rate discharge
- Runoff water quality
- Infiltrated volume
- Evapo-transpired volume

Economic Module

Full cost formulation:

Generates full cost formulae for each Green Storm-water infrastructure element.

Benefits quantifying and monetizing:

Generates Formulae quantifying benefits and monetizing them.

Economic multiplier formulation:

Data-

base

Module

Collect Data

Assess &

Generate Formulae for economic impact on the economy using

Green

Storm-water

Elements

Database

Community &

Infrastructure

Tool Impact on planning process

Community &

Develop

Strategies

Evaluate

Economic Input/ Output (EIO) method

Optimization Module

The Tool Architecture

Optimization:

Maximize the net benefit of GSI Subject to:

- Runoff volume control
- Peak rate control
- Runoff quality control
- Budget
- GSI design constraints

MCDM:

Maximize the weighted sum of different objectives each pertaining to the following impact categories:

Test

Acceptance

Goals &

Objectives

Recom-

Hourly

Meteorologi-

cal Database

Geographic

types, areas,

boundaries...)

over & over.

of tasks:

planning

(land cover, soil

Database

Space Multiplier

The tool will help reducing

the repetition of same tasks

The planning process consists

mainly of **two repeating series**

The first leads to develop plan-

ning goals and objectives and a

strategy to achieve them.

vise the strategy.

The second consist of imple-

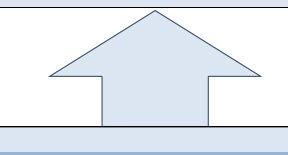
menting the plan, assessing

the outcome that leads to re-

Costs and

Benefits

Database


User Interface

User Inputs:

- Study area:
- Geographic location.
- Boundaries.
- Hydrologic performance objec-
- Potential budget

Tool Outputs:

- Green Storm Water Infrastructure elements selection and
- sizing.
- Study area expected hydrology
- Costs and benefits values
- Sensitivity and confidence intervals

Risk Assessment

Uses Monte Carlo Simulation to

generate confidence intervals.

Multi-Criteria Model

$$Max Z_M = \sum_{j} (\omega_j Z_j)$$

is the decision criterion formulawhere j pertains to economic multiplier, water saving and green space the total cost. Z_j is a function of X_i .

 ω_j is an assigned weight of value between 0 and 1 and the sum of all ω_j is equal to 1.

The constraints remain the same as

This model will generate sets of nondominated solutions.

Objective function:

$$Max Z_{M} = \sum_{j} (\omega_{j} Z_{j})$$
$$X_{i} \in \mathbb{R}^{+}$$

Where:

tion quantifying cost or benefit j benefits and the negative value of

in the optimization model

Optimization Formulation

Optimization:

Objective function:
$$Min \ Z = \sum_{i} (C_{T_i} - B_i) X_i$$

X_i is the amount of GWI element (i) to be implemented (in func-

C_{Ti} is the Annualized Total cost of GWI element (i) per functional unit (includes service, opportunity and externality costs) B_i is the Annualized Net total benefits of GWI element (i) per

functional unit

Subject to:

Budget constraint: $g_1 = \sum_i (C_{Si} X_i) \le T_B$ Where:

C_{Si} is the annualized Service cost of GWI element (i) per functional unit

T_B is the Annual total budget.

Runoff Volume Control: $g_2 = Q_{Pre} - \sum_i ((R_i + D_i)X_i) \leq Q_0$

Q_{Pre} is the Total Pre-GWI plan implementation runoff volume. Q₀ is the Total Pre-development runoff volume. R_i is the Average retention depth of GWI element (i)

D_i is the Average detention depth of GWI extends (i) $g_3 = \Psi_{Pre} - (\Psi_i X_i) \leq \Psi_0$

Peak Rate Control:

Where:

 Ψ_{Pre} is Pre-GWI plan implementation runoff Peak rate flow. Ψ_0 is the Pre-development runoff Peak rate flow.

 $_{i}$ is the Runoff peak rate reduction of GWI element (i) per functional unit

Water Quality constraints:

 $g_{j_4} = \frac{(Q_{Pre} - \sum_{i} (R_i X_i)) \varphi_{0_j} + \sum_{i} \left(D_i X_i \varphi_{d_{ij}} \right)}{Q_{Pre} - \sum_{i} ((R_i - D_i) X_i)} \le \varphi_j$

Contaminant (j) refer to TSS, NOx and P

 Φ_j = Allowable concentration of contaminant (j)

 Φ_{0j} = Concentration of contaminant (j) in pre-implementation

 $\varphi_{d_{ij}}$ = Concentration of contaminant (j) in detained water runoff from GWI element (i).

GWIEs Specific design constraints:

like minimum, maximum and/or intervals of design parameters that need to be met.

In this formulation the Net Total Benefits (B_i) is the estimated economic value of benefits: where each benefit is represented by a dollar value and the objective function will consist of minimizing the net total cost.

This method will generate specific values for the decision variables.

However, the drawback from solving this type of problem is that the environmental and social benefits are under estimated and misrepresented in the objective function. In addition the economic multiplier cannot be part of the benefit

formulation.