

COMPUTING
NEXT

How the cloud opens the future

GORDON HAFF

COMPUTING NEXT

Many of the designations used by manufacturers and sellers referred to in this book
are claimed as trademarks.

The author has taken care in the preparation of this book, but makes no expressed or
implied warranty of any kind and assumes no responsibility for errors or omissions.
No liability is assumed for incidental or consequential damages in connection with or
arising out of the use of the information contained herein.

Copyright © 2013 Gordon Haff.

All rights reserved. This publication is protected by copyright, and permission must
be obtained from the publisher prior to any prohibited reproduction, storage in a
retrieval system, or transmission in any form or by any means, electronic, mechanical,
photocopying, recording, or likewise. For information regarding permissions, write
to:

Gordon Haff

2403 Main Street
Lancaster, MA 01523
bitmason@gmail.com

Copyright to any material included in this book that was written by others remains
with the original author. Any such material is used with the permission of the
copyright holder. Certain photographs in this book are used under the terms of a
Creative Commons license and are credited as required.

This book uses Palatino Linotype and Gill Sans MT typefaces (and an Interstate
variant for the cover).

ISBN-13: 978-1481807258

ISBN-10: 1481807250
First version, February 2013.

ii

COMPUTING NEXT

About the author

Gordon Haff is cloud evangelist for Red
Hat, the leading provider of commercial
open source software. He is a frequent
speaker at customer and industry events.
He also writes extensively on and
develops strategy for Red Hat’s portfolio
of open hybrid cloud solutions.

Prior to Red Hat, as an IT industry
analyst, Gordon wrote hundreds of
research notes, was frequently quoted in
publications such as The New York Times
on a wide range of IT topics, and
advised clients on product and
marketing strategies. Earlier in his career, he was responsible for
bringing a wide range of computer systems, from minicomputers to
large Unix servers, to market while at Data General. Gordon has
engineering degrees from MIT and Dartmouth and an MBA from
Cornell’s Johnson School of Management.

He lives west of Boston, Massachusetts in apple orchard country and
is an active hiker, skier, sea kayaker, and photographer. He can be
found on Twitter as @ghaff, on Google+ as Gordon Haff, and by email
at gordon@alum.mit.edu. His website and blog can be found at http://
www.bitmasons.com.

iii

COMPUTING NEXT
Acknowledgements

This book is the product of countless conversations, conferences,
briefings, meetings, strategy discussions, and gab sessions with
clients, customers, industry acquaintances, friends, and co-workers
while at Red Hat and during my time as an industry analyst. That
said, any opinions I express in this book are mine alone and should
not be taken as statements made on behalf of Red Hat or anyone else
—official, unofficial, or otherwise.

Some chapters in this book are adapted, to greater or lesser degrees,
from material I wrote previously, including CNET Blog Network
posts, Illuminata research, and both credited and uncredited Red Hat
publications. I thank the many people who have been involved in any
aspect of editing, providing feedback for, and publishing that source
material. I would like to especially thank Jonathan Eunice for his
insight and editing while I was at Illuminata.

A number of individuals agreed to let me include pieces they have
written as chapters in this book. This expert commentary helps
provide readers with unique perspectives on a variety of technical and
business issues. These pieces have only been lightly edited; where I
felt additional context was needed on some point (perhaps because an
original blog post contained links), I have added footnotes. These
contributors are:

e Bryan Che, James Labocki, and Mark Little of Red Hat
e Andi Mann of CA

e James Urquhart of enStratus

e Michael Coté of Dell

e Judith Hurwitz of Hurwitz and Associates

Other chapters are adapted from interviews with Richard Morrell,
Chris Wells, and Matt Hicks of Red Hat. Four steps to building a
cloud is adapted, in part, from papers written by Kurt Milne of the IT
Process Institute for Red Hat. Finally, I would like to thank Jonathan
Gondelman for helping to edit the manuscript.

iv

COMPUTING NEXT

To my Dad.

For showing me the world,
my education, and everything else.

COMPUTING NEXT

Vi

COMPUTING NEXT
Table of Contents

The Cloud Turns On
Open Clouds

Building Hybrid Clouds
Controlling a Cloud
The Platform

The Path Ahead

To Infinity and Beyond

vii

40

74

116

148

186

228

COMPUTING NEXT

Introduction

For the first decade of the 215t century, I was an Information
Technology industry analyst. We analysts were different from the Wall
Street sort. Rather than trying to predict company stock prices and
earnings, we were essentially purveyors of advice. We proffered this
advice about purchases and technology trends to “users.” (A former
colleague once remarked that IT is the only industry that borrows the
parlance of drug dealers when talking about its customers.) We also
advised vendors—those who made the hardware and wrote the
software—about how to market and sell to users; said vendors having
apparently created such complexity that, more or less uniquely across
the commercial landscape, they require ongoing advice about how to
navigate their own industry.

In this role, I heard much new terminology and saw many new
technologies tentatively advanced —often as trial balloons. It was in
the mid-2000s, as the industry reconstituted itself from the bursting of
the dot-com bubble, that I saw cloud computing pop up in such a
fashion.

The cloud computing thought arose from the large shared services
growing on the Internet. Some services, like Google and Facebook,
were known by almost everyone. Others, like Amazon Web Services,
were mostly known and used by techies. However, over the next five
years or so, cloud computing gained such a buzz that the term grew to
at least touch upon many of the big ideas happening in computing.
The cynical and self-interested called this “cloudwashing.” Most
everyone else shrugged, maybe bemoaned the imprecision, and got
back to doing interesting things that the new technologies coming
together made possible.

Think of this book as a linked series of vignettes about cloud
computing’s past, present, and future. Some of these vignettes are
more technical than others, but you can mostly pick and choose where
you’d like to dive in. It begins with perspectives on how cloud
computing arrived where it is today. As an analyst, I always believed

COMPUTING NEXT

in providing historical context given that so many of today’s trends
are reinventions or reimaginings of trends past. Nowhere is this truer
than in cloud computing.

Next up is openness in clouds. For all the possibilities it creates, cloud
computing also creates potentially new vendor control points. But
openness isn’t just about open source—although open source is part
of it. Openness is about everything from communities to interfaces.
Cloud, like so much of the modern computing world, is very much a
child of the open source model and everything associated with it.

Next, we get more nuts-and-bolts about a hybrid cloud management
architecture able to encompass both computing resources at public
cloud providers and an organization’s own IT department. I also offer
some strategies for transitioning from a traditional IT approach to a
more services-oriented cloud one.

Operating a cloud covers the need for well-defined operational
practices and systems management, as well as what security and risk
mitigation really mean in a cloud context.

Cloud computing is also about the developer. Platform-as-a-Service
opens up new possibilities for enterprise application development. I
describe the rise of PaaS and why customized applications are as
important as ever.

Finally, cloud computing is still just part of a broader landscape.
Indeed, one of the reasons that cloud computing has garnered so
much attention is that its convergence with data and mobility trends
in particular is something of a self-reinforcing perfect storm.

It’s a storm that is changing the contours of computing.

Gordon Haff
Lancaster, MA
February 2013

COMPUTING NEXT

COMPUTING NEXT

The Cloud
Turns On

Cloud computing has evolved at a frenetic pace. As a result, cloud computing
“1.0” has only a passing resemblance to the cloud computing wave currently
shaping the future of the IT landscape. Furthermore, while cloud computing
in a sense “reimagines” past antecedents, changes in circumstance and
technology mean that the future will not merely be the past warmed over.

COMPUTING NEXT

COMPUTING NEXT
The Utility

When I first heard the words “cloud computing,” I was probably
sitting in my office, then in Nashua, New Hampshire —the heart of old
New England manufacturing country. An appropriate locale, as we
shall see. Sitting on the third floor of a former textile mill, I could peer
down at the Nashua River as it meandered down the center of what
had been a thriving Industrial Revolution-era manufacturing city.

Not that this was the first time I had heard the term “cloud” applied
to computing. In an earlier life, when I was involved with marketing
big business computers of a sort that would later become known as
servers, “cloud” was a convenient shorthand for the stuff that
happened in the various networks that computers used to talk to each
other. We used “cloud” as a term to encompass all the complicated
telecommunications technology and associated acronyms that we
computer people didn't especially understand —and that, in truth, was
mostly irrelevant detail as far as our daily job was concerned.

However, cloud computing as it sprang onto the pages of the tech
press around 2006 was something more specific. Google’s then-CEO
Eric Schmidt is often credited with popularizing the term. As is so
often the case with technology, though, the related concepts had been
germinating for decades. In a 1961 speech given to celebrate MIT’s
centennial, artificial intelligence pioneer John McCarthy introduced
the idea of a computing utility.

And a utility is what this iteration of cloud computing discussions
took as its model.

As recounted by, among others, Nick Carr in his book The Big Switch,
the utility take on cloud computing metaphorically mirrored the
evolution of power generation and distribution. Industrial Revolution
factories in the late nineteenth century, such as the one in which I then
sat, built largely customized systems to run looms and other
automated tools, powered by water or steam turbines.

COMPUTING NEXT

These power generation and distribution systems were a competitive
differentiator; the more power you could produce, the more machines
you could run, and the more goods you could manufacture for sale.
Today, by contrast, power in the form of electricity is just a commodity
for most companies —something to be pulled off the grid and paid for
based on how much is used.

The Big Switch argued that computing is on a similar trajectory. You
could compute by, in effect, flipping on a light switch: an almost
subconscious act that tapped into a reliable, standardized grid of
computing efficiently operated by specialists.

If one takes this metaphor at face value, the implications would
indeed be extraordinary. The Industrial Revolution-era factory was
defined by its customized power systems. My office overlooking the
Nashua River was just upstream of a dam, which existed because the
energy unleashed by falling water could turn turbines. Rotating
turbines, in turn, transmitted power through complex systems of
gears and belts, to all manner of factory equipment.

I was also way up on the third floor for a reason. Factories today tend
to be expansive, low affairs. That’s not an arbitrary decision. It's much
easier to move raw materials and finished goods—to say nothing of
large and heavy manufacturing equipment—horizontally through a
factory than vertically. However, power transmitted mechanically is
largely limited by total distance, regardless of whether up, down, or
sideways. This both limited the total size of factories and forced them
to grow into the air, whatever the other disadvantages.

New England factories tended to favor water power because of the
many fast-moving streams and rivers that flow through the area.
Rivers now enjoyed by whitewater paddlers are littered with the
remains of old dams and other constructions built to create elaborate
water power generation systems. By increasing the distance that water
falls in one location, dams could multiply the natural power of a river,
which was then harnessed through all manner of sluices and flumes.

COMPUTING NEXT

Power was therefore the product of a highly customized and
differentiated infrastructure. A good location and the right design of a
“power plant” to best leverage that location was as much a
competitive advantage as anything within the factory itself.

Steam turbines came earlier to other regions, such as England, which
lacked the hilly topography of New England. In this case, access to
coal for the steam turbine boilers helped make some regions
particularly attractive for manufacturing. However, the same basic
concepts applied. If you ran a factory, power was a big deal.

Electricity, on the other hand, can be sent through wires to motors
attached to individual pieces of machinery. There are thousands of
motors in a modern manufacturing plant ranging from those in huge
gantry cranes to numerous small ones in power tools. There’s no need
for complex arrays of belts and pulleys, rather than efficient
workflows, to dictate the arrangement of factories. As a result,
although the changeover was slow at first because of the initial
expense and the novelty of electric power, factories began to switch to
electricity in earnest during the first decade of the twentieth century.
Nick Carr writes that “By 1905, a writer for Engineering magazine felt
comfortable declaring that “no one would now think of planning a
new plant with other than electric driving.” In short order, electric
power had gone from exotic to commonplace.”

During this same period, Thomas Edison was putting together the
infrastructure to illuminate cities with electric lights. He built the first
such infrastructure on Pearl Street in lower Manhattan. On September
4, 1882, Edison switched on his Pear] Street generating station’s
electrical power distribution system, which provided 110 volts direct
current (DC) to 59 customers in lower Manhattan.

While Edison did create an electricity distribution system, his
approach was essentially to replace central gasworks utilities with
electric ones within the same localized area. And, in fact, his approach
using DC effectively limited his distribution network to relatively
short distances. By contrast, the competing alternating current (AC)
pioneered by George Westinghouse based on Nikola Tesla’s research

COMPUTING NEXT

could be transmitted over long distances at high voltages, using lower
current (for greater efficiency) and then conveniently stepped down to
low voltages for use in homes and factories.

After a long litigious “War of the Currents,” the AC system won out.
Nevertheless, Tesla’s work fell into relative obscurity after his death
although he’s always been held in high regard by the engineering
community —the high-voltage Tesla coil is also named after him. He’s
even had something of a pop culture comeback in recent years.

The shift of electricity generation from distributed plants to large
centralized ones enabled by AC has had a lasting impact. Centralized
power generation’s advantages improved further as it became possible
to build larger and larger turbines. And the coverage spread as the
countryside electrified. Today, companies don’t generate their own
electricity except, perhaps, for backup purposes or to take advantage
of some local source of relatively inexpensive power.! They don’t need
to: they just get it off the grid.

Electricity, at least to a first approximation, is no longer custom nor is
it a differentiator. It's standardized and a utility.

1 For example, the BMW plant in Spartansburg, South Carolina. uses methane from a
nearby landfill to generate over 30 percent of its electricity.

COMPUTING NEXT
Imagine computing as the new electricity

Until recently, we’ve been living in an era in which the pendulum has
clearly swung in favor of distributed computing. Computers
increasingly migrated from the “glass house” of IT out to the
workgroups, small offices, and desktops on the periphery. Even before
Intel and Microsoft became early catalysts for this trend’s exponential
growth, computers had been dispersing to some degree for much of
the history of computing. The minicomputer and Unix revolutions
were among the earlier waves headed in the same general direction.

Whether centralized or decentralized, none of this computing looked
very utility-like. The only real question was whether it was the
keepers of the systems in the backroom or the users of the systems in
the front office who needed to customize and care for their charges.
Certainly, no one would confuse operating a computer with flicking
on a light switch.

In one sense, our current era is experiencing just another wave : let’s
call it the mobile wave, or the pervasive wave. Computers are
everywhere, from cellphones to MP3 players to refrigerators. But
there’s a critical difference from the Wintel? (and then Linux) wave
that ushered in truly widespread distributed computing, including
our new mobile wave.

Yes, today the computers that most individuals touch are ubiquitous,
but they're increasingly devices for interacting with information
generated and stored elsewhere. Or they’re autonomous actors
handling low-level tasks unbidden. In short, they’re conceptually

2 Which is to say, computer systems using Intel microprocessors running the
Microsoft Windows operating systems. Over time, competition for the volume market
grew with the Linux operating system and microprocessors from Advanced Micro
Devices (and more recently, ARM-based designs). But the basic shift from “Big Iron”
to smaller and less expensive distributed systems has continued.

10

COMPUTING NEXT

more like terminals 3 —albeit compact, sophisticated, mobile ones—
than the personal computers of the last wave. Also like terminals,
they’re mostly simple to use.

PCs went a step further than offering users control over some
processing power. They also handed users full control over their data
and when and how they connected and interacted with others. Today,
by contrast, most of the intelligence is in the network or, more
precisely, in the vast server back-end that feeds all these devices.

One face of the Internet’s evolution may be the social application
running on the cellphone. But the other is the mega-datacenter pulling
massive power from the hydroelectric dams on the Columbia River in
Washington state. More and more cycles and more and more bits are
moving online. Consumer services from Google to Flickr are in the
vanguard, but hosted complete applications, a la Salesforce.com, the
ubiquitous enterprise sales and marketing tool, are making steady
inroads in business as well.

There are security, privacy, and control concerns. The trend is
particularly worrisome to folks who embraced distributing
computing, i.e. the classic PC, not just as a good technical approach to
leveraging the power of cheap microprocessors, but as a good social
architecture that puts the user in control of his information and data.
Put simply, distributed computing gave users Freedom.

But there are also profound implications for how computers will be
built and who will build them —in short, the structure of the whole
industry.

Suppose there were just a dozen or half-dozen mega-service providers
running mega-datacenters located where a communications nexus can
enjoy cheap power. These organizations might have names such as
Google or Microsoft. No doubt some countries would get into the
game as well. Now here’s the question. How would such entities

3 For those below a certain age, think of terminals as essentially like monitors,
stupidly displaying whatever they’re instructed to do so by the computer to which
they’re connected.

COMPUTING NEXT

relate to the today’s vendor landscape? Would they still be merely
large consumers of processors, servers, and software in much the
same vein that they are today?

No. As the largest of these service providers sought competitive
differentiation and advantage, it would be very tempting for them to
explore custom software and hardware angles that would leave them
looking more and more like today’s sophisticated hardware systems
companies.

We see examples. Google doesn’t design or manufacture
microprocessors or other silicon, but it does source special parts from
Intel that it uses to build many of its own computers. In short, Google
already intensely customizes “off-the-shelf” components to its own
purposes.

That a company like Google doesn’t do even more than this reflects
how today’s IT world is a world of specialization. No one can “go it
alone” to the same degree as the early mainframers or minicomputer
makers, who built literally everything from silicon to application
software. It’s a question of modern complexity and associated
economies of scale. Even if Google were to find it could benefit from
using some custom “Google search processor,” it would almost
certainly have it designed and fabricated by someone in the business
of doing such things.

But the new scale of re-centralized computing brings different needs,
which will, in turn, drive different decisions about building and
buying. It’s inevitable that Google and its ilk will do many things—
whether in-house or through contractors—that independent hardware
and software vendors have long become accustomed to thinking their
purview. For all intents and purposes, the biggest service providers
could become de facto system makers (and ones in the old, proprietary,
vertically integrated mold). The only difference is that they would
take the computing power directly to their customers rather than
bothering with the old messy intermediate process of shipping
computers that had to be installed, loaded with software, and
configured.

COMPUTING NEXT

In short, the whole landscape of computing would look vastly
changed.

COMPUTING NEXT

The causes of scale

What factors might lead to such mega-scale businesses relative to the
computing world of today?

One strong candidate is network effects.

The basic idea behind network effects is that something gets more
valuable as more people use it. The canonical example is the
telephone system. One lonesome telephone is useless. A few, only
mildly interesting. Near-universal connectivity, extremely powerful.

During the past few decades, many of us have seen this pattern
applied to email.

I first had access to email in an MIT lab about 1978. It was neat. I
occasionally traded emails with a friend of mine, Bert Halstead, who
worked at the MIT Artificial Intelligence Lab, about logistics
associated with getting to ice hockey scrimmages. But because I didn't
know anyone else on email, it wasn't really especially useful.

Flash forward to the late-1980s. I had email at work, but it was a
closed system. My company, Data General, had an internal
Comprehensive Electronic Office (CEO) setup, a “business
automation” package that we sold to customers such as the US Forest
Service when such an idea was still pretty new. My personal email
was through Compuserve, one of the original commercial online
services. I used it a bit, but it wasn't especially handy for things like
organizing hiking trips or meetings for a non-profit board I chaired
because only a few people in those groups belonged to those network
islands. I had to resort to snail mail and telephone anyway. The sea
change came when enough people were on interoperable email that I
could start treating it as the preferred and default communications
medium. Over time, backup communications methods became more
and more deprecated until pretty much everyone had to be on email.

This effect can apply to individual companies as well. Some large
Internet businesses are clearly network businesses. One great example

COMPUTING NEXT

is eBay, especially when its business primarily revolved around
individuals selling used stuff to other individuals. It was the flea
market of the Internet and network effects ruled. If I'm looking to buy
19th century maps of Boston, a marketplace with a few hundred or
even thousand of sellers is probably not going to be large enough. But
eBay was.

Facebook, LinkedIn, and Twitter are among today’s canonical
examples. In fact, with some caveats, these examples suggest that
among social networks of a given type and demographic, there’s a
winner-take-all effect.

But network effects aren’t behind every example of magnitude in the
Internet economy. If I were the only person using Google, Google
founders Larry Page and Sergey Brin wouldn't be flying around in a
private Boeing 767. But, revenue and profits aside, Google doesn’t
inherently depend on having lots of users to deliver quality results. To
be sure, the myriad creators of Web content and the links within that
content make Google’s PageRank possible, but this is a weak form of
network effect compared to the other examples.

Network effects, however, aren’t the only reason why a given industry
may end up with just a few —or even one—large players. In a 2008
blog post, Nick Carr listed a few that may be relevant to Google and
other cloud computing suppliers:

Capital intensity. Building a large utility computing system requires
lots of capital, which itself presents a significant barrier to entry.

Scale advantages. Big players reap important scale economies in
equipment, labor, real estate, electricity, and other inputs.

Diversity factor. One of the big advantages of utilities is their ability
to make demand flatter and more predictable (by serving a diverse
group of customers with varying demand patterns), which in turn
allows them to use their capital more efficiently. As your customer
base expands, so does your diversity factor and hence your efficiency
advantage. You then have the ability to undercut your less-efficient
competitors’ prices.

COMPUTING NEXT

Expertise advantages. Brilliant computer scientists and engineers are
scarce.

Brand and marketing advantages. They still matter—a lot—and they
probably matter most of all when it comes to the purchasing decisions
of large, conservative companies.

Proprietary systems that create some form of lock-in. Don’t assume
that “open” systems are attractive to mainstream buyers simply
because of their openness. As IT analyst James Governor notes:
“customers always vote with their feet, and they tend to vote for
something somewhat proprietary —see Salesforce APEX and iPhone
apps for example. Experience always comes before open. Even
supposed open standards dorks these days are rushing headlong into
the walled garden of gorgeousness we like to call Apple Computers.”

One interesting thing about this list is that it’s not very specific to the
IT industry and it’s certainly not very specific to cloud computing.
Brand, access to capital, and general “throw weight” are all factors
that can bestow an advantage on just about any company in just about
any industry —unless, of course, size and scale are slowing companies
down and keeping them from trying new things quickly. We’ll turn to
the problems with placing insufficient weight on openness
throughout this book.

This bigness/electricity metaphor makes for a spellbinding tale. When
the electric utility exploded onto the scene, it changed the design of
factories and altered the competitive dynamics of industries. But,

does it ultimately apply to this next wave of computing? Is it of a
nature that the forces of scale, in whatever combination, will dominate
everything else?

COMPUTING NEXT
But there is no big switch for cloud computing

Greg Papadopoulos was chief technology officer of Sun Microsystems,
a company whose CEO was an early and loud popularizer of the
computing utility. Papadopoulos, one suspects hyperbolically and
with an eye towards something IBM founder Thomas]. Watson
probably never said, suggested that “the world only needs five
computers,” which is to say there would be “more or less, five
hyperscale, pan-global broadband computing services giants” each on
the order of a Google.*

Computing as a new utility is an intriguing and big argument, and
one that’s been well told. It’s also mostly wrong—at least for any time
values that we care about as a practical manner.

That doesn’t make all the ideas behind cloud computing wrong. This
would be a rather short book if that were the case. Computing is
getting more network-centric. Check. More standardized. Check.
More dynamic. Check. More modular. Check. And so forth.

In fact, I even expect that we will see a rather large-scale shift among
small and medium businesses away from running their own e-mail
systems and other applications. We’ve already seen such a shift
among consumers; Google search and applications and social media
sites are all aspects of cloud computing.

There are economically interesting aspects to this change. No longer
do you need to roll in (and finance) pallets of computers to jump-start
a company; you can go to the Web site for Amazon Web Services
which lets you rent compute capacity, storage space, and other
computing services by the hour with no capital outlay. One result is a
lower barrier to entry for many types of businesses.

* As a maker of large, expensive computing hardware that “pan-global broadband
services giants” like Google had no particular inclination to buy; it’s reasonable to ask
why Sun, subsequently gobbled up by database giant Oracle, was pushing this
particular agenda. But that’s a topic for another day.

17

COMPUTING NEXT

But that’s not the sort of near-term tectonic shift the electric grid
brought about. That grid made both unnecessary and obsolete the
homegrown systems of the day. It shifted power generation to large-
scale providers and did so relatively quickly.

A shift of that scale won't happen with cloud computing. So far, there
is scant evidence that, once you reach the size of industrialized data
center operations (call it a couple of data centers to take care of
redundancy), the operational economics associated with an order of
magnitude greater scale are always going to be a slam dunk.

We see and will see the success of some very large providers like
Amazon,® Google, and Microsoft. But they won’t dominate to the
exclusion of everyone else. Nor will we see everything simply move
into public clouds of whatever size.

As Rob Livingston, a former CIO at a number of multinational firms,
puts it: “The key message here is not to assume that just because it’s
Cloud it’s always going to be cheaper than an on-premise equivalent.”

The 2009 study by management consultants McKinsey, “Clearing the
Air on Cloud Computing,” concluded that outsourcing a typical
corporate data center to an Amazon Web Services offering would
more than double the cost. As reported in The New York Times:
“According to McKinsey, the total cost of the data center functions
would be $366 a month per unit of computing output, compared with
$150 a month for the conventional data center.” The article went on to
quote Will Forrest, a principal at McKinsey, who led the study: “The
industry has assumed the financial benefits of cloud computing and,
in our view, that’s a faulty assumption.”

This McKinsey report was controversial at the time and there’s no
doubt that cost comparisons between on-premise and off-premise
solutions is a tricky business. On the one hand, the cost of maintaining
the staff associated with building, managing, securing, hiring the IT
specialists, servicing, etc. are rarely all factored into the true cost of

5 If you're only familiar with Amazon as the big Internet store, their Amazon Web
Services is also the biggest provider of public cloud services.

18

COMPUTING NEXT

computing. On the other hand, outsourcing something is never “fire
and forget,” especially if you run into unexpected problems with a
supplier.

None of this is to suggest that public clouds providers never make
sense. In fact, they often do. But the economic argument isn’t going to
carry the day uncontested.®

Furthermore, consider all the reasons businesses, especially large
ones, might want or need to continue to run applications in-house (or
on a specialist public provider more attuned to their specific needs):
control and visibility, compliance with regulations, integration with
various existing software and hardware, and so forth.

In short, we should expect a future that is a hybrid of many things,
not just one big switch.

These hybrid forms of cloud computing (and the approaches to their
creation) will be the topic of much of this book because they are the
inevitable future of computing.

6 As we'll get to in a few chapters, I would argue that, for many organizations, public
clouds set an objective not impossibly distant but that definitely sets a new
benchmark for what the users of internal IT services expect.

19

COMPUTING NEXT
What is cloud computing?

If cloud computing isn’t “the compute utility” though, what is it?

This turns out to be a question with a less straightforward answer
than one might like. For the following reason.

In some computer programming languages, there’s a concept called
overloading. Without going into the irrelevant technical specifics, this
basically means that an “operator” like a + or — sign performs a
different function depending upon the context in which it’s used. Add
‘gordon’ + ‘haff’ and you get ‘gordonhaff’. Add 2 + 5 and you get 7.
Same operator, conceptually performing the same task ("adding’), but
in different ways and with different results depending upon whether
words or numbers are involved.

I'look at cloud computing similarly. The term has come to mean
overlapping but dissimilar things depending on the context. This
emphatically does not mean that there’s “no there there” other than a
bunch of marketing hype.” But it does suggest that the cloud consists
of several somewhat different threads and encompasses somewhat
different things. From my perspective, cloud discussions often
conflate at least three different thoughts.® I'll try to tease them apart.

The first thread comes closest to the vision of computing as a utility:
services delivered at large scale from third-party providers over the
Internet. This thread visualizes using computer systems and software
owned and operated by others rather than doing so in-house (as was
historically the norm).

A service like Google’s Gmail is probably what’s most familiar to the
general public. Rather than a company having to buy a copy of an
email program, install it, troubleshoot problems, upgrade it

7 Not that there isn’t some of that too.

8 The cloud computing landscape is more varied still. And I'll get to that. But here I'm
not talking about relatively well-defined taxonomies but, rather, discussions taking
place at cross-purposes.

20

COMPUTING NEXT

periodically, and maintain the computer systems on which it runs,
they can just cut a purchase order to Google. There are some
ramifications to such a decision—I'll get to those —but it certainly
simplifies things. Even if you're renting computing at more of an
infrastructure component level’ for more customized needs than
email, we're still talking about moving things that you once needed to
own and operate out into the “cloud.”

The next thread takes these public cloud concepts as a springboard
but adapts them to the needs of individual organizations or
communities. These private or hybrid'? clouds are inspired by public
clouds. They graft the operational model of the public cloud onto an
IT infrastructure under the control of a single organization. This may
reduce costs, but the primary objective is to change the experience of
the internal IT user into something more akin to that of someone who
presents their credit card to Amazon Web Services and requests
storage or compute capacity.

There are many nuances to this aspect of cloud computing. Is a given
approach open or locked into a single vendor? How does it relate to
server virtualization? Is it about low-level infrastructure like
operating systems or is it about a higher level of abstraction? In an
environment where users have self-service, how is IT policy expressed
and maintained?

A significant chunk of this book will involve these hybrid clouds and
their implications. Why they’re needed. What “open” means. How
they work. Why policy is important.

Finally, cloud computing sometimes gets applied to something very
broad —essentially the next generation of information technology.

? Such as buying number-crunching capacity and storage from Amazon Web Services
and writing the software to tie it all together and perform some useful service.

19 Hybrid is sometimes used narrowly to refer to the combination of a private cloud
and a public cloud. However, in this book, I use it is a way that’s consistent with the
evolving industry meaning to refer to a combination of heterogeneous resources and
services wherever they’re hosted.

21

COMPUTING NEXT

It would be facile to conclude that such a broad definition suggests
that cloud computing doesn't, in fact, mean anything at all. On the
contrary, we're seeing the convergence of a number of maturing
trends—open source, mobility, standardization, virtualization, “big
data,” modular applications, consumerization—which collectively
add up to something that represents a fundamental change in the way
that software applications get delivered and consumed. In the final
section of this book, I'll take a look at where this “New IT,” whether
we call it “Open Hybrid Cloud” or something else, is headed. But I
will generally restrict my discussion to the changes in the ways in
which computing and applications are being managed and delivered
to users.

22

COMPUTING NEXT
Software, platforms, and infrastructure

The National Institute of Standards and Technology’s (NIST)
definition, the 16th and final version of which was published in
October 2011, is probably the canonical taxonomy of cloud
computing. Much of the motivation behind this definition was to
standardize US federal government cloud computing procurements;
it'’s hard to compare bids if there’s no agreement on vocabulary.
However, because the NIST definitions coalesced around a great deal
of industry discussion over the course of 15 drafts, it has emerged as a
generally accepted framework for cloud computing terminology more
broadly.

As we move forward, the limitations of this definition become more
and more apparent but it still serves as a useful starting point.

I touched on one way that clouds differ in the last chapter. There are
many important distinctions between using public and building
private clouds with respect to capital needs and operational
requirements. Architecting for hybrid clouds that span multiple
locations, technologies, and trust boundaries will be a major theme
when we get to a discussion of how we build and operate clouds.

The other major axis on which clouds differ is the co-called service
model: XXX-as-a-Service. Essentially, this is the level of abstraction
that the service delivers. Three of those levels are spelled out in the
NIST definition. Over time, I expect an increasing blending of these
models and perhaps a wider acceptance of new ones. For example,
authors such as Judith Hurwitz write of “Business Process-as-a-
Service” — a higher level of abstraction than mere applications.
Nonetheless, at least for today, the NIST definitions are a useful tool to
describe the cloud computing landscape.

1 NIST Special Publication 800-145

23

COMPUTING NEXT

Software-as-a-Service

Saa$ is perhaps the most familiar face of cloud computing. It’s the
direct use of an application by end-users rather than just by
developers or operators. SaaS essentially means hosted applications.

SaaS is arguably orthogonal to other aspects of cloud computing.
After all, there is no inherent relationship between the hosted
application and the nature of the infrastructure on which it runs.
Gmail and Google Apps are SaaS. In the enterprise software space,
rather than consumer software realm, the Salesforce.com sales and
marketing tool is probably the best known example.

At some point, the distinction between an application and a Website
blurs. Are Twitter and Facebook applications? Well, we’re more
conditioned to call them social networks —which we may access
through either a Web browser or an application. We could draw fine
distinctions but ultimately we’re talking about users doing useful (or
fun) things through lightweight interfaces like browsers and
smartphone apps. And SaaS is as good an umbrella term as any.'?

While SaaS is a hugely important part of the evolving software
landscape —and I'll discuss it in that vein as I look at the path ahead —
it’s largely independent of the other aspects of cloud computing
covered in this book.

Infrastructure-as-a-Service

IaaS provides building blocks that generally map to concepts familiar
to those constructing applications using traditional data center
components like virtual machine instances, chunks of data storage,
and networks. A user, such as a software developer or system
administrator, accesses these resources through a self-service interface
—a portal on a Web site.

12 In general we talk of cloud service types as being distinct from whether they run on
private, public, or some sort of hybrid infrastructure. Saa$S is something of an
exception; no one talks about private SaaS; that’s just an internally-hosted application
or Website.

24

http://Salesforce.com
http://Salesforce.com

COMPUTING NEXT

In a private or hybrid enterprise-administered cloud, these resources
will often be provided through a service catalog. A typical item in a
service catalog is something like the the operating system,
development tools, and supporting software libraries needed to
develop mobile applications.

The IaaS approach means that users of the service have granular
control over the type of resource they consume and how these various
resources are wired together. Subject to any policies that the creator of
the service may have put in place, users can make just about any
changes they would like. Users can add additional software, update
the operating system, use different development tools—but they can’t
manage or control the underlying compute infrastructure except
perhaps select networking configurations or physical location of the
resources at a gross geographical level.

On the other hand, users are responsible, to a large degree, for scaling
their application and provisioning all the services required to run it.
An JTaaS makes it easy for an IT shop to offer users, such as
developers, self-service compute environments in an automated and
repeatable way. But it’s the logical equivalent of giving users a server
configured with a specific software load; it’s general-purpose but it
needs to be managed. Developers are responsible for the underlying
plumbing that may not be especially relevant to their Web or business
analysis application.

Platform-as-a-Service

The Paa$S term covers a lot of ground. In a way, it covers everything
that’s somewhere between an IaaS and a SaaS and those categories
also blend into it.

Some of the higher-level public cloud services that Amazon Web
Services (AWS) and other public cloud providers offer are really
platform rather than base-level IaaS. Think replication or data services
that go beyond the basics and are often unique to a specific provider.
At the same time, many SaaS providers offer application
programming interfaces (APIs) that developers can use to add

25

COMPUTING NEXT

functions, such as customized reporting or analytics, to the base
product. The Force.com ecosystem, which extends the basic
Salesforce.com Saa$S product is a great illustration of Platform-as-a-
Service.

Whatever the specifics though, the basic idea behind a PaaS is that it
provides a platform on which a user, often a software developer, can
build without having to worry about the details which are
unimportant from his perspective anyway. Of course, at some level,
everything that serves as a foundation for further building is a
platform. However, in this context, platform refers to a higher level of
abstraction than an operating system or an operating system plus
some basic components (such as a LAMP stack with Linux).

For example, a PaaS may automate common tasks such as scaling
applications. It can make sure that various programming language
runtimes are present and updated. It may provide redundancy
automatically. The basic idea is that a developer wants to code
without worrying about the details of how that code executes within
an IT infrastructure.

Important early PaaS offerings began life as hosted offerings specific
to a single provider and geared towards a single language and set of
programming interfaces. An important trend in the PaaS marketplace
is an evolution towards a greater emphasis on application portability
and choice in programming languages and frameworks (sometimes
referred to as “polyglot”). This shift is making PaaS more suitable for
enterprises and also makes PaaS more interesting to application
architects and system administrators, rather than just developers
looking for an easy application development tool.

26

COMPUTING NEXT
How evolution begat the cloud revolution

Asking why cloud computing is happening today is something of a
tautology. An inclusive definition of cloud computing essentially
equates it with a broad swath of the major advances happening in IT
today. Even narrower definitions touch on many of the important
threads relating to how IT operations, architectures, approaches, and
software development are changing.

Pervasive virtualization, fast application and service provisioning,
elastic response to changes in user demand, low-touch management,
network-centric access, and the ability to move workloads from one
location to another are all hallmarks of cloud computing. In other
words, cloud can be more of a shorthand for the “interesting stuff
going on in IT” — or at least in back-end computing—than it is a
specific technology or approach.

But that doesn’t make the question meaningless. It would be hard to
argue that there isn't a huge amount of excitement (and, yes, hype)
around changing the way that we operate data centers, access
applications, and deploy new business services. But leaving aside the
cloud computing moniker, the question becomes: Why is this broad-
based rush to do things differently happening right now?

The answer lies in how largely evolutionary trends can, given the
right circumstances, come together in a way that results in something
revolutionary.

Take the Internet. ARPANET —the Internet’s predecessor —was first
established in 1969. Something akin to hypertext, the link you click to
go to a Website, was first described by Vannevar Bush in a 1945 article;
Apple shipped Hypercard in 1984. But it took the convergence of
inexpensive personal computers with graphical user interfaces, faster
and more standardized networking, the rise of small inexpensive
servers connected together in large numbers, the World Wide Web
and the Mosaic browser that talked to it, open source software like
Linux and Apache, and the start-up culture of Silicon Valley to usher

27

http://en.wikipedia.org/wiki/As_We_May_Think
http://en.wikipedia.org/wiki/As_We_May_Think

COMPUTING NEXT

in the Internet as we know it today. And that convergence, once it
began, happened quickly and dramatically.

The same could be said of cloud computing. The following
interrelated trends are among those converging to make cloud
computing not only possible and interesting, but transformational.

Comfort level with and maturation of mainstream server
virtualization. Virtualization, which I'll discuss in more detail, serves
as the foundation for several types of cloud computing including
public Infrastructure-as-a-Service clouds like Amazon’s and most
private cloud implementations. But the connection goes beyond
technology. Increasingly ubiquitous virtualization has required that IT
organizations become comfortable with the idea that they don’t know
exactly where their applications are physically running. Cloud
computing is even more dependent on accepting a layer of abstraction
between software and its hardware infrastructure (although, at the
same time, it can more completely abstract away underlying
complexity).

The build-out of a vendor and software ecosystem alongside and on
top of virtualization. From a technology perspective, cloud computing
is about the layering of automation tools, including those for policy-
based administration and self-service management. From this
perspective, cloud computing is the logical outgrowth of
virtualization-based services—although it also involves the layering of
resource abstraction on top of the hardware abstraction which
virtualization provides. Cloud computing can also involve concepts
like pay-per-use pricing, but these too have existed in various forms in
earlier generations of computing.

Lightweight application access. The corollary of mobile workloads
within the datacenter which can move from server to server is the
mobility of access devices. Many enterprise applications historically
depended on the use of specific client software. In this respect, “client-
server” and then PCs were something of a step back compared to
applications accessed with just a green-screen terminal. (But, in
exchange, this complexity meant that applications could leverage the

28

COMPUTING NEXT

local computing power and graphics on the “fat client.”) Today’s trend
towards being able to access applications from any Web browser is
effectively a prerequisite for the public cloud model and helps make
internal IT more flexible as well. Ubiquitous browser-based
application access (and the complementary app store approach that
began on the smartphone) is one of the big differences between
today’s hosted software and the Application Service Providers of circa
2000.

Mobility and the consumerization of IT are also driving the move to
applications that aren’t dependent on a specific client configuration or
location. For more than a decade, we’ve seen an inexorable shift from
PCs connected to a local area network to laptops running on Wi-Fi to
an increasing diversity of devices such as smartphones and iPads
hooked up to all manner of networks. Fewer and fewer of these
devices are even supplied by an employer and many are used for both
personal and business purposes. All this further reinforces the shift
away from dedicated, hard-wired corporate computing assets.

The expectations created by consumer-oriented Web services. The
likes of Facebook, Flickr, 37signals, Google, and Amazon (from both
Amazon Web Services and e-commerce services perspectives) have
raised the bar enormously when it comes to user expectations around
ease of use, speed of improvement, and richness of interface.
Enterprise IT departments rightly retort that they operate under a lot
of constraints —whether data security, detailed business requirements,
or uptime —that a free social-media site does not. Nonetheless, the
consumer Web sets an expectation and IT departments increasingly
find users taking their IT into their own hands when the official
solution isn’t good enough. This forces corporate IT to be faster and
more flexible about deploying new services.

None of these trends really had a single pivotal moment. Arguably,
virtualization came closest with the advent of native hypervisors for
x86 servers in 2001. But, even there, the foundational pieces dated to
IBM mainframes in the 1960s and it took a good decade even after x86
virtualization arrived on the scene to move beyond consolidating

29

COMPUTING NEXT

lightweight applications, primarily on the Microsoft Windows
operating system, to become ubiquitous (although not universal).

Web application richness and the way access to those applications is
transforming in a variety of ways (some of which will end up being
more viable than others) is also an important trend. The next-
generation HTMLS5 language used on Web pages, browser-centric
laptops, smartphones, tablets, TVs that look more like computers, app
stores, and higher-performance wireless communications are just a
few of the developments that could affect how we access applications
and what those applications look like.

Collectively, there’s a big change afoot and cloud computing is as
good a term for much of it as any. But we got here through largely
evolutionary change that has come together into something much

bigger.

And that’s a good thing. New computing ideas that require lots of
ripping and replacing have a generally poor track record. So the fact
that cloud computing is in many ways the result of evolution makes it
more interesting, not less.

30

http://news.cnet.com/8301-30685_3-20008935-264.html
http://news.cnet.com/8301-30685_3-20008935-264.html
http://news.cnet.com/8301-30685_3-20022277-264.html
http://news.cnet.com/8301-30685_3-20022277-264.html
http://news.cnet.com/8301-30685_3-20022277-264.html
http://news.cnet.com/8301-30685_3-20022277-264.html
http://reviews.cnet.com/tablets/
http://reviews.cnet.com/tablets/

COMPUTING NEXT
The shipping container and the cloud

The story of the shipping container nicely illustrates how new
approaches—even those that are radically new and ultimately
transformative —are still rooted in the past in important regards.

The story of the shipping container, as author Marc Levinson
described it in The Box: How the Shipping Container Made the World
Smaller and the World Economy Bigger, illustrates how even ultimately
transformative new technologies still proceed naturally out of past
developments. The shipping container radically changed the
economics of shipping the goods we purchase and use every day.
Without the shipping container, the globalization of goods would
never have happened —at least not at nearly the scale it has. The
container embodies a lot of interesting lessons for how technologies
evolve more broadly.

It has lessons about both possibilities and constraints. But also about
how practices may have to change in order to realize the potential of
new technology.

Existing infrastructure matters. The size of container ships is largely
constrained by the width and depth of the Panama and Suez Canals.
A “Panamax” container ship is the maximum size that can go through
the Panama Canal; a “Suezmax” the largest that can go through the
Suez Canal. “Malaccamax” ships have the maximum draught that can
traverse the Strait of Malacca. In a totally different context, there’s a
good argument that the Segway, a much ballyhooed self-balancing
“personal transportation vehicle,” failed, not so much because of price
or poor design, but because it wasn’t a good fit with either existing
sidewalks or roads (which also remains an issue with widespread
bicycle use in most American cities).

Standards matter. Containers have been around in various forms
since at least the 1800s, beginning with the railroads. In the U.S., the
container shipping industry’s genesis is usually dated to Malcom
McLean in 1956. However, for about the next twenty years, many
shipping companies used incompatible sizes for both containers and

31

http://www.eurans.com.ua/eng/faq/containerships/
http://www.eurans.com.ua/eng/faq/containerships/

COMPUTING NEXT

the corner fittings used to lift them. This in turn required multiple
variations of equipment to load and unload and otherwise made it
hard for a complete logistics system to develop. This changed around
1970 when standard size and fittings and reinforcement norms were
developed (with all the political jostling between the incumbents that
you'd expect).

Process matters. At least as important as standards were changes to
the labor agreements at major ports. When containers were first
introduced, existing labor contracts negated much of their economic
benefit by requiring excess dockworkers or otherwise requiring
processes that involved more handling than was actually necessary.
For reason of both new labor agreements and infrastructure,
containerization allowed the Port Newark-Elizabeth Marine Terminal
to largely eclipse the New York and Brooklyn commercial port.

The story of the shipping container has particular relevance to cloud

computing. Like the container, the basic concepts aren’t new but they
are being made more relevant to a wider audience by the maturation
of associated infrastructure (such as the network).

Cloud adoption within organizations can certainly be constrained by
the infrastructure already in place. An approach which requires
dramatic reboots of a business” application and infrastructure
portfolio is typically not going to be a workable approach. By the
same token, though, increased standardization —even if the resulting
infrastructure is still heterogeneous in many respects—makes unified
cloud management more approachable. And commonality between
these enterprise architectures and those used by public cloud
providers similarly make possible hybrid architectures that would
have faced almost insurmountable technical challenges in a prior era
when incompatible proprietary computer systems were the norm.

Standards will matter —at least to reach the point of interoperable
clouds. That the IT industry has increasingly adopted common
networking and other standards as it has more standardized
computing architectures lays the framework for cloud standards.
Standards for cloud computing itself will evolve over time and, as has

32

COMPUTING NEXT

often been the case in the past, various translation layers and shims
will often take the place of full standards-based interoperability —
especially in areas where technology is still evolving.

And the business processes are, as always, highly relevant to the
computing resources which, after all, are ultimately there to support
them. Processes rooted in manual approaches with lots of human back
and forth won’t see much benefit from new technology no matter how
virtualized, service-oriented, or self-service. Human intervention
throttles automated processes. This isn’t to say that checks and
balances aren’t needed —but they should mostly be based on
automated policy controls with manual intervention and not the
norm.

33

COMPUTING NEXT

The Amazon model

Most of this book will focus on how organizations can build and
manage hybrid clouds. However, given that hybrid spans both the
private and public spheres, a cloud like Amazon’s is very much part of
this equation. Indeed, as we’ve seen, there remains a school of thought
that these public clouds are the one and only future. I won't debate
that particular point further but merely stipulate that public clouds, in
their various forms, are an important part of the present and future of
computing. And Amazon is the eight hundred pound gorilla in that
space.

By the time that Amazon CEQ Jeff Bezos appeared on the cover of
Time Magazine as 1999’s Person of the Year, Amazon.com had already
started to significantly expand beyond its roots as the “world’s biggest
bookstore.” By then it was also selling, not only CDs and movies, but
also power tools, toys, televisions, and more. It was also still losing
hundreds of millions of dollars per year—a loss that, however
fashionable in the dot-com bubble, is still a lot of money. Then, as
now;, rail-thin margins are a big part of Amazon’s financial challenge
—especially for the sort of mass-market commodities that make up
much of Amazon’s business, constrained as they are by the prices
charged by both other Web retailers and by brick-and-mortar stores.

As a result, Amazon eyed related and complementary businesses
which didn’t involve directly selling the tangible “stuff” that Amazon
had to inventory and distribute on their own nickel. For example, by
1999, Amazon had started its “zShops” program (which became the
“Amazon Marketplace” in 2006) —essentially a complete hosted e-
commerce infrastructure for third-party merchants. Amazon’s
attraction to this sort of business is that it is effectively collecting
“tolls” on every transaction processed, while being called on to do
little more than provide access to the company’s transactional
infrastructure. Yes, it’s a pricey and complicated infrastructure to
setup in the first place. But, at least over time, incremental scale can be
added relatively inexpensively.

34

COMPUTING NEXT

In 2006, Amazon took this strategy to the next level by introducing a
variety of Web services. Some of the services straightforwardly
extended and leveraged earlier offerings in e-commerce and search.
However, three services—Elastic Compute Cloud (EC2), Simple
Storage Service (S3), and Simple Queue Service (5QS)—were pure
utility infrastructure offerings. As I wrote in 2007: “While still in quite
early days, they suggest that Amazon increasingly sees itself as much
about delivering just the electrons as the complete atoms.”

A persistent story continues to make the rounds that Amazon Web
Services (AWS) was created to effectively lease Amazon’s excess
computer capacity outside of the November to January holiday season
—a period during which, like other retailers, Amazon does much of
its business. But this appears to be merely apocryphal. Werner Vogels,
Amazon’s CTO, has written that “The excess capacity story is a myth.
It was never a matter of selling excess capacity, actually within 2
months after launch AWS would have already burned through the
excess Amazon.com capacity. Amazon Web Services was always
considered a business by itself, with the expectation that it could even
grow as big as the Amazon.com retail operation.”

Some of the concepts within AWS had existed previously. S3
resembled the storage service providers of the dot-com era. EC2 bore
more than a passing resemblance to Sun Microsystem’s much-hyped
Sun Grid Compute Utility —although that was based on physical
servers rather than AWS’ virtual infrastructure. But Amazon
succeeded where those others had not through a combination of scale,
low pricing, embracing new lightweight Web protocols, and an
aggressive focus on continually rolling out new services and new
capabilities.

It probably didn’t hurt either that AWS rolled out around the dawn of
the second great Internet boom, which distinguished itself from the
first one in part by far less investor appetite for huge outlays of up-
front capital. In this startup climate, the availability of cheap pay-per-
use compute capacity was extremely attractive.

35

http://amazon.com/
http://amazon.com/
http://amazon.com/
http://amazon.com/

COMPUTING NEXT

Whatever the precise reasons, AWS has grown enormously (although
nailing down anything approaching exact numbers remains
something of a technology press and financial analyst parlor game).
As of this writing, the latest estimate from Macquarie Capital pegged
AWS’ 2013 revenue at $3.8 billion, up from under $1 billion in 2010.

@ghaff @DWConnolly

One striking thing about #reinvent looks like a

#reinvent is how relatively valuable event with a ' #relnvem
recent so much of this is. world class attendee list.

My first research note Keep building the mo of

about AWS in early days? the cloud! @AWSrelnvent
2007

For a more visceral sense of how AWS has grown and how it has
engaged with all manner of developers and companies, you couldn’t
have done better than to attend the AWS Re:Invent conference in Las
Vegas right after Thanksgiving 2012. That is, if you could get in. Their
first customer and partner conference sold out its 6,000 or so tickets.
The level of advancement in just five years or so was striking.

Amazon focused considerable energy on making the case that even
the most critical and demanding applications could run on their
cloud. One such example was NASDAQ’s QMX FinQloud, a cloud
computing resource powered by AWS specifically intended for the
financial services sector. That said, the conference was also replete
with familiar examples of the-usual-suspect mature startup businesses
that continue to use AWS almost exclusively. Think movie and TV
subscription service Netflix and photo sharing site SmugMug.

Ultimately, consistent with a theme I'll return to again and again in
this book, it’s not a matter of public clouds not being secure or
generally inadequate on any single dimension. It's a matter of

36

COMPUTING NEXT

suitability of purpose where that suitability is often in the eye of the
beholder.

37

COMPUTING NEXT

The cloud in the forest

In a 2009 blog post, longtime IBMer Irving Wladawsky-Berger offered
a good way to think about the evolution toward cloud computing.

We should view computing models much more like forests than trees.
These computing model forests have a variety of different trees, and
the transition between them is gradual, not abrupt. With the passage of
time, as you walk around them you begin to see new trees, but the old
ones are still around. But one day you realize that the forest you are
now walking through is markedly different from the one you were in
twenty years ago.

Put another way, it’s evolutionary rather than revolutionary —neither
a new term applied to the same old thing nor an overnight sea change
in the way that all computing is done. Terminological debates will
doubtless continue, and there are plenty of unanswered questions
about exactly which new “trees” will thrive and which will die out.
However, we're starting to see some consensus emerge around at least
the broad outlines of the cloud’s evolution.

As Wladawsky-Berger wrote after a 2009 MIT Sloan CIO Symposium:

A lot of the benefits of cloud computing, such as virtualization, shared
infrastructures, highly disciplined systems management, flexible
deployment and scalability are of value to just about all data centers
and service providers, whether you run them as a private clouds
providing services to only members of the company, or as public
clouds open to everyone. There is also general agreement that you
should make cloud deployment decisions on a case-by-case basis,
especially decisions as to which applications should be run on private
versus public clouds. Public cloud deployments make the most sense
for highly commoditized, standardized, mass customized applications.

During a panel at the same symposium, there was also a broad
consensus that infrastructure savings and flexible scaling were key
factors driving the adoption of cloud computing. One panelist
remarked that “The benefits of cloud computing start and end with
the dollars you can save. But it can also help getting your best people
away from working in areas that can be outsourced to the cloud. This

38

http://blog.irvingwb.com/blog/2009/04/cloud-the-emergence-of-a-new-model-of-computing.html
http://blog.irvingwb.com/blog/2009/04/cloud-the-emergence-of-a-new-model-of-computing.html
http://www.internetevolution.com/author.asp?section_id=484
http://www.internetevolution.com/author.asp?section_id=484
http://www.internetevolution.com/author.asp?section_id=484
http://www.internetevolution.com/author.asp?section_id=484
http://www.mitcio.com/
http://www.mitcio.com/
http://blog.irvingwb.com/blog/2009/05/the-mass-customization-of-services.html
http://blog.irvingwb.com/blog/2009/05/the-mass-customization-of-services.html
http://www.networkworld.com/news/2009/052109-mit-cloud.html
http://www.networkworld.com/news/2009/052109-mit-cloud.html
http://www.networkworld.com/news/2009/052109-mit-cloud.html
http://www.networkworld.com/news/2009/052109-mit-cloud.html

COMPUTING NEXT

way you can allow your best people to focus on an area that drives
differentiation for your company.”

A few points worth highlighting:

Cloud-like computing architectures within organizations are
garnering a lot of interest. Whether you call them “private clouds” or
just the next iteration of service-oriented architectures (SOA), the
bottom line is that organizations —especially larger ones—are far
more interested in leveraging the approaches embodied by cloud
computing than they are in actually hosting their applications
elsewhere.

There’s also interest in the public cloud, but it’s often for standard
off-the-shelf applications in the form of hosted applications,
Software-as-a-Service (SaaS), or certain types of new

applications. This is, in fact, wholly consistent with the established
pattern of IT outsourcing. Payroll was perhaps the first application to
be farmed out in a widespread way. Important? Sure. But also largely
standardized and in no way a source of competitive advantage. New
applications—though not all —will better align with new types of
infrastructure as well.

Distractions matter. Enterprises can arguably do a lot of things as
cheaply in-house as can a third-party. However, a corporation also
runs the risk of keeping too many plates spinning at any one time.
Ultimately businesses need to focus on their core competencies and
concerns.

It’s arguably been the dramatic “Big Switch” take on cloud computing
with which I introduced this section that has led to so much of the
cloud hype. But it’s the enabling technologies—as adopted in
thousands of distributed organizations—that are more relevant for
any reasonable planning horizon.

And that’s a good segue because hybrid clouds are where a lot of
action in cloud computing is taking place today. But, first, open source
and everything associated with it has played such a large role in
today’s computing world that a brief detour is in order.

39

COMPUTING NEXT

Open Clouds

Openness and open source weave into many of this book’s topics. Some brief
background is in order. This is by no means a detailed history of “free
software,” open source, the philosophical underpinnings of the movement, the
companies and individuals who played major parts, how it works as a
development process, or a thorough examination of legal subtleties. Rather,
the intent is to help you understand the practical ways in which open source
intersects cloud computing.

Whence open source. There are many misconceptions about open source
even by people who are otherwise very familiar with the software industry.
As a result, I'm going to spend some time tracing the history of open source
and show how it came to its present predominant position.

Communities over free-riders. The ways in which thinking about open
source licenses has evolved over time.

How cloud changes the rules (or not). Open source software licensing
grew up in a world of technical constraints and conditions which might
initially seem to have little to do with cloud computing. But open source and
other aspects of openness very much do.

What makes a cloud open. Open source was a means to an end in a world
where computer systems running unique operating systems and applications
were the norm. Open source remains important in a world in which
hardware and operating systems are more standardized even as the locales
where a given application may run are more varied. But many more factors
come into play as well.

40

COMPUTING NEXT
Whence open source

Consider the evolution of open source through the lens of the
operating system.

The first computers didn’t even have operating systems—of which
today’s open source Linux is one of the most popular examples. Users
ran programs that controlled the entire machine and explicitly told
the hardware how to perform calculations or do other tasks. The first
operating system is generally considered to be the GM-NAA I/O
system created in 1956 by Bob Patrick of General Motors and Owen
Mock of North American Aviation for the IBM 704 mainframe. A lot of
things were left as an exercise for the users in the early days. GM-
NAAT/O, its successors like SHARE, and other early OSs were all
written by customers.

Operating systems evolved to provide an increasingly rich set of
services to applications so they didn’t have to reinvent the wheel. One
important aspect of these services was that they remained relatively
consistent and stable, at least for major commercial products.’® Put
another way, they constitute a sort of “contract” for applications that
run on top. There’s effectively a promise that, if you write a program
to the defined operating system interfaces, things will still work even
if you install a new type of disk or if you double the number of
processors. They also insulate applications making use of those
services from the hardware and the low-level software that talks
directly to hardware. Done right, this abstraction allows innovation to
occur in one layer of the hardware/software stack without forcing
everything else to change.

Finally, operating systems handle basic processes and memory
management so that application programs don’t need to worry about
the processor on which their instructions are executing, or the specific
physical location on a disk drive where their data is stored. That may
seem like just-the-way-things-work to the average user who even

13 Indeed, part of the value commercial operating systems (such as Red Hat Enterprise
Linux from my employer) offer is consistency within and across versions.

42

COMPUTING NEXT

thinks about such things today. But basic process scheduling on multi-
processor systems and the many tasks handled by filesystems were
once the responsibility of programmers and system operators. Over
time, OSs have largely abstracted away those tasks.

In the early days, it was considered something of an innovation if an
operating system wasn't tied to a single generation of hardware.
Furthermore, many of the operating system functions that we now
take for granted had to be performed by applications or by utility
programs—if, in fact, the functions were available at all.

Against this background, the Unix operating system developed at Bell
Labs, the research arm of the old AT&T, was a bit unusual. Created by
Ken Thompson, Dennis Ritchie, and others, Unix—although
originally developed in low-level assembly language —was soon
rewritten in the higher-level C language partly to simplify developing
versions which would run on different types of hardware. The higher-
level the language, the less tied to the details of a specific type of
hardware.!

Under the terms of a 1958 consent degree stemming from one of its
ongoing series of antitrust cases, Bell Labs had to license its non-
telephone technology to anyone who asked. AT&T did so under under
licenses, which included all source code —text files that can be edited
and fed through a compiler to create instructions which a computer
can use directly.

By the late seventies, Unix was running on all manner of hardware
from IBM mainframes to Digital Equipment Corporation
minicomputers (and many more besides). Access to the source code
allowed licensees themselves, rather than AT&T, to do much of the
work required to “port” Unix to all these varied hardware
architectures.

14 Using higher-level computer languages and other types of abstraction usually trade
off some degree of efficiency for ease of development and operation. Computer
memory and performance were still at very much a premium in the early seventies,
making the use of a high-level language for this purpose at least somewhat
controversial.

43

COMPUTING NEXT

One of the educational licensees, the University of California,
Berkeley, modified and added features to its licensed version of Unix
and, in 1978, began shipping those add-ons as the Berkeley Software
Distribution (BSD). Over time, BSD added many new features and
came to be viewed as a substantially different product from that
shipped by AT&T. In fact, in 1988, Berkeley would eventually release a
version of BSD, Networking Tape 1 (Net/1), that no longer contained
any of the original AT&T code and therefore didn’t require an AT&T
license. Instead, Berkeley made it freely redistributable under the
terms of its own BSD license, which as we’ll see is a particularly
permissive open source license. AT&T would subsequently sue
Berkeley for copyright infringement but the suit was settled largely in
Berkeley’s favor in 1994.

In parallel with the commercial growth of Unix, Richard Stallman was
working in the MIT Artificial Intelligence (AI) lab where he became
convinced that people needed to be able to freely modify the software
that they used. In 1985, Stallman published the GNU Manifesto,
which outlined his motivation for creating a free operating system
called GNU, which would be “compatible”!® with Unix. The name
GNU is a recursive acronym for “GNU’s Not Unix.”

To this day, there is no “GNU operating system” in that the GNU
Hurd operating system kernel has never been completed. However,
Stallman did complete many components of his operating system.
These included, critically, the parts needed to build a functioning
operating system from source code as well as utilities such as a text
editor. They were licensed under a “copyleft” license, the General
Public License (GPL), which required that, when software is
distributed, the source code, including any changes made, be
distributed as well. (By contrast, the BSD license does not impose this
requirement; it’s therefore often described a a “permissive” license.)

Because Unix has always had a relatively modular design, it was
possible to combine the working GNU components with a kernel from

15 “Compatible” is a rather complicated and loaded word in the context of Unix but
it's the word used by Stallman in his manifesto.

44

COMPUTING NEXT

somewhere else. That kernel, called Linux, was developed by a
Finnish college student named Linus Torvalds, working on and
inspired by MINIX, a minimal version of Unix written by Andrew
Tanenbaum to teach computer science.!® (MINIX was effectively used
to bootstrap the development of the new kernel, a common practice
for new operating systems.) In August 1991, he posted news of his
project to the Internet newsgroup comp.os.minix, inviting feedback
and suggestions. Linux development, under Stallman’s GPL license,
continued throughout the Nineties. By the time of the Internet boom
in the latter half of the decade, Linux had leveraged the open source
development model to emerge as the standard infrastructure software
for the Internet age.

I've presented this history to show how open source software as we
know it today is, in important respects, the product of the
environment from which it first sprang. The setting was largely
academic (University of California, Berkeley in the case of BSD Unix,
and MIT in the case of the GPL) and the operating system platform
was largely Unix or Unix-like derivatives.

I've only touched on the long and twisted history of Unix’ genesis at
Bell Labs, its growth into a commercial operating system, and the
subsequent Unix wars. But suffice it to say that a number of historical
factors greatly influenced what we usually think of as open source
today:

e Throughout the early history of Unix, source code was widely
available and widely-shared. For example, large chunks of mid-
Seventies vintage Sixth Edition Unix became widely available in
samizdat fashion; and were eventually published in the well-known
book Lion’s Commentary on UNIX 6th Edition (though the book was
published with the right to use the code for educational purposes
only).

16 Strictly speaking, Linux therefore refers only to the operating system kernel
although it’s widely used to refer to complete distributions of Linux plus all manner
of associated programs and utilities. Some purists push the term “GNU/Linux”
although this has never been widely accepted.

45

COMPUTING NEXT

¢ During the 1980s, the mechanisms to exchange files and
communicate through email and newsgroups was fairly
commonplace in the computer science departments at places like
Berkeley and MIT (which were connected to the Internet’s precursor)
while they were still relatively unknown in the broader world.

e Unix was designed as a portable operating system that could run on
a wide range of incompatible hardware platforms, but had to be
modified to do so.

Thus, this culture had a history of sharing source code and the
mechanisms to share source code and work on it collaboratively. This
access to source code turned out to be very useful because you needed
it to port programs to all the varied operating system flavors,
processor architectures, and hardware designs out there.

“Software Freedom” therefore focused on viewing, modifying, and
redistributing source code —often with license terms that reflected
specific technical aspects of a Unix environment—because the source
code and the right to run it were what mattered most. The ideological
underpinnings of the Software Freedom movement are not really
about open source per se but, historically, open source was the
practical mechanism to achieving the greatest degree of freedom.

46

COMPUTING NEXT
Communities over free-riders

Historically, talk open source, and people have tended to focus on the
source code and the license.

Some licenses are essentially legacy licenses; in general, the continued
proliferation of licenses has abated in recent years but it’s often more
trouble than it’s worth to retire licenses that are still in use by active
software. Others won't be relevant to a specific type of copyrighted
material, such as software programs. (Material under an open source
license is still copyrighted; indeed, copyright law is integral to the
working of open source licensing.)

However, when it comes to open source software licenses specifically,
there are two broad categories. One includes “copyleft” licenses, of
which the General Public License (GPL) is the best known. (The Linux
operating system uses the GPL.) The other includes “permissive”
licenses, most notably the Apache, BSD, and MIT licenses.

Different licenses impose more, fewer, or different types of restrictions
within that general framework. But those two categories capture the
core philosophical distinction.’” A copyleft license requires that if
changes are made to a program’s code, and the changed program is
distributed outside an organization, the source code containing the
changes must likewise be distributed. Permissive licenses don't.

Among newer projects, there’s a general trend towards greater use of
more permissive licenses. Matthew Aslett of market researcher 451
Group wrote in 2011 that: “2010 was the first year in which there were
more companies formed around projects with non-copyleft licenses
than with strong copyleft licenses.” Other data shows a similar trend,
as do the anecdotal observations of industry observers.

17 A class of licenses are copyleft at the level of individual source code files, rather
than the program as a whole. This is arguably an important distinction even if the
reality is that these licenses, of which Mozilla Public License is the best-known
example, aren’t in especially broad use today.

47

COMPUTING NEXT

My take is that this shift reflects less concern about preventing free-
riders and more concern about growing communities. The Eclipse
Foundation’s Ian Skerrett puts it this way: “I claim all these projects
use a permissive license to get as many users and adopters, to
encourage potential contributions. They aren’t worried about trying to
force anyone. You can’t force anyone to contribute to your project; you
can only limit your community through a restrictive license.”

Or to put it another way, open source is no longer widely viewed as a
child that needs to be protected.

Today, open source is widely embraced by all manner of technology
companies because they’ve found that, for many purposes, open
source is a great way to engage with developer and user communities
—and even with competitors. It's emerged as a great model for
developing software and capturing innovation wherever it’s
happening.

Therefore, the concern that, left to their own devices, companies will
wholesale strip-mine open-source projects and “take it all private”
seems anachronistic. That’s not to say that it will never happen or that
everyone will always contribute as much code without copyleft as
with it, but the suggestion that copyleft is all that’s holding the whole
open-source process together just doesn’t square with the facts.

As a result, more people are now approaching licensing
pragmatically, rather than ideologically.

The adoption of the new version of the GPL, GPLv3, in late 2007 is
illustrative. The prior version of the license is used by Linux and
many other open source projects. Updating it was a long, loud, and
contentious process. But after all the sturm und drang, it's now unclear
what real impact the GPLv3 will have. Depending upon whom you
ask, clauses concerning ideological sticking points such as digital
rights management were either narrowed in scope or de-fanged
completely. And it seems possible —probable even—that Linux,
perhaps the best-known open source project licensed under the GPL,
will never move to the new license version.

48

COMPUTING NEXT

More broadly, there just doesn’t seem to be a whole lot of interest,
much less passion, out there in the various open source communities
for fighting license battles. That’s not to say that everyone agrees that
there is one perfect approach to licensing. Not at all! But there is, for
the most part, a pragmatic understanding and a realization that the
license for a given open source project has to match up with its
governance, collaboration, and even business model. It’s just one piece
of the puzzle.

49

COMPUTING NEXT

Bet on the Community, Not the Current State of
Technology by Bryan Che

An example of the importance of community is offered here in the context of
OpenStack, an open source Infrastructure-as-Service project that has been
buoyed by huge developer and other community
interest and the establishment of an independent
OpenStack Foundation.' Bryan Che is co-General
¥ Manager of Red Hat’s Cloud Business Unit.

w Adapted from http://tentenet.net/2012/08/13/
the-2nd-tenet-of-open-source-bet-on-the-
community-not-the-current-state-of-technology/,
originally published August 2012.

-

Unix or Linux of Cloud?

I recently spoke with an analyst who asked me about Marten Mickos’
comment at GigaOm Structure that “OpenStack, rather than following
in Linux’ footsteps, could become “the Unix of cloud.” The implication
was that so many vendors weighing in could lead to a forking or
fracturing of the OpenStack standard.”!® Similarly, many others have
recently been asking if OpenStack would become the “Linux of
Cloud?”

No, the Linux of Cloud is Linux. However, the thrust behind either of
these questions essentially boils down to: When evaluating open
source technologies for cloud, how do you pick a winner? How do
you know if a project is going to succeed like Linux or fracture and
decline like Unix?

18 CloudStack, another open source laa$S project, has also likely has benefited from its
shift to being governed by the Apache Software Foundation rather than by its
primary sponsor, Citrix.

19 This comment refers to the infamous “Unix wars” that resulted in the proliferation
of many incompatible versions of Unix, a topic which (thankfully) is beyond the scope
of this book.

50

http://tentenet.net/2012/08/13/the-2nd-tenet-of-open-source-bet-on-the-community-not-the-current-state-of-technology/
http://tentenet.net/2012/08/13/the-2nd-tenet-of-open-source-bet-on-the-community-not-the-current-state-of-technology/
http://tentenet.net/2012/08/13/the-2nd-tenet-of-open-source-bet-on-the-community-not-the-current-state-of-technology/
http://tentenet.net/2012/08/13/the-2nd-tenet-of-open-source-bet-on-the-community-not-the-current-state-of-technology/
http://tentenet.net/2012/08/13/the-2nd-tenet-of-open-source-bet-on-the-community-not-the-current-state-of-technology/
http://tentenet.net/2012/08/13/the-2nd-tenet-of-open-source-bet-on-the-community-not-the-current-state-of-technology/

COMPUTING NEXT

The answer is the 2nd Tenet of Open Source: Bet on the Community,
Not the Current State of Technology.

Why Linux Succeeded

I'joined Red Hat back in 2002 before we first released Red Hat
Enterprise Linux (RHEL). I can tell you—and no one at Red Hat will
dispute this—that RHEL was inferior to Solaris and other Unix
variants in many ways back then. So, how were we able to succeed
with RHEL, and why has Linux won against Unix? We had three
things going for us:

e An unbeatable value combination of open source software on
commodity x86 hardware

¢ A Linux distribution that enterprises could trust due to the
certification of hardware vendors and ISVs, support, and stable and
predictable releases with good lifecycles (RHEL)

e Alarge and growing open source community driving fast innovation
into Linux

The first two features were what earned Red Hat the right to have
conversations with enterprises about switching from Unix to Linux.
Enterprises were willing to listen to us because of our value and
enterprise promises. But, it was this large and diverse open source
community that enabled us to win the industry.

Winning With Open Source

If you would have evaluated what operating system to use as the
basis of enterprise data centers back in 2002 based on the current state
of technology back then, certainly Unix would have won that
comparison over Linux. But, Linux had such a large number of
contributors and developers across the open source community that
its pace of innovation eclipsed what any of the Unix vendors could
achieve, and Linux eventually overtook Unix from a capability
standpoint.

Consider that even today, Red Hat only has about 5,000 employees.
At its height, Sun Microsystems employed over 38,000 employees.

51

COMPUTING NEXT

Back in 2002, we only had a few hundred employees. But, in the open
source model, Red Hat didn’t have to write all the features of Linux.
Instead, we had partners like IBM, Intel, HP, Dell, and many others
contributing to Linux to optimize and advance it to run on their
platforms. Since 2005, just to the Linux kernel alone, the open source
community for Linux has included:

e over 15 million lines of code in version 3.2
e over 7,800 developers

e over 800 unique employers

It was the size, diversity, and strength of this open source community
that propelled Linux to its leadership position against Unix. Contrast
that with Unix, where you had many different vendors each
advancing their own proprietary operating systems with no code
sharing or common hardware platforms or integrated community.
The united Linux community easily advanced Linux past each of
these Unix fiefdoms, and the rest is history. Unix started with a much
stronger technology base, but Linux’s community won in the end.

OpenStack and Open Source

Now, let’s consider the current state of OpenStack technology and
community. From a technology standpoint, OpenStack has certainly
come a long way quite quickly. But, it is not yet widely deployed or
more advanced than many other laaS cloud technologies in the
market. And, there are a number of cloud offerings that have been
available for much longer than OpenStack has existed, including open
source projects like Eucalyptus or cloud.com/CloudStack. Indeed, at
Red Hat, we don’t think OpenStack is quite enterprise-ready yet for
the majority of the market.

But what an open source community OpenStack is building! For its
most recent Essex release, OpenStack had some impressive numbers,
including;:

e 421,695 lines of code added and 256,904 lines of code removed

e 217 developers contributed

52

COMPUTING NEXT

e 100 unique employers contributed

No, these aren’t yet at the scale of Linux, but they are clearly a sign of
a rapidly growing and healthy community. In fact, with the
announcement earlier this spring that OpenStack is finally moving to
an open governance structure, Red Hat joined the new OpenStack
foundation as a platinum member. And we aim to provide the same
combination of value, enterprise-class distribution, and rapid open
source development in OpenStack that we did for Linux.

So, what is the effect of OpenStack’s large open source community? Is
it hurting OpenStack and devolving it into the Unix of tomorrow
compared with other open source cloud technologies? Google Trends,
though by no means a definitive prophet, offers an interesting view.
Compare OpenStack, Eucalyptus, Cloud.com, and CloudStack. What'’s
the difference between these different open source projects?
OpenStack has the largest open source community.

Betting on OpenStack

Today, Red Hat announced the availability of its preview release of
our upcoming Red Hat OpenStack product. Why just a preview and
not a full product yet? We are currently in the process of bringing the
same value proposition to OpenStack that we have done for Linux
and many other open source products, from JBoss middleware to Red
Hat Enterprise Virtualization:

e An unbeatable value combination of open source software on
commodity x86 hardware

e An OpenStack distribution that enterprises can trust due to the
certification of hardware vendors and ISVs, support, and stable and
predictable releases with good lifecycles

e Alarge and growing open source community driving fast innovation
into OpenStack

For the value proposition, we are building our OpenStack product as
a completely open source offering, optimized for our RHEL-based
KVM hypervisor on commodity x86 hardware. We are integrating
OpenStack with the rest of our Open Hybrid Cloud portfolio,

53

COMPUTING NEXT

including CloudForms and OpenShift. We are in the process of
hardening OpenStack into an enterprise-grade distribution, and this
preview release is an important milestone in that process.

And is the ecosystem around OpenStack going to splinter like so
many Unix variants? Or is it going to advance the pace of
advancement in OpenStack? Time will tell. But, at Red Hat, as part of
our Open Hybrid Cloud strategy, we are all in betting that OpenStack
will advance. Unlike with Unix, the OpenStack community is all
contributing to the same code base as part of the same structure—like
Linux’s community and unlike Unix’s fiefdoms. The new OpenStack
foundation is only going to help with that. And the OpenStack
community is working together. It includes many of the same partners
that we have around Linux. This is a group of companies that knows
how to collaborate around an open source ecosystem.

OpenStack is going to advance, and we are betting it will win. The
technology today is not yet where it needs to be. But neither was
Linux when it took on Unix. The open source community —not the
initial or current state of technology in 2002 —is what propelled Linux
to victory against proprietary Linux. And, open source versus
proprietary is really the name of the game here.

54

COMPUTING NEXT
Open source in a cloud world

The trend towards more permissive open source software licensing is
not without controversy, especially given that it’s commercial entities,
rather than individual programmers, who often seem to be those most
in favor of permissive licenses because of the fewer restrictions they
impose. Permissive licenses, therefore, can be seen as part and parcel
of open source commercialization—a trend some still view warily.
Permissive licenses, such as BSD, Apache, and MIT, stemmed from
decidedly non-commercial settings. But it’s fair commentary that such
licenses tend to be favored today for commercially-backed projects
because of the flexibility they provide in packaging and embedding
open source code in commercial offerings.

This controversy also directly dovetails into the intersection of open
source and cloud computing.

For example, Bradley M. Kuhn, former executive director of the Free
Software Foundation (FSF),?° writes that: “Anyway, as you might
suspect, 'm generally against the idea of relicensing from a copyleft to
a non-copyleft license in most situations. In fact, I generally take the
stance that you should go with the strictest copyleft possible unless
there’s a strong reason not to.... Frankly, if I were picking a license for
OpenOffice.org and/or LibreOffice?! [open source office productivity
suites] from the start, I'd pick AGPLv3-or-later, because of the concern
that it could be turned into a Google Docs-like web service.”

The Affero GPL (AGPL) is a variant of the GPLv3 license intended to
address the fact that the delivery of software in the form of a service,
i.e. over the Web, doesn’t count as distribution in most copyleft

licenses—and therefore doesn't trigger the requirement that software

20. The Free Software Foundation was started by Richard Stallman; it advocates for
free software ideals and works for adoption of free software and free media formats.
The FSF also governs the GNU project, the core set of tools used by Linux, as well as
the General Public License and its derivatives.

21. Variants on a popular open source office suite that includes a word processor.

55

http://www.gnu.org/philosophy/pragmatic.html
http://www.gnu.org/philosophy/pragmatic.html
http://www.gnu.org/licenses/agpl.html
http://www.gnu.org/licenses/agpl.html

COMPUTING NEXT

changes be provided back to the community. Strong copyleft
advocates view this as a loophole to be plugged with licenses like the
AGPL; the AGPL, however, has not been widely adopted.

But the “cloud computing as loophole” school of thought rests on
some of the same questionable assumptions as do arguments against
permissive licenses in general.

The big implicit assumption is that, without adequate license
protections, the entire communal development process will just
wither away over time because corporations will simply take
advantage of community work without giving back. A favorite proof
point in favor of this argument is how Linux (which uses the copyleft
GPL license) largely triumphed over BSD Unix (which predates Linux
and was more capable early on, but which uses a far more permissive
license that doesn’t place any restrictions on proprietary extensions or
use).

However, BSD has problems as an exemplar. Early BSD development
was mired in all manner of fractious arguments between groups
working with different “forks” of the code, as well as a prolonged
legal battle with AT&T, which owned the Unix copyrights at the time.
It is, therefore, an open historical question whether the GPL was the
magic ingredient that led Linux to success or whether all manner of
legal, community, and timing matters weren’t ultimately much more
important. In support of the contrary view, I'd note that, Linux aside,
some of the most important open source projects—such as the Apache
Webserver —do use BSD-like licenses. And, as we’ve seen, usage of
permissive licenses is increasing.

Finally, extending the concept of distribution to cover Web services
has practical problems. Distribution in the GPLv2 and GPLv3 licenses
draws (mostly) a hard-edged line.? If you're an enterprise using
software internally, anything goes. If you're using GPL code in

22 “Mostly” because there are devilish details related to the exact manner in which
code is linked together that still occasionally court controversy even twenty some
years since the GPL was introduced.

56

COMPUTING NEXT

software you're selling to the public-whether downloaded, on a CD,
or in embedded firmware-you must make the relevant sources
available. However, as more and more companies of every stripe
make parts of their computing infrastructure available to their
customers—think online banking, for example—the boundaries
potentially become very fuzzy.

The bigger matter is that there are many other aspects of “freedom” in
a cloud computing world, such as matters of privacy and data
portability. For my part, I'd argue that open source has demonstrated
that it can stand on its own without heroic measures to prop it up.
Sure, continue to evangelize the benefits of open source and deal
appropriately with those who don't follow license terms. But the more
interesting, and important, questions lie elsewhere.

To focus on source code is to focus on a specific type of openness and
freedom which was important historically. It’s still highly relevant as a
development model and remains an important enabler of other types
of freedom.

But, in the case of Web services running on massive server farms and
cooperating over a network with all manner of other code, services,
and data, access to code has less value, less direct value anyway. After
all, you could hardly just load up much of Google’s software on a
computer system and do anything useful with it. One needs the vast
farms of server, interlocking pieces, and associated data. Also, the
ability to view, modify, and redistribute source code is only one of
many rights or protections to consider in a cloud computing world.
For example, consider these other things that might matter more:

Ownership and portability of data. When you store information in a
public cloud, can you get it back out? And can you get it back out in
such a way that it’s useful and portable? These questions become even
more fraught when you consider that this is not a simple question of
downloading files that you have stored on a disk somewhere on the
network. Your “data” may also consist of your network and
relationships to other data and people on a service such as Facebook.
What type of portability even makes sense in that context?

57

COMPUTING NEXT

Open APIs. Open source as we know it today evolved largely in the
context of Unix-like operating systems and the programs that ran
directly on top of them using “libc” and other system libraries.?®
While we may run monolithic programs over the network, much of
the recent action on the Web has been in services such as Facebook,
Flickr, Google Maps, and Salesforce.com which expose APIs at a
higher level. This allows developers considerable freedom to extend
these platforms. Thus, whether a platform or application is open
source or not, given public and free-to-use APIs, it can be extended
and consumed in ways somewhat analogous to open source. At the
same time, the predictability and transparency of the terms of service
for APIs—especially in the case of consumer-oriented services—raise
their own issues.

Privacy and security. Eben Moglen of the Software Freedom Law
Center once referred to Google and its ilk as a “private surveillance
system that [the government] can subpoena at will.” He went on to
describe this as a “uniquely serious problem.” It’s hard to dispute that
such services create an unprecedented centralization of data— both
that data explicitly placed into the cloud and that generated with each
search or purchase. This is anathema to those who saw open source
and inexpensive computers as a great victory for the decentralization
of computing and information.

From the perspective of maintaining user freedoms and choice, a key
question of the cloud era will be translating the freedoms and
advantages associated with open source to a new environment.? In
the balance of this section, I'll explore this question in more detail.

2 Open source came into being in an era when one wrote programs which ran on a
specific operating system, such as one company’s version of Unix. A later example
would be programs written for Windows; typically, there is some but not absolute
compatibility across versions of an operating system over time. This contrasts with
newer Web-style languages that are typically fairly portable across operating systems.

2 Of course, public cloud services, whether Facebook or less well-known examples,
also raise new and complex issues such as how personally identifiable data can be
correlated at massive scale. But these are beyond the scope of this book.

58

COMPUTING NEXT
What makes a cloud open?

After one too many shouts punctuated by “In the name of the
Queen!” by London’s Master of Revels, Judi Dench’s Queen Elizabeth
in Shakespeare in Love rises to intone: “Mr Tilney! Have a care with my
name - you will wear it out.”

I sometimes feel similarly when it comes to the ferocity with which a
lot of vendors apply the word “open” to cloud computing. Especially
given that not a few of those involved aren’t very open, after all. But
they make up for the glancing and incidental ways their software and
approaches are open with the volume of their rhetoric and the font
size they use to display “OPEN" in their marketing literature.

But what does “open” mean in the context of building a hybrid cloud?
It certainly doesn’t begin and end with the submission of some format
to a standards body or with an announcement of partners endorsing
some specific technology platform. Nor is it just about open source. I
don't claim that the following characteristics are definitive but they
seem to leave a lot of IT professionals I meet with nodding their heads
in agreement:

e Is open source. This allows adopters to control their particular
implementation and doesn’t restrict them to the technology and
business roadmap of a specific vendor.

e Has a viable, independent community. Open source isn't just about
the code, its license, and how it can be used and extended. At least as
important is the community associated with the code and how it’s
governed.

e Is based on open standards, or protocols and formats that are
moving toward standardization, which are independent of their
implementation. Approaches to interoperability that aren’t under
the control of individual vendors and that aren't tied to specific
platforms offer important flexibility.

e Offers freedom to use intellectual property (IP). Even “reasonable
and non-discriminatory” license terms can still require permission or
impose other restrictions on a technology’s use.

59

COMPUTING NEXT

¢ Is deployable on the infrastructure of your choice. Cloud
management should not be tied to a specific virtualization or other
foundational technology.

e Is pluggable and extensible with an open API not under the
control of a specific vendor or tied to a specific implementation.
This lets users add features, providers, and technologies from a
variety of vendors or other sources.

e Enables portability to other clouds. Implicit in a cloud approach
that provides support for heterogeneous infrastructure is that
investments made in developing for an open cloud must be portable
to other such clouds.

Of course, no one earns a perfect grade in every respect. Communities
take time to develop. There are finite developer hours but an almost
limitless variety of potentially supported infrastructure. And there
will always be tradeoffs between value-add and perfect portability.
However, I'd argue that, as a general rule, the more aspects in which a
cloud is open, the greater value an organization can gain from that
cloud.

Next, I take a look at each of these dimensions of openness in more
detail.

60

COMPUTING NEXT
Defining open for a hybrid cloud

Openness in cloud computing goes beyond open source, but open
source is still important—especially to the degree that a hybrid cloud
spans on-premise software in addition to hosted services.

Open source provides a degree of independence from the technology
decisions and business practices of any single vendor. Even the best-
intentioned vendors have to ultimately make choices about product
roadmaps, pricing approaches, and target markets that may or may
not align with the needs of a particular customer. Vendors get
acquired, go out of business, and shift technology focus. That’s life.
And, with proprietary software, a customer ultimately doesn’t have
many options if a vendor isn’t willing or able to provide support or,
indeed, to continue selling the software at all. The only recourse may
be to shift to another vendor, even if that means overhauling a large
chunk of infrastructure. Open source reduces this lock-in.

This sort of flexibility is especially important in a cloud computing
environment in which attaining the greatest value comes from
spanning heterogeneous IT infrastructures. By cutting across silos of
capacity, organizations can simplify their environments and thereby
redirect people and capital from keeping the light on to driving
innovation for their business.

Open source isn't just about preventing lock-in though. Open source
puts users in control of their destiny and provides them with visibility
into the technology on which they’re basing their business. This is
increasingly important as businesses are ever more driven by what
technology makes possible from data analytics to mobile devices to
real-time telemetry. Open source provides the headlights that give
businesses an early view into what will be possible in the years ahead
and therefore how best to position their business to take the greatest
advantage of these coming possibilities.

But open source goes far beyond how individual organizations in
isolation can leverage it. Open source also lets them collaborate with
other communities and companies to help drive innovation in the

6l

COMPUTING NEXT

areas that are important to them. This is an approach that is
increasingly coming to the fore in this complex and connected world.
Companies have seen how open source creates software that is not
only a good value but that also often pushes forward the state of the
art. Consequently, we see end-user organizations working
cooperatively with each other and with vendors to drive innovations
that are important to them in areas such as high performance
communications and, yes, cloud.

Cloud computing started out, in many respects, as a user-driven
phenomenon. “Shadow IT” use of consumer-oriented cloud services
and public cloud providers set new expectations for IT departments.
And with Linux and open source at the core of almost every major
cloud provider, IT departments have no choice but to follow suit if
they are to meet those expectations. With Linux and open source also
prevalent throughout the Fortune 500 and other organizations
worldwide, powering some of their largest and most mission-critical
applications, it’s logical to extend that open source to enterprise
clouds as well.

But openness in a cloud requires more than just code that’s under an
open source license.

Historically, there’s probably been too much attention paid to the
details of open source licenses as opposed to the communities
associated with bringing the code into being and using it. Certainly,
licenses are important for defending against legal threats and in
determining how an open source project can be combined with other
projects. But without a viable, independent community, it’s hard to
realize the collaborative potential of open source. Delivering
maximum innovation means having the right structures and
organization in place to fully leverage the open source development
model.

There’s no single approach to fostering communities. The best
approach in any given case to engaging with and governing a
community will depend on the nature of the project. Who is
contributing? What are the project’s goals? What business or licensing

62

COMPUTING NEXT

constraints are there? These and many other factors will affect
governance structure, as well as copyright, trademark, and licensing
decisions.

It’s also important for an open cloud to be based on open standards, or
protocols and formats that are moving toward standardization. This is
not a statement about needing to have “official” standards blessed by
standards organizations. It’s reasonable to expect that those will come
about over time with various degrees of success and acceptance. But
the history of formal technology standardization is one of trailing
innovation, not leading it.

In the near term, other approaches to interoperability will likely be
more important than standards as such. And the most effective
interoperability mechanisms will be those that aren’t under the

control of individual vendors and that aren’t tied to specific platforms,
freeing protocols and formats from the constraints and limitations that
come from being tied to a single vendor’s business approach and
product roadmap —even if those protocols or formats are nominally
standards. The next chapter discusses this point in more detail.

An important side effect of this approach is that it allows
specifications to evolve beyond implementation constraints. This
creates the opportunity for communities and organizations to develop
variants that meet their individual technical and commercial
requirements. Perhaps one community values a feature-rich
implementation, while another wants something that is simple—but
lightning fast. If a specification for, say, a particular way of
communicating between two systems is forced to be in lockstep with
one specific implementation, only one set of tradeoffs are possible.
Even if those tradeoffs are made out in the open as part of a process in
which all stakeholders have a say, all parties still need to aim for a
singular result. (Or, worse, the implementation ends up catering to so
many parties that it ultimately doesn’t satisfy anyone.)

If the specification and implementation are independent, on the other
hand, there’s a lot more flexibility to tailor code to the needs of
different constituencies. It also enables and even encourages

63

COMPUTING NEXT

competing implementations, helping to push forward innovation. A
good example of separating specification and implementation is the
AMQP messaging protocol, an open standard for high performance
messaging that was initially driven by end users in the financial
industry. It has since become the de facto standard in that industry and
is implemented in commercially-supported products such as Red Hat
Enterprise Messaging and others.

Open clouds also have to give you the freedom to use intellectual
property (IP). Permission to use intellectual property, like copyrights
and patents, must be granted in ways that make the technology open
and accessible to the user. So-called “de facto standards,” which are
often “standards” only insofar as they are promoted by a large
vendor, can fail this test. Various open source licenses can provide
certain types of protection against IP infringement claims, but
freedom to use IP should still be regarded on its own, especially when
using services or software for which no explicit grant or license has
been given.

Other aspects of openness relate primarily to maintaining flexibility.

Cloud management is best not tied to a specific virtualization or other
foundational technology. If all you can do with a cloud is to add a self-
service front-end and some automation to a single vendor’s
proprietary virtualization product, you may have gained some
efficiencies but you haven't extended the flexibility of a cloud to your
broader IT infrastructure. That requires the ability to span physical
servers, multiple virtualization platforms, and a wide range of public
cloud providers. It requires being able to deploy to a choice of
platforms on which to run applications, and to change that
deployment decision as circumstances change.

Open APIs that are pluggable and extensible can help ensure
deployment flexibility.

A pluggable and extensible architecture allows users to add features,
providers, and technologies from a variety of vendors or other
sources. Even an open API can be hard to extend and make use of if

64

COMPUTING NEXT

it’s designed in a monolithic way that makes it difficult to add to
incrementally —or that requires interfaces to be written using specific
languages or frameworks.

It’s best if the API isn’t under the control of a specific vendor or tied to
a specific implementation. Third-party foundations are one way that
can allow for contributions and extensions in an open and transparent
manner. As with other aspects of open source, it’s not just about
availability of source code, but the ability to truly take advantage of
the innovation and community leverage which open source can
deliver.

Implicit in a cloud approach that provides support for heterogeneous
infrastructure is that investments made in developing for an open
cloud should be portable to other such clouds. Portability takes a
variety of forms, including computing services, programming
languages and frameworks, data, and the applications themselves.
Developing an application for one cloud shouldn’t require a rewrite in
a different language or with different APIs to move it elsewhere.
Furthermore, a consistent runtime environment across clouds ensures
that retesting and re-qualification isn't needed every time you want to
redeploy.

Portability is closely tied to, and in many ways a product of, the other
aspects of cloud openness. Without being able to deploy on a choice of
infrastructure, you don’t have portability. Without freedom from the
business practices and technology roadmaps of individual vendors,
you certainly won’t have portability. Without open and extensible
APIs, you can’'t have portability.

Portability requires thinking about how applications and data can be
moved from one place to another and assessing the impact of such a
move. Multiple technologies can come into play, although, ultimately,
it'’s about making business decisions regarding the degree to which
you're tied or not tied to a specific vendor or provider in some
manner.

65

COMPUTING NEXT

The ability to run workloads in a consistent way across a hybrid
environment spanning both heterogeneous internal resources and
public cloud providers is essential to effectively and efficiently taking
advantage of cloud computing. Without this portability and choice, a
cloud is a point solution that may deliver some local value but will not
be transformational.

Of course, real world solutions will rarely, if ever, be perfectly open
across all dimensions. Furthermore, users may choose to make
tradeoffs between some vendor-specific functionality and a more open
architecture. However, open source and all the aspects of openness
that relate to it are increasingly just the reality of how software is
developed and consumed.

66

COMPUTING NEXT
Standard APIs:There’s no substitute for open

Just because something is widely used doesn’t make it a standard —de
facto, de jure, or otherwise—in the sense that anyone can use and build
implementations of that standard without restriction. Indeed, even
standards that are “blessed” by powers-that-be are not always fully
open in the ways that I have outlined previously.

Standardization has been around for a long time. The IEEE
engineering professional organization tells us that:

Based on relics found, standardization can be traced back to the ancient
civilizations of Babylon and early Egypt. The earliest standards were
the physical standards for weights and measures. As trade and
commerce developed, written documents evolved that set mutually
agreed upon standards for products and services, such as agriculture,
ships, buildings and weapons. Initially, these standards were part of a
single contract between supplier and purchaser. Later, the same
standards came to be used across a range of transactions forming the
basis for modern standardization.

Alot of this early standardization pretty much came down to custom.
The convoluted history of why we drive on one side of the road in a
given country is instructive. (Though each country’s conventions are
now enshrined in The Geneva Convention on Road Traffic.)

The history of the shipping container, recounted earlier, offers
another, fairly typical, historical example. Incompatible container
sizes and corner fittings required different equipment to load and
unload and otherwise inhibited the development of a complete
logistics system. The standardization that happened circa 1970 made
possible the global shipping industry as we know it today —and all
that implies. The evolution of standardized railroad gauges is
similarly convoluted. The development of many early computer
formats and protocols was equally Darwinian.

It's tempting to take this past as prologue and conclude that similar
processes will continue to play out as computing moves forward and
different forms of interoperability assume greater importance. For

67

COMPUTING NEXT

example, published application programming interfaces (API) are at
the heart of how modular software communicates in a Web services-
centric world. Software applications are increasingly composed of
modular chunks of loosely coupled codes and data communication
over the network, rather than monolithic single applications. One set
of APIs wins and evolves. Another set of APIs becomes a favorite of
some particular language community. Still another doesn’t gain much
traction and eventually withers and dies. It sounds like a familiar
pattern.

But there’s an important difference. In today’s software world, it’s
impossible to ignore intellectual property matters whether copyright,
patent, trademark, or otherwise. An APl isn’t a rail gauge—though
perhaps today someone would try to patent that too.

As a result, tempting as it might be to adopt some API or other
software construct because it’s putatively a “de facto” standard
(essentially a fancy, and somewhat loaded, way of saying it’s
popular)this adoption may not be such a good idea.

Stephen O’Grady, of analyst firm RedMonk, commented that:*

it'’s worth noting that many large entities are already behaving as if
APIs are in fact copyrightable. The most obvious indication of this is
Amazon. Most large vendors we have spoken with consider Amazon’s
APIs a non-starter, given the legal uncertainties regarding the
intellectual property involved. Vendors may in certain cases be willing
to outsource that risk to a smaller third party — particularly one that’s
explicitly licensed like a Eucalyptus. But in general the low risk
strategy for them has been to assume that Amazon would or could
leverage their intellectual property rights — copyright or otherwise —
around the APIs in question, and to avoid them as a result. Amazon,
while having declined to assert itself directly on this basis, has also
done nothing to discourage the perception that it has strict control of
usage of its APIs. In doing so, it has effectively turned licensed access
to the APIs into a negotiable asset, presumably an outcome that
advocates of copyrightable APIs would like to see made common.

% http://redmonk.com/sogrady/2012/05/03/on-apis-copyright/

68

COMPUTING NEXT

In fact, lack of openness can even extend to standards that have gained
some degree of governmental or quasi-governmental approval —which
is, after all, a political process. Last decade’s fierce battle over
Microsoft’s submittal of its OOXML document format (used in recent
versions of Microsoft Office) as a standard to the ECMA and ISO
international standards organizations is perhaps the most visible
example. The details of this particular fight are complicated, but, in
Kurt Cagle’s words, “The central crux of the [then-]current debate is,
and should be, whether Microsoft's OOXML does in fact represent a
standard that is conceivably implementable by anyone outside of
Microsoft.”

Issues of the conditions that should be satisfied in order for a vendor’s
preferred approach/format/etc. to become a “blessed” standard
continue to reverberate. The latest round is about RAND (Reasonable-
and-Non-Discriminatory) licensing and whether that can take the place
of truly open implementations. It’s essentially an attempt to slip
proprietary approaches requiring a patent license into situations, such
as government procurements, that require open standards.

But, as Simon Phipps, a Director of the Open Source Initiative and of the
UK’s Open Rights Group puts it:2¢

The presence of RAND terms at best chills developer enthusiasm and
at worst inhibits engagement, as for example it did in the case of
Sender ID at IETF. As Vilimiki and Oksanen say, RAND policy allows
patent holders to decide whether they want to discourage the use of
open source. Leaving that capability in the hands of some (usually
well-resourced) suppliers seems unwise.

At one level, the takeaway here might be “it’s complicated.” And it is.
But another takeaway is pretty simple. You can dress up proprietary
standards in various ways and with various terms and such standards
have a place, even an important one, in the IT ecosystem. But they're
not open, whatever you call them.

26 http://blogs.computerworlduk.com/simon-says/2012/04/open-standards-
consultation-guide/index.htm See also http://www.law.ed.ac.uk/ahrc/script-ed/vol2-3/
valimaki.asp

69

http://blogs.computerworlduk.com/simon-says/2012/04/open-standards-consultation-guide/index.htm
http://blogs.computerworlduk.com/simon-says/2012/04/open-standards-consultation-guide/index.htm
http://blogs.computerworlduk.com/simon-says/2012/04/open-standards-consultation-guide/index.htm
http://blogs.computerworlduk.com/simon-says/2012/04/open-standards-consultation-guide/index.htm

COMPUTING NEXT
The freedom to leave by Simon Phipps

Simon Phipps is an independent consultant
providing insight and knowledge on open source to
businesses and governments worldwide. He is

also President of the Open Source Initiative,

the non-profit organization that advocates for open
source software and builds bridges between open
source communities and maintains the canonical
list of open source licenses. His writing is featured
in InfoWorld, ComputerWorld, O’Reilly Radar and
other publications. He is a Director of the

UK’s Open Rights Group as well as on the advisory
board of Open Source for America.

Adapted from a post originally posted Jun 27 2006.
Website: http://webmink.com/
Twitter: @webmink

Ajournalist asked me an interesting question once. “Why is it,” he
asked, “that we are seeing so many new online and desktop tools at
the moment?” There’s loads of energy around, with projects like
Google Calendar, KOffice, OpenOffice.org and plenty more, plus new
innovations of many kinds. I've tried many of these and some of them
have stuck. What’s the connection between them?

The New Lock-Out

The thing is, all of these tools have worked out that lock-in is the new
lock-out. The fastest way to send early adopters packing is to make
your cool new toy a roach motel. To start with, early adopters like me
are not willing to put live data into applications that don't offer
import and export. My calendar is in RFC2445 iCalendar format, so if
you want me to try your new calendar thing you'd better accept that
as the import format. If I can’t add iCalendar and vCalendar

70

http://www.openrightsgroup.org/
http://www.openrightsgroup.org/
http://opensourceforamerica.org/
http://opensourceforamerica.org/

COMPUTING NEXT

appointments I'll not be using it for long, and there had better be an
iCalendar sharing facility for scheduling.

What’s more, I have to have iCalendar export so I can migrate away
from your new toy to things like Apple iCal, Google Calendar or any
of the umpteen programs that support those standards. The same
goes for everything else — I just moved my blog subscriptions from
one tool to another I wanted to try using OPML export, and I work
with a group of people routinely exchanging documents between a
selection of applications that support ODF.

Confidence To Stay

The availability of open, freely-usable standards creates a bigger
market and promotes innovation because we are all free to give things
a try, as was clear at BloggerCon. If “interoperability” meant “import
only”, I'd never feel safe trying new things so market growth and
innovation would be inhibited. People who implement open
standards like this are smart, because although they allow customers
to leave for greener pastures they also allow them to return — I am still
using Bloglines despite the appeal of the new tool — and the
confidence I feel over “owning” my data makes me a much more
interesting customer.

That feeling is caused by more than interoperability — it takes full
substitutability for me to have the confidence to stay as well as the
freedom to leave. That’s why Stewart was spot-on with Flickr’s policy
and paradoxically kept my business by allowing me to leave at any
time.?

Innovation Enabled

More than that, though, full support for truly open standards means
that new ways to use the data can occur. For example, the feeds in

27 Steward Butterfield, the co-founder of Flickr, promised that the service would allow
any of its commercial competitors the API access needed to help customers switch
away from Flickr to a competing service; the only gotcha was that these competitors
needed to offer the same deal to Flickr to help their customers switch, too.

71

COMPUTING NEXT

Bloglines mean I can use a feed reader to read the for:webmink tag
feed and have [Michael] Coté send me interesting links to read
without the overhead of e-mail. That’s part innovation-by-design and
part innovation-enabled, leaving the customer to work out new ways
to mash-up the data and create innovative uses for their own data.
When using the data demands only a particular vendor’s software, or
a licensing relationship, or some other boundary traversal, the
innovation finds it harder to escape.

So what does it take to have a standard that leads to substitutability
and the freedom to leave? At a minimum, it takes the following to
innovation-enable a standard.

e First of all, it takes confidence over intellectual property rights. I
dream of a world where “standard” implies that all parties to the
creation of the specification have been compelled to issue non-assert
covenants so every developer can be sure there’s no strings attached.

e Second, it takes multiple implementations, proving the format is
actually usable in multiple places. This was the genius of IETF and
it’s one of the lessons of CORBA.

e Third, the approach must not favour any particular implementation
or platform. That’s the problem Microsoft’s Office 12 XML format (or
whatever it’s called today) turns out to have, and no amount of
rubber-stamping by the vendor-only Ecma International will fix it.

e Fourth, and in the coming world of development the most important,
is that there’s an open source reference implementation, so that the
standard can be incorporated into as many systems as possible. This,
by the way, is why I am such a fan of open source for the Java
platform.

The Richness of the Plains

This is about far more than interoperability. Interoperability was a fine
goal in the 90s, but in today’s world it takes much more than just the
minimum level of allowing others to use your secret sauce. Pragmatic
interoperability is better than nothing and sure beats the cold-war
mindset of the 80s and 90s where incompatibility and isolationism
were the rule. But I want more than import-only. I want more than
lowest-common-denominator exchange, where I have to rework my

72

COMPUTING NEXT

data to make it survive the teleport. Those are the hallmarks of the
monopolist’s definition of interoperability — letting you play in my
market at little risk to me.

The network changes everything. I argue in my current keynote that
injecting the network into society removes the commercial benefits
previously achieved by closed behaviour, and the plethora of new
software the journalist observed seems to support that. The canyons
were the first world of software and interoperability was their high-
altitude pass. The plains are the new world, where the spread of open
formats and software grows the market and gives us all the
opportunity for success —in whatever compatible way we choose to
measure it.

The new world is being made by iCalendar, Atom/RSS,
OpenDocument, OPML and their like, overturning one of Robert X.
Cringeley’s five lock-ins?® in a world that’s also rejecting the other four.
Truly open formats are creating the new market, and those who
attempt to subvert the trend with pseudo-openness will fail.

28 1. Announce a direction, not a product (people will put off buying

competing products because you’ve just told them they’re the old way of doing
things).

2. Announce a real product, but do so long before you actually expect to
deliver, disrupting the market for competing products that are already shipping.

3. Don’t announce a product, but do leak a few strategic hints, even if they
aren’t true.

4. Don’t support anybody else’s standards; make your own.

5. Announce a product, then say you don't really mean it.

73

COMPUTING NEXT

Building
Hybrid Clouds

The public cloud has set a new benchmark for IT departments. But that
doesn’t mean that everything can just move into a public cloud. For in-house
modernization, virtualization is a good starting point, but that’s not the
complete answer either. For one thing, virtualization (by itself) mostly just
focuses on improving the efficiency and utilization of servers; it doesn't really
address new ways of thinking about the way applications interact and are
delivered to users.

Organizations are increasingly looking to span hybrid infrastructure whether
that means heterogeneous in-house resources or a combination of in-house
and public IT of various types. And they re looking to evolve to new ways of
thinking about IT services.

74

COMPUTING NEXT

75

COMPUTING NEXT
A new benchmark for IT departments

As we’ve seen, when the term cloud computing first appeared on the
scene, it described a public computing utility. A clear historical
analogue was electricity: Generated by large service providers.
Delivered over a grid. Paid for when it’s consumed and by the amount
used.

A public cloud built around this utility premise can be compelling
when compared to traditional enterprise IT. The cost per unit of
computing can be much lower than was the historical norm for an IT
department to buy a server and manage it. Users, such as developers,
can use a credit card to get access to IT resources in minutes, rather
than waiting months for a new server to be approved, requisitioned,
and provisioned. And improvements to cloud technology’s efficiency
and agility can help bring new applications and business services
(and their associated revenue streams) online more quickly.

In short, public cloud providers such as Amazon Web Services have
set a new benchmark for internal IT departments. These expectations
are further fueled by the experiences all of us have as consumers. We
expect applications to be attractive and interactive, accessible from all
of our devices anytime and anywhere, and with new features and
capabilities added on Internet time, not enterprise software time.

However, most organizations are not ready to move all of their
applications onto public cloud providers. They often have concerns
around compliance and governance, especially for mission-critical
production applications or those that touch sensitive customer data.
(Even if those concerns aren’t always well-founded, they nonetheless
exist.) And public clouds can’t usually be customized and optimized
for unique business needs.

Because so many organizations —especially large ones—aren’t
prepared to go all-in with public clouds, there is great interest in
building hybrid clouds that span on-premise and off-premise
resources to deliver the best of both worlds: public cloud economics

76

COMPUTING NEXT

and agility optimized for private enterprise needs such as audit, risk
management, and strong policy management.

Numerous IT industry analysts estimate that about 70 to 80 percent of
the money spent in a typical IT organization goes into routine
processes and updates, keeping the lights on so to speak, and only the
small balance is genuinely focused on innovations moving the
business forward. One of the great hopes of cloud computing, with its
emphasis on automation, flexibility, and self-service, is that these
numbers can be flipped. A redirection of resources from keeping the
lights on to innovation could have a big effect in a world in which
more and more businesses are enabled by what they can accomplish
using information.

As a result, choosing how to approach cloud computing is a big
strategic decision facing many organizations today. Ultimately the
decision will affect their competitiveness, flexibility, and IT economics.
For many, that decision will involve building a hybrid cloud that
bridges public clouds with in-house private clouds.

There are a variety of approaches to building such a a hybrid cloud.
However, among the most important considerations are:

* An architecture that avoids creating new IT silos
* An approach to openness that goes beyond just open source

¢ The ability to manage distributed applications running across
the hybrid infrastructure

In short, the transition to cloud computing remains as important as its
early proponents said it would be. But it’s not playing out like they
thought: it’s about hybrid clouds, not just compute utilities.

77

COMPUTING NEXT
Cloud computing’s big surprise

Something funny happened on the way to the cloud. Many
applications, especially those used by consumers and smaller
businesses, did indeed shift to public cloud providers like Google.
However, with some exceptions, the trend in large organizations is
something quite different. The idea of there being a “Big Switch” in
the sense of all computing shifting to a handful of mega-service
providers has been overstated, at least for practically interesting time
horizons.

In part, this is because computing introduces complications that the
electric utility lacks.? The electrons powering a motor don’t have
privacy and security considerations. The electrons encoding a Social
Security number in a data center do. Plenty of other technical and
governance concerns also conspire to make computing less utility-
like. Computing never was and never will be as simple and
standardized as what comes out of a wall socket.

Moreover, as Andi Mann—formerly a fellow analyst and now with
software management giant CA —notes, even the cost benefits of
public clouds aren’t necessarily a given:*

Public cloud can be cheaper than on-premise IT or private cloud,
especially for selected services and SMBs [small and medium
businesses]. However for large enterprises, while there are plenty of
reasons to use public cloud, cost reduction is not always one of them.

Public cloud certainly has a low start-up cost, but also a long ongoing
cost. For all practical purposes, the ongoing cost is never-ending too.
As long as you need it, you keep paying as much as you did on day
one, without adding an asset to your books or depreciating your
facilities investments.

» To be sure, there are plenty of complications in the infrastructure required to
generate and deliver the electric utility but most of this is rarely, if ever, exposed to
the consumer of the service.

30 http://pleasediscuss.com/andimann/20110504/the-cost-benefit-myth-of-the-public-
cloud/

78

COMPUTING NEXT

One report from management consultants McKinsey even provided
some hard data suggesting that public clouds actually cost more. The
report was somewhat controversial at the time and critiques flew
around online. But whatever the specifics of a given case, the reality is
that when I speak with CIOs at large enterprises, I don’t think I've
heard one argue that public cloud resources can universally reduce
costs. And this isn’t a matter of reflexive “server hugging.” There is
equal unanimity that using shared resources for certain workloads
and use cases does save money and bring other benefits.

The key to economically running many or most IT services internally
seems to be finding a level of scale at which, to use a term from retired
IBMer Irving Wladawsky-Berger, data center operations can be
“industrialized” — which is to say standardized, made process-driven,
and highly automated; at a scale, in other words, in which operational
processes associated with large public cloud providers can be
implemented in a dedicated way for a single organization.

From the perspective of a company which owns and operates its own
facilities, this point is probably somewhere around one or two data
centers (given the need for some spare capacity for redundancy),
although using co-location providers® and other ways of obtaining
dedicated capacity within a shared physical infrastructure may drive
necessary scale points even lower. And these economic realities are
reflected in the forecasts of IT analyst firms like Forrester and IDC, all
of which see rapid growth in private clouds.

And it’s this widespread interest in building private clouds that’s been
one of the big surprises of cloud computing’s still early years. The
cloud discussion began as a shift to a fundamentally different
economic model under which even large organizations would rent
computing rather than building and owning it. Some of that’s
happening, but it’s turning out to be just part of the cloud computing
storyline.

31 With “colo,” you own and operate your own servers in most respects, but the
physical infrastructure, such as power and cooling, is provided by someone else.

79

COMPUTING NEXT

Indeed, for organizations that view IT as a strategic asset—and more
and more do—cloud computing is often less about adopting public
clouds for their low costs and more about adopting their processes
and applying them to the private cloud. In this case, cloud computing
is far more about helping the business increase revenues than cutting
the total cost of IT.

This tension between private and public utilities—and indeed
between decentralized and centralized computing —will doubtless
continue to play out, as indeed it has for decades, in various ways.
Many utility concepts remain in play and offer powerful insights. Self-
service, the ability to quickly grow up and shrink down, and even a
degree of standardization are leading to fundamentally better ways of
approaching information technology in many organizations. But, for
the planning horizon relevant to most people working in IT —say, five
to ten years tops—the realities should be pretty clear. They are going
to use a mix of private and public computing. They’re going to be
hybrid.*

32 The details will depend on the organization. Smaller companies of the sort that
have no real IT staff today will tend to flock to public clouds fairly quickly, especially
in the form of Software-as-a-Service applications that typically don’t require a lot of
expertise to use. And certain startups will at least start out without buying their own
servers, although there are examples, such as the Netflix video rental service and the
SmugMug online photo-sharing and storage business, that have famously continued
to use Amazon Web Services almost exclusively even as they’ve grown to be sizable
businesses.

80

COMPUTING NEXT
Whence Virtualization

This is a book about cloud, not about virtualization. Cloud computing
is about more than virtualization and is, at least in principle,
independent of it. “Bare metal,” which is to say computer systems just
running an operating system like Linux or Microsoft Windows can be
part of clouds as well. But the reality is that virtualization is intimately
tied to cloud computing in a lot of ways.

This makes virtualization worth discussing. But it’s also worth
considering what virtualization actually is and what problems it was
invented to solve, and how it differs from cloud in many respects.

For much of the first decade of the 21st century, inspired by both hype
and legitimate customer excitement, many vendors took to using the
“virtualization” moniker more as the hip phrase of the moment than
as something that’s supposed to convey any actual meaning. (A bit
like cloud computing, truth be told.)

It didn’t help matters that virtualization, in the broad sense of
“remapping physical resources to more useful logical ones,” spans a
huge swath of technologies. Indeed, the concept of abstraction is
pervasive throughout computing. However, one particular set of
related approaches turned out to help solve a very specific and costly
problem. Server virtualization let you use a physical server that you
had purchased much more efficiently, by letting you run more
programs side by side with each other. But we're getting ahead of
ourselves.

The idea behind server virtualization is actually quite an old one.
What we call virtualization today was intimately intertwined with
early developments in time-shared computing that took place in
Cambridge, Massachusetts during the early Sixties—where the
Compatible Time-Sharing System (CTSS), running on a multi-million
dollar IBM 7094, was developed at MIT. But GE won out for the

8l

COMPUTING NEXT

competition to succeed CTSS;** MIT saw GE as more committed to
time-sharing than IBM, which they saw as generally holding an
opposing batch-processing view of the world.* There was doubtless
much truth to that characterization, which flavored the second-class-
citizen aspect of virtual machine technology at IBM for many years.

IBM’s early work didn’t go away. Part of IBM’s project involved CP-67,
a program that made one physical computer look like several virtual
ones. It let the virtual machines share processor cycles and memory
and it divided the physical disk into small virtual disks. You could
run the same operating system on the physical machine and a virtual
one. You could also run CMS, which was expressly-designed as a
single-user system to take advantage of CP-67 multiprogramming so
that many users could run on the same hardware independently of
each other.

Virtualization remained largely in the background at IBM. But fast
forward 25 years and Linux was starting to make headlines as part of
the first Internet build-out. IBM made the promotion of Linux a
crucial part of its corporate strategy. As part of this effort, it also
dusted off its virtualization technology —by then called z/VM.
Running Linux on its expensive in-house developed “Big Iron”
mainframe servers only made sense if you could share that hardware,
which could cost upwards of $1 million a box, across a very large
number of Linux copies. And doing that required virtual machines.

VMs are software abstractions, a way to fool operating systems and
their applications into thinking that they have access to a real (i.e.
physical) server when, in fact, they have access to only a subset of one.
Each VM then has its own independent “guest” OS and applications

3 The overall competition was for Project MAC, which included MULTICS, the
replacement to CTSS. MULTICS was a commercial failure but it helped birth a wide
range of concepts that went on to define how operating systems would be built.

3 The stereotypical, but not inaccurate, view of batch computing at the time was that
you submitted a “deck” of punch cards to be processed and came back hours later for
the results printed out on wide pin-fed paper. With time-sharing, multiple users were
given the appearance of being able to use a single system at the same time.

82

COMPUTING NEXT

are not even aware of any other VMs that may be running on the same
box, other than through the system’s usual network interactions with
other systems. Thus, the operating systems and applications within
VMs are isolated from each other in much the same manner as if they
were running on separate physical servers. They're created by a
special piece of software called a virtual machine monitor (VMM),
often called a “hypervisor,” that sits on top of the hardware, where it
creates and manages one or more VMs sitting on top. The hypervisor
abstracts away the physical server and essentially presents a sort of
doppelgénger of that server to any software running on the machine.

Linux on mainframe virtual machines became a hugely successful
initiative for IBM. By the end of 2006, IBM was reporting that more
than 60 percent of its mainframe revenue came from “new”
workloads, and that about 20 percent of revenue and 30 percent of
“MIPS” (i.e. computing cycles) were coming from Linux customers.

But, in the meantime, virtualization came to the mainstream market
running x86 servers, an event with ultimately broader implications.

In 1998, a company called VMware was founded in Palo Alto,
California by Diane Greene, her husband Mendel Rosenblum, Scott
Devine, Edward Wang, and Edouard Bugnion. Initially, the company
focused on the needs of software developers. It did so by giving them
a product that let them create multiple “virtual machines” (VMs)
hosted atop a single copy of a standard operating system such as
Windows or Linux. This allowed each developer to have multiple
operating system copies on his workstation. This let the developers
recover from failures faster and aided in testing against multiple
software versions on a single workstation.

However, over time, virtualization on mainstream x86 servers evolved
in directions that made it more suitable for running more
performance-sensitive workloads on back-end servers—an evolution
of technology that coincided with the bursting of the dot-com bubble
in about 2001.

83

COMPUTING NEXT

It turned out that server virtualization and a crashing IT market made
for a serendipitous pairing. Typical mass-market servers were
woefully underutilized. According to most measures, only 15 percent
or so of their capacity was being used to do work. The reason was that
x86 servers and operating systems, having evolved from the PC, had
mostly been designed with a view towards supporting single users
running single applications. As a result, especially on servers running
the Microsoft Windows operating system, it was difficult to run
multiple applications side-by-side without them interfering with each
other. The isolation provided by VMs provided a relatively easy and
cost-effective fix.%

Server virtualization essentially provided free capacity —well, free
except for the considerable revenues that VMware began to rake in. It
was a compelling story for a cash-starved time; server virtualization
took off like a rocket.

VMware itself was purchased by EMC, a large storage vendor; in
retrospect, it was one of the better acquisition deals of the 2000s. At
the same time, as in the case of operating systems like Linux, open
source began to make strides in virtualization in the latter part of the
decade. In parallel, microprocessor vendors Intel and AMD designed
in features that made the x86 architecture easier to virtualize with less
overhead; unlike IBM mainframes, x86 had never been designed with
virtualization in mind.

A project called Xen, out of the University of Cambridge, was the first
to make a major mark in open source virtualization. However, in 2006,
the KVM (Kernel-based Virtual Machine) project emerged from
Qumranet, a startup based in Santa Clara, California, with research
and development in Israel. Its CTO was Moshe Bar, who had co-
founded XenSource, the commercial entity behind the Xen project.

As CNET reporter Stephen Shankland noted in a February 2007 story:

% The situation with Linux, by then emerging as the other mainstream x86 operating
system,wasn’t so dire because Linux was an open source variant of the Unix family of
operating systems, which had long embraced multi-user and multi-program
environments.

84

COMPUTING NEXT

Unlike Xen additions to Linux, the KVM patch slipped nearly instantly
into the mainstream kernel maintained by Torvalds and a group of
deputies.

“We did things the Linux way,” [Qumranet employee Avi] Kivity said
in an interview. “I am a longtime lurker on the Linux kernel mailing
list, so I know what’s important to the kernel maintainers and tried to
get things right the first time. Where I got things wrong, I fixed them
quickly.”

He introduced KVM with source code, not words. “Kernel maintainers
only take you seriously if the first word in a message is ‘PATCH,"”
Kivity said.

Torvalds, who accepted the first KVM patches in December, said the
technology’s lack of intrusiveness and complications led to its
inclusion.

“One reason KVM was so easy to merge was that it was really fairly
straightforward, from the kernel’s point of view,” Torvalds said. And
KVM programmers were easier to deal with than Xen programmers, he
added: “I think they just had a lot less politics, and very few general
policy issues.”

In short, while Xen remained a separate entity that had to be carefully
paired with the Linux kernel whenever it was updated, KVM was
incorporated directly, which, among other advantages, lets it benefit
from performance and security work done for Linux. For these and
other reasons, Red Hat bought Qumranet in 2008 for $107 million.

Since that time KVM has gained significant attention. A marketing
partnership, the Open Virtualization Alliance, was formed in May of
2011 to promote KVM and had over 200 members as of March 2012.
Associated virtualization management open source work was
formalized into the oVirt project later that year.

Today, virtualization remains just one way to control the applications
running on a physical server. And that’s what virtualization is, really,
a type of workload management.

Especially in large cloud environments with more specialized needs,
the various isolation and optimization tools that work within a single

85

COMPUTING NEXT

copy of an operating system can be a more efficient foundation for
cloud computing than virtual machines. VMs have associated
overhead because they bring along all the code associated with an
operating system for each “guest” VM and its associated applications.
Operating systems make convenient guest containers for a variety of
reasons, but they’re not particularly lightweight.

However, for mainstream enterprise customers and for Infrastructure-
as-a-Service public clouds, which are largely in the business of
offering pay-as-you-go VMs, server virtualization is an important
component of a cloud architecture.

86

COMPUTING NEXT
Virtualization as cloud foundation

So far, we’ve seen how virtualization allows multiple workloads to be
consolidated onto a single physical server —thereby increasing server
utilization and lowering costs. But that is really a side effect of how a
hypervisor inserts an abstraction layer between the server hardware
and any software sitting on top.

This abstraction breaks the bonds between applications and specific
physical servers and simplifies moving applications from one physical
location to another. Or, more accurately, it simplifies moving the
aggregation of operating system, application or applications, and
supporting software bits known as a virtual machine.

The simplification comes about because, when software is installed
directly on hardware, it’s not always easy to pick it up and move it
elsewhere. It's bound to a particular piece of hardware, in a sense. The
stickiness comes about because software, when it’s installed, often
adapts itself to the specifics of the underlying server. For instance, it
might install code that is unique to a particular networking chip
model. Rip out that image and plop it down on another server with
different hardware and things may not work properly.

By contrast, a virtualization layer abstracts away many of these server
specifics, presenting software with idealized abstractions that paper
over many of the hardware details. It's therefore much easier to move
images sitting on top of this abstraction layer than images sitting
directly on the underlying hardware. (Essentially, the hypervisor takes
over from the layers of an operating system tasked to interface with
the server hardware.)

In practice, moving workloads from one physical server to another
isn't as dire as I've painted it. x86 server hardware is standardized in
many respects and operating systems are increasingly capable of
dynamically dealing with live changes to the systems on which they
run. These are among the reasons that cloud computing doesn't
always require a virtualized foundation. Nonetheless, virtualization’s
characteristics fit well with a cloud environment in which services,

87

COMPUTING NEXT

such as applications, run at a level of abstraction divorced from server
details.

Indeed, one way of thinking of a cloud is as an additional level of
resource abstraction sitting above virtualization. Virtualization carves
up physical servers in virtual chunks of compute capacity, networking
links, and storage. A cloud then builds a resource pool from these
virtual abstractions and deploys workloads into those pools based on

policy.

Dealing with scale and computing complexity, as virtualization and
cloud computing both do, by adding layers of abstraction isn't a new
idea in computing. In fact, the history of computing technology is
essentially a history of layering abstraction upon abstraction. Each
layer tithes a bit of the additional capacity and performance provided
by new technology and, in exchange, it autonomously deals with
underlying complexity. File systems, high-level programming
languages, virtual memory, and many features of an operating system
are all examples of abstractions. Without these abstractions, we’d
never to be able to tap the power of modern computer systems
because we’d be spending so much time dealing with the myriad low-
level housekeeping tasks . Computers are nothing if not literal.

88

COMPUTING NEXT
The anatomy of a hybrid cloud

Before getting into how one might go about building a hybrid cloud,
let’s take a look at what a hybrid cloud looks like architecturally. For
purposes of illustration, I'm going to use Red Hat’s current portfolio
as of early 2013 as an illustration, but you'd see certain common
aspects in the products and product lines of other vendors.

OPENSHIFT ENTERPRISE - PaaS

CLOUDFORMS - Hybrid Cloud Services Broker | Cloud Application Lifecycle Management

JBOSS JBOSS JBOSS THIRD PARTY ' JBOSS
MIDDLEWARE MIDDLEWARE MIDDLEWARE MIDDLEWARE 1 MIDDLEWARE

ManagelQ .
) RED HAT RED HAT RED HAT THIRD PARTY . RED HAT
LYLUCKSLTCIN ENTERPRISE LINUX [l ENTERPRISE LINUX [l ENTERPRISE LINUX [l OPERATING SYSTEM H ENTERPRISE LINUX
Operations '

Management PHYSICAL
RHEV
Datacenter Virtualization OPENSTACK
Management laas

SYSTEMS
RED HAT STORAGE - Hybrid Cloud Storage

! CERTIFIED
PUBLIC CLOUD
PROVIDERS

THIRD PARTY
VIRT/laas

Virtualization and Infrastructure-as-a-Service

At the bottom is the infrastructure layer. This typically consists of a
hypervisor, its associated infrastructure management stack, and APIs
that provide the ability to control that management stack through
programmatic means. APIs are the mechanism by which different
software programs, such as the different layers of a software stack,
communicate with each other.

This layer includes virtualization. A hybrid cloud can include multiple
tlavors of virtualization. In Red Hat’s case, virtualization is provided
by the KVM hypervisor and the associated management found in Red
Hat Enterprise Virtualization (RHEV). The associated upstream
community project for this virtualization management is called oVirt.
RHEV provides virtualization management for an “enterprise use

89

COMPUTING NEXT

case.” It supports hardware such as Storage Area Networks* and
features such as the Live Migration of running instances from one
server to another that are valued in traditionally-architected IT shops.

One can think of an Infrastructure-as-a-Service like OpenStack as
virtualization management evolving to “cloud use cases” that consist
of more distributed server and software architectures and an
emphasis on user self-service.

Perhaps the easier way to think of OpenStack, however, is that it lets
an IT organization stand up a cloud that looks and acts like a cloud at
a service provider. Thus, in addition to letting a user request an image
(a virtual machine, really) through self-service, OpenStack also offers
storage and other services of types that would be familiar to users of a
public cloud service.

That OpenStack is focused on this public cloud-like use case shouldn’t
be surprising; service provider Rackspace has been an important
contributor to OpenStack and uses code from the project for its own
public cloud offering.

Over time, we should expect to see virtualization management
converge into products that can handle a range of use cases, rather
than falling into distinct “enterprise” and “cloud” worlds as they
generally do today. This is a natural progression as the distinctions
between enterprise-style applications and cloud-style-applications
crumble. Or, indeed, as cloud-style becomes the way that more and
more applications are built.

Public IaaS clouds

Alternatively, the self-service infrastructure may be at a public cloud
provider such as Amazon Web Services or Rackspace. Ultimately their
goal is to make the underlying infrastructure decisions largely

3% SANS lets multiple physical servers share relatively expensive disk arrays which
include sophisticated hardware to provide data protection and other features. They're
commonly associated with traditional enterprise data centers and database systems
which require redundancy and data integrity at the hardware level.

90

COMPUTING NEXT

transparent to the consumer of the resources, such as a developer. Of
course, where the resources are located, how they are managed, and
what types of hardware functions they expose make a big different to
the ops team. But they’re deliberately abstracted from those
developing and using applications. Public clouds, as we’ve seen, are
also interesting to many organizations as they enable paying for
capacity only as it’s consumed and they let organizations delegate the
purchase and operations of computing hardware to others.

Physical servers

Even when virtualization and cloud computing aren’t being conflated,
we often see virtualization promoted as a prerequisite for cloud
computing. It isn’t.

To be sure, the most familiar examples of clouds which don’t use
virtualization to any significant degree are online giants such as
Google Applications and Facebook. But they’re delivering software
services of various types, not raw computing infrastructure or even a
platform for developers. They're also very large scale and relatively
homogeneous. These characteristics make it easier for them to use a
somewhat more efficient non-virtualized infrastructure under the
covers.

However, there is also a subset of on-premise servers that won’t
necessarily be virtualized. Red Hat ran a survey at VMworld,
VMware’s user show, in 2011. We asked “What percentage of
applications do you plan to virtualize?” Almost half planned to
virtualize 75 percent of their application infrastructure with almost
another quarter planning to virtualize 50 percent. However, it's worth
noting that only 17 percent planned to virtualize everything. This is
consistent with the results seen by various industry analysts.

Hybrid cloud management

These different types of infrastructure can be thought of as “cloud
providers.” In Red Hat’s case, CloudForms is the hybrid cloud
management product that cuts across disparate cloud provider
resources. It lets you build and manage a “cloud of clouds” in a sense.

91

COMPUTING NEXT

To break things down a bit, it's useful to think of hybrid cloud
management as including a hybrid cloud broker, cloud application
lifecycle management, and hybrid cloud operations management.

A hybrid cloud broker can be thought of as the piece that allows you
to build a hybrid cloud in the first place. It unifies, not only private
and public cloud services, but also heterogeneous on-premise
infrastructure —such as multiple virtualization platforms. The hybrid
cloud broker isn't itself virtualization or Infrastructure-as-a-Service
infrastructure, but it enables the construction of a hybrid cloud from a
pool of resources spanning a diverse set of infrastructure that may use
varied APIs and image formats.

One function of a hybrid cloud broker is to act as a sort of translation
shim across heterogeneous virtualization and cloud platforms.
Different clouds use different application programming interfaces
(APIs) even for similar tasks, such as loading a file into an object store.
They require that uploaded images (typically an operating system and
an associated workload) be in a specific format related to the
underlying virtualization platform used by the cloud provider. The
hybrid cloud broker needs to manage these differences, while
retaining the ability to leverage as much of a given provider's unique
functionality as possible. In the case of CloudForms, the Apache
Deltacloud Project is the technology which lets workloads be
deployed across a hybrid mix of cloud providers.

The hybrid cloud broker is also responsible for the placement of
workloads, subject to any policies system administrators have
embedded in a workload. For example, policy may require that an
application processing confidential customer data only be deployed
on private infrastructure. Over time, hybrid cloud brokers have the
potential to evolve capabilities such as dynamically allocating
workloads based on the spot market cost of various types of
infrastructure. However, today, it's more realistic (in terms of both the
technology and the interests of most users) to think of hybrid cloud
brokers as enabling the use of heterogeneous infrastructure and
workload migration, but migration that's generally manual and takes

92

COMPUTING NEXT

place over relatively long time horizons rather than automated and
minute-by-minute.

The second area of hybrid cloud management is application lifecycle
management: building and managing applications within a hybrid
cloud. This allows IT departments to offer the agility and benefits of
self-service access to cloud resources while still retaining control of
workloads, wherever they're running.

One of the mechanisms enabling policy-based self-service in hybrid
cloud environments is templates, called Application Blueprints in the
case of CloudForms. A template defines the software components—
and configuration details about the application and the target
environment; this allows the application to be run on a wide variety of
infrastructure types, subject to any restrictions that system
administrators may impose.

Application lifecycle management also involves managing the
compliance and governance of running applications against their
template.. This includes the ability to patch, configure, perform drift
detection, apply security errata, and manage licenses or subscriptions.

It's worth noting that application lifecycle management takes place at
the level of the application, not the operating system container—
which is to say the virtual machine in the case of virtualized
infrastructure—that holds the application. In this respect, application
lifecycle management is different from basic virtualization
management, which is more concerned with managing VMs than
their associated content.

The final area of hybrid cloud management is hybrid cloud operations
management tools including monitoring, management, and
automation across virtual and cloud infrastructure through a unified
interface. This includes tools used to discover, automate, monitor,
measure and govern virtualization and cloud infrastructures. At a
higher level, operations management is about service lifecycle
management that provides provisioning, intelligent workload
management, metering, cost transparency, and the retirement of

93

COMPUTING NEXT

resources when they are no longer required. ManagelQ), a late 2012
Red Hat acquisition, adds orchestration capabilities such as
chargeback that will be folded into CloudFormes.

Platform-as-a-Service

So far, this discussion has been infrastructure-centric although many
principles apply across cloud computing more broadly. By
infrastructure-centric I mean that the resources which users are
exposed to are at the level of a provisioned operating system instance
(a virtual machine). In other words, the user sees an laaS cloud as a
particularly fast and easy way to get a new server delivered, but not
necessarily something different in kind.

Such familiarity isn’t necessarily bad. However, Platform-as-a-Service
(PaaS) offers a different level of abstraction that is more focused on the
typical concerns of developers and those supporting them.?” Thus,
instead of an operating system image-centric view, Paa$S is more
oriented to a view that revolves around pushing and pulling code into
and out of repositories; the operation of the software needed to run
that code is largely kept in the background.

Unlike a Paa$ that is limited to a specific provider, Red Hat’s
OpenShift PaaS can run on top of any appropriately provisioned
infrastructure whether in a hosted or on-premise environment. It then
provides application multi-tenancy within the operating system
images that make up the infrastructure. It does so using a
combination of SELinux for security isolation, Cgroups for resource
control, and other Linux features.

This approach allows organizations to not only use the languages and
frameworks of their choice but also to select the IT operational model
most appropriate to their needs. The provisioning and ongoing
management of the underlying infrastructure on which OpenShift
PaaS runs is where virtualization, IaaS, and cloud management

%7 Like many things associated with cloud computing, Paa$S too can refer to a some
only vaguely related things. Our discussion here focuses on PaaS as a general purpose
cloud abstraction for developers.

94

COMPUTING NEXT

solutions come in. PaaS will be discussed in more detail later in the
book.

95

COMPUTING NEXT
What of cloudbursting?

Talk of hybrid clouds often leads to talk of “cloudbursting,” the idea
that there can be some automagical movement of applications from
place to place based on relative pricing or other ephemeral factors.

Such talk makes people like Chris Hoff “want to punch kittens.”*® As
he put it in one blog post: “It’s used by people to describe a use case in
which workloads that run first and foremost within the walled
gardens of an enterprise, magically burst forth into public cloud based
upon a lack of capacity internally and a plethora of available capacity
externally.”

More colorful language followed in this particular broadside. But the
gist was that, if an application passes the hurdles of being able to run
in a public cloud —regulatory compliance, acceptable performance,
legal implications, and so forth—then why wouldn’t you just run the
application in a public cloud, period? After all, there’s a sort of default
assumption that public clouds like Amazon are cheaper than in-house
IT. The only wrinkle is that they won’t always meet your IT
governance requirements.

Put another way, private and public clouds have different operational
models and it’s unclear why you’d want to mix them.

But cloudbursting, as the term is typically used, is something of a red
herring.

The economics of running data centers are such that a large public
cloud provider can’t necessarily operate modern, standardized, well-
managed data centers for markedly lower costs than does Fortune 100
Megacorp. Does Megacorp have more operational complexities and
associated costs? Probably. But that’s also sort of beside the point.
Unless a given workload can run on a standardized infrastructure, it
can’t run on an external cloud provider anyway.

38 http://www.rationalsurvivability.com/blog/2011/04/incomplete-thought-
cloudbursting-your-bubble-i-call-bullshit/ Hoff currently works for Juniper Networks.

96

http://www.rationalsurvivability.com/blog/2011/04/incomplete-thought-cloudbursting-your-bubble-i-call-bullshit/
http://www.rationalsurvivability.com/blog/2011/04/incomplete-thought-cloudbursting-your-bubble-i-call-bullshit/
http://www.rationalsurvivability.com/blog/2011/04/incomplete-thought-cloudbursting-your-bubble-i-call-bullshit/
http://www.rationalsurvivability.com/blog/2011/04/incomplete-thought-cloudbursting-your-bubble-i-call-bullshit/

COMPUTING NEXT

Still, if internally hosted capacity, especially excess capacity, can
indeed be cheaper (at least in terms of marginal costs) than a public
cloud, then cloudbursting may still make economic sense for certain
applications. Put another way, it may be cheaper to use internal
capacity first, but it may not be cheaper to build enough internal
capacity to handle all spikes in demand.

That said, I agree with Hoff’s basic point.

Spot markets for computing capacity have long hovered around the
horizon—a recent example was Enomaly’s SpotCloud prior to its
acquisition by Virtustream. However, as was the case during the spike
of interest in peer-to-peer computing about ten years ago (think
SETI@Home), the hurdles to mainstream adoption are considerable.
Standards for interoperability are just the beginning. There are also all
manner of trust issues. And then there are simple matters of efficiency.
Computing isn't just about cycles; it needs associated data and
moving that around takes bandwidth and time, a concept sometimes
called “data gravity.”

Debates over cloudbursting, though, obscure a broader point.

Cloudbursting debates are really about the dynamic shifting of
workloads. Indeed, in their more fevered forms, they suggest
movement of applications from one cloud to another in response to
real-time market pricing. The reasoned response to this sort of vision
is properly cool, not because it isn’t a reasonable rallying point on
which to set sights and even architect for, but because it’s not a
practical and credible near- or even mid-term objective.

What is both useful and achievable in the near-term is portability
across clouds and hybrid management, perhaps not involving
dynamic workload migration—at least in practice—but in the ability
to deploy an application on one cloud, or in a virtualized data center,
and then be able to move that application to a different cloud at a
future point. In the context of enterprise applications, this includes
considerations such as carrying over the certifications of software
vendors from one cloud to another.

97

COMPUTING NEXT

Voltaire supposedly once said “Le mieux est I'ennemi du bien” — the
better is the enemy of the good. Over the longer-term I'd argue that
the better should indeed be the goal, with computing interoperability
and portability across multiple dimensions an important part of that
advance. However, for more interesting and closer-in time horizons, I
think we do ourselves a disservice by obsessing too much with
“automagical” workload shifting when what we really care about is
the ability to just move from one place to another if a vendor isn’t
meeting our requirements or is trying to lock us in.

98

COMPUTING NEXT
How clouds move beyond virtualization

We've already covered some of the nuts-and-bolts of how
virtualization relates to clouds at an infrastructure level. But that’s
only part of the story.

There are two ways to think about the differences between
virtualization and cloud. The first is in terms of different mindsets and
approaches to IT operations. The other is to consider specific features
and capabilities.

Consider the “big picture” aspect first. Mary Johnston Turner,
research vice president of enterprise system management software at
market researcher IDC, contrasted virtualization and cloud at the 2011
IDC Directions conference. She described virtualization as providing
the “underpinning for cloud” while she described cloud as going
“beyond virtualization to focus on services and consumption.”

What does this mean exactly? In their book Visible Ops Private Cloud,
Andi Mann, Kurt Milne, and Jeanne Morain write that it's a “shift
from framing virtualization expansion goals based on footprint and
consolidation metrics to offering business-optimized services. Services
that meet user needs will drive adoption. Widespread adoption is
critical to driving cloud economics.”

This is done by designing a catalog of standardized services—think of
them as application or development environments—and offering
them to consumers, such as developers, through a low-touch self-
service interface. Access to these services is controlled by policy, as is
the runtime management (such as patching) of these environments
after they are deployed.

Virtualization management, and the ecosystem of third-party
management products and add-ons which have grown up around
virtualization over time, certainly bring a degree of order and process
to virtualized environments. Their goal is to reduce what is sometimes
called “VM sprawl” resulting from proliferating unmanaged virtual

99

COMPUTING NEXT

machines. However, policy, lifecycle management, and standardized
workflows are often more fundamentally baked into cloud solutions.

Furthermore, hybrid cloud solutions which operate independently of
the underlying virtualization layer can span hypervisors from
different vendors and other platforms such as public clouds, allowing
management and policy to be extended over a broader and more
heterogeneous set of resources.

At IDC Directions, Turner also showed data on the adoption of
“critical cloud management building blocks” which reflected “the
percentage of IT decision makers reporting their organization is/plans
widespread or selective production use of all technology.”

Unsurprisingly, virtualization management was the most common
current or planned technology. It was present to some degree in about
70 percent of cases with modest (a few percentage points) growth in
penetration forecast by 2012. Automation/orchestration and self-
service portals were the next most common building blocks, growing
from about 40 percent of organizations to over 50 percent. Service
management/service catalogs came next; end-to-end performance/
availability management and consumption metering came last in
terms of adoption with only about 30 percent anticipating metering
even by 2013.

This data is consistent with my observations. A certain amount of
automation and self-service can be put in place to augment
virtualization but it’s with service management and catalogs that IT
operations really begin looking like a cloud provider to their internal
consumers. This is the point at which we stop thinking so much in
terms of managing servers and more in terms of operating IT-as-a-
service.

100

COMPUTING NEXT

Real world applications for private cloud by Andi
Mann

Andi Mann is a longtime mate of mine from my
analyst days when he was an IT industry analyst
with Enterprise Management Associates (EMA). &
He’s currently Vice President of Strategic Solutions
at enterprise IT management software vendor, CA.

Originally posted on October 6, 2011.

Website: http://pleasediscuss.com/andimann/
Twitter: @andimann

Not surprisingly, since the release of my new book, Visible Ops Private
Cloud, I have been talking with a lot of people about how to deploy
private cloud, where to start, what to avoid, etc. So far, the most
common question has been, “What type of existing workloads are
organizations putting into private cloud environments today —and
what are they avoiding?”

So I thought I would jot down some of my answers, specifically
related to “cloud-migrant’ services, as opposed to ‘cloud-native’
services—and without getting too hung up on whether the use cases
are 100 percent cloud or not!

One recurrent use case is to provide dynamic desktop allocation,
especially for education and projects use cases. A number of schools,
universities, training centers, and even some larger enterprises, have
adopted private cloud to allocate servers, clients, applications and
data for reusable desktop systems.

This seems especially prevalent for short-term learning facilities,
repeatable one-off classroom systems, training/demo labs at
conventions (or user groups), and contractor setup. It is also similar to
the executive briefing centers and ‘demos on demand’ that many
software sales organizations (like CA Technologies) use.

101

COMPUTING NEXT

Another service-based use case I have seen in several universities is
self-service access for students and faculty, using pooled resources,
not only for application services but also for full virtual desktop
infrastructure (VDI) desktop allocation.®

I have seen this in other enterprises too—most notably for home-
source process workers (e.g. call center, data entry) —but mostly as a
proof-of-concept, not a large-scale production deployment.

However, most cloud-migrant workloads I see deployed to private
clouds today still tend to be server-based. Most of these are at ‘Phase
1" in the Visible Ops Private Cloud —a reorientation of virtualization
deployments to pilot a private cloud that works, proving results,
gaining skills, and hopefully measuring opportunities. It is still
focused on servers, not services, but provides a vital part of the
learning curve toward private cloud.

For example:

¢ Development/Test/Quality Assurance servers: 3-tier LAMP 4Ostacks
(Application/Database/Web server), but also LAMP components,
integrated development environments, source code management
tools, etc. (which often results in applications that run on a private
cloud in production)

e Collaboration servers: especially Microsoft SharePoint, but also Web-
based collaboration services like team chat servers, content
repositories, blogs, wikis, and project management tools

e Engineering servers: I have seen a number of engineering firms move
their design project systems (especially computer aided design
(CAD) tools) into private clouds so engineers can fire up new design
projects on-demand

% VDI typically consists of desktop images running on servers and managed by the IT
organization rather than running on a local desktop. This “virtual desktop” is then
delivered to a PC or “thin client” device. There are many variants and wrinkles but,
as a general rule, VDI is used to reduce administrative overhead for standardized
desktops used for well-defined functions.

40 LAMP stands for Linux, Apache (Web server), MySQL (database), and Perl/Python/
PHP (Web programming languages). Essentially, it’s shorthand for a standard Web
software stack running on the Linux operating system.

102

COMPUTING NEXT

e Web servers: popular for marketing teams who can fire up their own
Web servers, especially for short-term and/or localized promotions &
campaigns

e Analytics servers: short-term number crunching of ‘big
data’ (including business intelligence applications) in medical
research, social marketing, pharmaceutical research, higher
education, financial, logistics, etc.

The workloads that are less suited to private cloud deployment are
harder to identify, because it requires positive evidence of absence, so
my thoughts here are much more anecdotal. I do see Chief
Information Officers (CIO) push back on migrating ‘core” applications,
even to private clouds, citing lack of confidence, performance
concerns, potential security and compliance issues, and lack of return
on investment (ROI). I would not agree these are always good
reasons, but they can be, and are certainly understandable.

In my opinion, private cloud is not ideally suited to relatively large,
static, predictable, and resource-saturating workloads—think
Enterprise Resource Planning or Data Warehouse. After all, used
internally such applications are almost never deployed ‘on demand’;
they are rarely if ever ‘multi-tenant’; they have no real benefit from an
‘infinitely scalable’ infrastructure; and are mostly viewed as a cost of
doing business, without any ‘resource measurement’ or chargeback.

(There are certainly good arguments to deploy these applications on a
public cloud, as “cloud-native’ services using SaaS, to outsource them
to a non-cloud third-party, or to just virtualize them—even with 1:1
virtualization-without the other trappings of cloud. Such alternatives
could deliver better cost savings, higher up-time, faster disaster
recovery (DR), and other benefits. However, I think the upside of
putting such applications in a private cloud is less apparent.)

That said, I do think that we will see more and more strategic services
—as opposed to project servers—deployed in both private and public
cloud as it matures. In fact, recent data from market researcher IDC
suggests CIOs that are adopting private cloud will migrate many core
applications in the coming years. Moreover, some of the more

103

COMPUTING NEXT

advanced customers I talk with are already doing this, although they
are by far in the minority.

Either way, I will be very interested to see how this all pans out.

104

COMPUTING NEXT
Beyond ad hoc: Four steps to building a cloud

To give a flavor for how an organization might start building a cloud,
consider this methodology based on an approach published in Visible
Ops Private Cloud: From Virtualization to Private Cloud in 4 Practical Steps
by Kurt Milne, Managing Director of the IT Process Institute, along
with Andi Mann and Jeanne Moran. The approach was developed
based on a survey of over thirty private cloud deployments. This
chapter leverages material from a series of white papers that Milne
prepared for Red Hat based on this study, book, and mutually-
developed content. The focus here is on IaaS, although that will often
be the operational foundation for a PaaS, which is more focused on
offering services to internal developers and those who support them.

=>(1-Cut through
H\amj

cloud clutter

4 - A{i n and
acce 6rﬂ+&
business
results

L—De—sijn
se:r‘viccs,
not system

3-Orchestrate
and orhmizc
resources

Some new technologies make their way into organizations at the
periphery. Perhaps they perform some specific task that is outside of
the day-to-day concerns of IT management. Perhaps they’re an ad hoc
tool of some sort—useful but not part of any formal workflows or
procedures. Perhaps they increase efficiency in a way which can be
adopted incrementally one server or one group of applications at a
time.

105

COMPUTING NEXT

In the early days, virtualization mostly fell into this latter category.
During the early 2000s, many companies anxiously sought ways to
avoid purchasing servers and other IT gear. Server virtualization fit
the bill perfectly. Because so many servers (especially those running
Microsoft Windows) were woefully underutilized,*' virtualization was
a way to let one physical box do the work of many. And, importantly
in the context of that time, virtualization delivered savings even if it
was rolled out piecemeal to avoid cutting purchase orders for new
servers. As virtualization has become more widespread, IT shops have
started approaching it more strategically. But it started out as a
tactical, cost-cutting move.

However, not all technologies lend themselves to ad hoc use—at least
without causing more problems down the road than they solve. Cloud
computing falls into this camp. That’s not to say that it can’t be
brought on board in an evolutionary way —in fact, doing so is often a
best practice. However, building an on-premise cloud is usually best
done systematically. In addition, while the informal use of public
clouds can make sense under some circumstances, it's important to
ensure that confidential data is properly secured and that the
development environment is consistent with whatever will be used
for the application in production. I'll discuss security and compliance
in more detail in the context of the next section: Operating a Cloud.

There’s no single approach to “properly” adopt a cloud within an
organization. It's more important to establish some deliberate process
than it is to follow a particular approach. With that said, I'm going to
structure this discussion around the framework developed by ITPL
It’s fairly lightweight, is based on discussions with organizations who

4 Microsoft Windows running on servers inherited much of the architecture and
behaviors of the desktop operating system from which it derived. And the desktop
had been designed with one user running one application as its design center. Linux
and Unix (the other primary server operating systems) on the other hand, had long
been intended to support multiple users and applications running at the same time.
As a result, they came with an elaborate toolbox to let multiple workloads run side-
by-side and thereby keep utilization up. They weren’t nearly as dependent on the
arrival of server virtualization as was Windows. (Though they too benefited from it
over time.)

106

COMPUTING NEXT

have begun implementing clouds, and dovetails nicely with the
experiences of Red Hat'’s services organization.

It'’s natural to equate process with heavyweight process and
heavyweight process with bureaucracy and analysis paralysis. That’s
certainly not the intent here. Rather, it’s to recognize that by bridging
IT silos, automating actions, and providing self-service to users, cloud
computing delivers a powerful tool to make your IT infrastructure
more flexible and responsive to the business. But wielding that tool
effectively just takes a bit of upfront planning.

Cut through the cloud clutter

The goal in this phase is to refocus your initial virtualization efforts on
skills and competencies that support cloud deployments. The initial
discovery pilot phase will enable identification of challenges,
requirements, and key metrics that will prepare you for the larger
cloud implementation. Your mantra for these activities is, “Get ready
for dynamic workloads.” You should set end goals for your cloud
deployment. You should start laying the groundwork for building
shared resource pools and for managing mobile and transitory
workloads.

Design cloud services, not systems

Part of the thinking behind on-premise clouds is to offer users fast
access to computing resources similar to those offered by commodity
third-party cloud providers. However, deploying raw compute
resources, either on internal private or external public resource pools,
is the lowest common denominator in cloud. The key to cloud success
and to minimizing shadow IT is not just speeding up delivery of
servers, network, storage, and other computing resources, but also
changing what IT offers.

Users are thrilled to get self-service access to cloud services within 15
minutes. But success for cloud initiatives requires joining self-service
cloud access with the traditional enterprise IT need for governance,
security, and compliance, as well as world-class service delivery and
business continuity. A thoughtful service-design approach that shifts

107

COMPUTING NEXT

focus from resources to delivery and consumption of IT as a service
can help meet both user and IT requirements.

A service-design approach includes understanding business
objectives, detailing specific user needs, defining services that meet
those needs, and defining the functional and technical specifications
needed to deliver those services. It also includes creating an IT
“factory” used to build and deploy workloads in simple or complex
cloud environments both at internal and external resource locations.
These processes require clearly defined policies which specify what,
how, where, and when workloads are deployed, whether to deploy in
public or on-premise clouds, static virtual environments, or even
physical dedicated servers.

Optimize and automate IT in the cloud

The cloud computing buzz often centers on giving users self-service
on-demand access to various IT services. The promise is that building
a private or hybrid cloud enables users to deploy, scale, and redeploy
resources as needed. The flexibility can both dramatically increases
business agility and improve resource utilization in the data center.

But what about after the workload is deployed? Who maintains and
updates the cloud? How does IT ensure ongoing security and
compliance?

The reality is that while private cloud utilizes virtualized resources, it
is built, run, and governed differently than the static virtualized data
center. As a result, IT must address unique run-time challenges such
as shared resources, massive scalability, standardized systems
management, and hybrid and heterogeneous solutions.

Understanding and addressing these differences is critical for cloud
success.

Accelerate business results with your cloud

Frequently, IT capabilities are needed to enable new business
initiatives. When IT is in the critical path to revenue, speed matters. A

108

COMPUTING NEXT

lot. In the past, lead times for requesting and receiving IT resources
from central IT were too long. As a result, developers and IT staff
inside the business units often worked around IT to procure shadow
IT resources.

A hybrid cloud implementation can remove much of the typical IT
friction associated with growth and innovation efforts. But cloud
offers more than speed. Cloud can improve utilization of computing
assets and can increase workflow efficiency for a wide range of IT
operational processes.

Overall, hybrid cloud solutions are a better way to run IT. These
solutions can help shift users’ perception of IT from an inhibitor to
enabler of business results.

But the cloud’s “better, faster, cheaper” value proposition has a critical
dependency: broad adoption within the organization. Building
something better is a wise use of IT resources only if users adopt what
you build. Otherwise, you may be leaving money on the table and
undercutting the value IT can offer the business.

Broad adoption occurs when users have enough confidence and trust
in the cloud solution that they turn to IT as the preferred service
provider. Key activities related to maximizing utilization include
optimizing the economics, reshaping user behavior towards IT as a
service, streamlining processes to increase collaboration, and shifting
towards service-oriented accounting.

109

COMPUTING NEXT

How cloud computing will redefine the data center
by Judith Hurwitz

Judith S. Hurwitz is President and CEO of Hurwitz & Associates, Inc., a
research and consulting firm focused on emerging technology including
cloud computing, big data, software
development, computing management, and
security. Judith is a co-author on six retail
Dummies titles including: Big Data for
Dummies (Wiley Publishing, 2013), Hybrid
Cloud for Dummies (Wiley Publishing,
2012), Cloud Computing for Dummies
(Wiley Publishing 2010), Service
Management for Dummies (Wiley Publishing, 2009), and Service
Oriented Architecture for Dummies —first and second editions (Wiley
Publishing, 2006, 2009). She is also the author of a business book, Smart or
Lucky? How Technology Leaders Turn Chance into Success (Jossey-
Bass 2011).

Many organizations are looking at cloud computing as an extension to
their traditional data center. It is often viewed as a technique to
provide a segregated set of services that can be used for meeting such
requirements as supporting peak loads or more easily deploying
services on demand. But as with many technology trends, there are
unintended and unexpected consequences to the evolution of
computing. The cloud will have a dramatic impact on the data center
and its evolution.

In the Hurwitz & Associates book Hybrid Cloud for Dummies, we point
out that the role of the data center will change in the coming decade.
A little history is instructive to understand the impact of these
changes. The data center was developed as a fit-for-purpose
environment to manage and protect systems of record. In the early
days, the data center was optimized for these workloads. Things
changed in the 1980s as more systems with different workloads and
different operating systems, different hardware, and networks were
put in place. The result of this change was that the traditional data

110

COMPUTING NEXT

center was no longer the optimized and tightly controlled
environment that it had been. With this diversity of platforms came
complications. The IT operations staff had trouble pleasing its
constituents. This resulted in a data center that was ineffective and
inefficient in meeting the dynamic changes impacting business.

The result of the inefficiency of the traditional data center has forced
companies to adopt cloud services to help alleviate some of the
pressure on IT to respond more quickly to business needs. Over the
past few years, increasing numbers of small and large corporations
have begun using both public and private cloud services alongside
their data centers.

Up to this point, however, the role of the traditional data center has
not changed very much. Virtualization solutions have somewhat
helped to make the data center more efficient, but they have not
changed the underlying problems of workload management. But it is
inevitable that the role of the data center will not remain static. Rather,
the data center will go back to its original purpose: an optimized
environment that will support line of business applications that
require low latency and high levels of security.

Therefore, there will be fewer hardware platforms, fewer operating
systems, and fewer applications that will reside in the traditional data
center. In essence, it will become the environment to support the
Systems of Record. A second environment based on cloud computing
will support dynamic and changing needs of the business — what we
can think of as Systems of Engagement.*? These systems will be
cloud-based because they will need to support changing workloads
and changing interactions between customers, suppliers, and
partners.

42 Author and consultant Geoffrey Moore is credited with coining the “systems of
engagement” term. It refers to “the transition from current enterprise systems
designed around discrete pieces of information (“records”) to systems which are
more decentralized, incorporate technologies which encourage peer interactions, and
which often leverage cloud technologies to provide the capabilities to enable those
interactions.” http://www.aiim.org/~/media/Files/ AIIM%20White%20Papers/Systems-
of-Engagement-Future-of-Enterprise-IT.ashx

COMPUTING NEXT

These two environments will not exist in isolation from each other. In
fact, the redefined data center, with its highly structured Systems of
Record, will have to be seamlessly integrated with dynamic and cloud
based Systems of Engagement.

112

COMPUTING NEXT
The other hybrid: Community clouds

Community clouds were included in the original NIST definition of
cloud computing, which has come to be seen as more or less the
definitive taxonomy. NIST defined community clouds as cloud
infrastructure “provisioned for exclusive use by a specific community
of consumers from organizations that have shared concerns (e.g.,
mission, security requirements, policy, and compliance
considerations).” However, as recently as a couple of years ago, it
remained something of a theoretical construct—an intriguing
possibility with only limited evidence to suggest it would actually
happen anytime soon.

That’s changed.

It’s not that community clouds are everywhere, but we now see
concrete commercial examples in the places you'd expect: where there
are specific rules and regulations that have to be adhered to and
where there are entities that can step up to some sort of supervisory or
overseeing role.

For this reason, the federal government is one of the most fertile
grounds for the community cloud idea. Certainly government
procurement is rife with a veritable alphabet soup of rules, standards,
and regulations that must be followed. Indeed, government
procurement was one of the driving forces behind the aforementioned
NIST definition in the first place. And, in many cases, the policies and
process associated with these rules have relatively little overlap with
how businesses operate outside of the government sphere.

Furthermore, government agencies aren’t wholly independent
entities. They’ve often acted as if they were, to be sure. And one of the
big issues with government IT costs historically is that purchases
often get made project-by-project, agency-by-agency. That said,
initiatives like the 2010 Cloud First Mandate have steered the federal
government towards more centralized and shared IT functions. The
Cloud First Mandate may not have progressed as quickly as then-US
CIO Vivek Kundra initially intended. Nonetheless, it’s helped push

113

COMPUTING NEXT

things along in that direction. (As, no doubt, have budget pressures
overall.)

The result is that many agencies are rapidly moving towards a cloud
computing model —often using a hybrid approach which bridges
internal resources with external GSA providers.

One public cloud specifically catering to the federal government is
Amazon’s GovCloud which:

is an AWS Region designed to allow US government agencies and
customers to move more sensitive workloads into the cloud by
addressing their specific regulatory and compliance requirements. The
AWS GovCloud (US) framework adheres to U.S. International Traffic in
Arms Regulations (ITAR) requirements. Workloads that are
appropriate for the AWS GovCloud (US) region include all categories
of Controlled Unclassified Information (CUI), including ITAR, as well
as Government oriented publicly available data. Because AWS
GovCloud is physically and logically accessible by US persons only,
and also supports FIPS 140-2 compliant end points, customers can
manage more heavily regulated data in AWS while remaining
compliant with federal requirements.

Given the data privacy standards imposed by the HIPAA regulation,
healthcare providers also have some specific requirements and
concerns when it comes to cloud computing —or, really, IT in general.
Nor are these concerns purely academic. In 2011, the Department of
Health and Human Services fined two different organizations a total
of $5.3 million for data breaches even though those breaches were,
arguably, relatively minor. Network World’s Brandon Butler offers the
example of Optum, the technology division of the UnitedHealth
Group:*

[Optum] released its Optum Health Cloud in February as a way for
those in the healthcare industry to take advantage of cloud resources.
Strict data protection standards regulated by HIPAA, plus a constant
pressure to reduce costs and find efficiencies in healthcare
management has made community cloud services seem like a natural

4 http://www.networkworld.com/news/2012/030112-are-community-cloud-services-
the-256869.html

114

http://www.networkworld.com/news/2012/030112-are-community-cloud-services-the-256869.html
http://www.networkworld.com/news/2012/030112-are-community-cloud-services-the-256869.html
http://www.networkworld.com/news/2012/030112-are-community-cloud-services-the-256869.html
http://www.networkworld.com/news/2012/030112-are-community-cloud-services-the-256869.html

COMPUTING NEXT

fit for the industry, says Ted Hoy, senior vice president and general
manager of Optum Cloud Solutions. Powered by two data centers
owned by Optum, Hoy hopes the community cloud will eventually be
able to offer laas, SaaS, Paa$S for customers.

The service, Hoy says, has differentiating features tailored specifically
for the healthcare industry. HIPAA regulations, for example, regulate
how secure certain information must be depending on what it is. An e-
mail exchange between two doctors about the latest in medical trends
needs a different level of protection compared to a communication
between a doctor and a patient. Optum worked with Cisco to create
security provisions tailor-made for the system that identifies who is
entering information, what type of information it is and who has access
to it.

It’s still early days for community clouds and it’s reasonable to
question the degree to which they’ll expand beyond fairly specific
(and relatively obvious) uses such as we’re mostly seeing to date. At
another level though, I see this as another example of how it’s hard to
call exactly where workloads are going to end up running and how IT
is going to be sourced, which is why industry analysts such as Gartner
are making such a big deal about concepts such as Hybrid IT.

115

COMPUTING NEXT

Controlling a
Cloud

Building cool stuff is great. But remember that prior stat about 70 or 80
percent of spending going towards keeping the lights on at a typical IT
department? Well, that should serve as a stark reminder that most of the
work (and expense) happens after the light switch is flipped on.

Indeed, cloud computing is as much an operational and management model
as it is about initially building a hybrid environment. Some of this model
relates to operational management of the infrastructure, whether it’s
performed by a public cloud provider or by in-house staff. Cloud computing
also means managing the applications (and their associated services) that are
running in a cloud.

116

COMPUTING NEXT

COMPUTING NEXT
It ain’t fire and forget

One way to think about what'’s different about cloud computing and
related enterprise computing transformations is that they embody
what MIT’s Jeanne Ross calls a “culture of discipline.”**

...the thing we’re learning about enterprise architecture is that there’s a
cultural shift that takes place in an organization, when it commits to
doing business in a new way, and that cultural shift starts with
abandoning a culture of heroes and accepting a culture of discipline.

Nobody wants to get rid of the heroes in their company. Heroes are
people who see a problem and solve it. But we do want to get past
heroes sub-optimizing. What companies traditionally did before they
started thinking about what architecture would mean, is they relied on
individuals to do what seemed best and that clearly can sub-optimize
in an environment that increasingly is global and requires things like a
single face to the customer.

What we're trying to do is adopt a culture of discipline, where there are
certain things that people throughout an enterprise understand are the
way things need to be done, so that we actually can operate as an
enterprise, not as individuals all trying to do the best thing based on
our own experience.

This philosophy is very much in line with the idea that a hybrid cloud
moves beyond virtualization by shifting to a services-centric
approach. This means offering a standardized catalog of services to
users and controlling access to and deployment of those services
through policy. In other words, it’s about granting access to IT services
within a framework of established, consistent policies. A “culture of
discipline,” if you will, rather than an ad hoc “culture of heroes.”

A discipline culture can really streamline the access to IT resources
rather than the other way around. Yes, there are consistent controls
and policies in place, but self-service access within that framework
makes for more agility, not less.

44 http://www.zdnet.com/blog/gardner/mits-ross-on-how-enterprise-architecture-and-
it-more-than-ever-lead-to-business-transformation/4463

118

COMPUTING NEXT

A discipline of culture doesn’t need to mean a culture of “No.” In fact,
it can make saying “Yes” easier and faster.

This section takes a look at some of the ways in which cloud
represents a difference in kind from many traditional IT practices and
some of the concerns which cloud operations and management need
to address.

One such concern is “security,” which can be found at the top of just
about any survey asking about inhibitors to cloud computing. As
we’ll see, security often gets used as a convenient placeholder for lots
of things related to managing risk and controlling IT processes. It’s
also the subject of widespread assumptions which often don’t square
well with reality.

Some cloud operational aspects are informed by traditional IT practice
methodologies such as ITIL —that “discipline” thing. But automation
and repeatable best practices are married to a more bottoms-up
approach that brings together IT policy with the needs of users
accustomed to the low-friction world of cloud consumer services.
We'll take a look at how hybrid cloud management bridges these two
worlds.

The cloud is breaking down walls in other ways as well. Whereas
application developers and IT operators historically worked in largely
isolated spheres, cloud computing is part of a general motion towards
more integrated functions for which DevOps is one commonly-used
shorthand.

At the same time, it’s worth remembering that cloud computing still
depends on physical servers, disk drives, and networks. Cloud
computing architectures still need to consider factors such as how
quickly data can move from place to place and how much can be
transferred. Ye canna’ change the laws of physics.

119

COMPUTING NEXT
IT operations in a cloudy world by James Urquhart

James Urquhart is VP of Product Strategy for
enStratus. His original post references earlier “Big
Rethink” and DevOps series from his former CNET
Wisdom of the Clouds blog http://news.cnet.com/
wisdom-of-clouds/.

Twitter: @jamesurquhart
(o

operations are organized, and the toolsets sought to automate
operations tasks. Recent conversations with a variety of cloud
practitioners have reemphasized this for me, and I wanted to lay out
what changes I see coming to the operations space, and why those

Cloud computing and data center
virtualization are both changing the way IT

changes are important when considering your future (or your
product’s future).

The first thing that I think is critical to
identify is that there are really three
elements to IT operations in a world
where IT is delivered as a service:

Application
Operations

Service
Operations I think of these three categories in the

following way:

Infrastructure Infrastructure operations (or

“InfraOps”) is the management of the
base physical systems (such as

Operations

physical servers, networking and storage), and usually the virtualized
representations of those resources—though not always, as you'll see
below. Included in this infrastructure are the management systems
focused on managing resource allocation at the behest of services and
applications.

What is critical to understanding the role of InfraOps is
understanding that infrastructure is moving towards a more

120

COMPUTING NEXT

homogenous model in support of heterogeneous applications and
services (a “Big Rethink” concept). If the same core infrastructure is
going to host multiple services and applications, it therefore makes
sense that a single team of dedicated professionals would watch over
that infrastructure, theoretically guaranteeing the ability of that
infrastructure to adjust to the demands of its payloads.

Service operations (or “ServiceOps”) is then the role that focuses on
running the services provided on that infrastructure. For example, the
ServiceOps team would own the service catalog and service portal
environments, and all of the software systems that define and manage
the services offered through those systems.

Why manage services separately from the infrastructure they run on?
I usually illustrate this concept with an analogy: think of the data
center infrastructure as an iPad, and the services it hosts as “apps.”
Ultimately, I may move towards a more homogeneous data center
infrastructure in support of my services, but I still want a wide
ranging choice of service options to select from. Perhaps I build my
own infrastructure as a service offering, buy my communications
services from a vendor, and my dev/test governance services from
another vendor.

Application
Automation

If the data center is hosting multiple
services from multiple sources, there
will need to be expertise to support

Service the common infrastructure (as
Automation mentioned above) and expertise to
support each of the services. This
Infrastructure means service operations would
Automation need to be managed separately from

infrastructure operations.

Application Operations (or “AppOps”) then is the role that manages
the applications themselves, assuring that the application has a place
to execute, that it is deployed correctly, and that service level
requirements are met throughout the life of the application. AppOps
typically is the team that is involved in DevOps activities, and is also

121

COMPUTING NEXT

the most likely role to find itself working with multiple “clouds” (aka
IT service providers) at once.

This is the primary effect of the “Big Rethink” and DevOps: the drive
to make the application itself the unit of administration from the
application’s perspective, rather than the infrastructure on which it
runs. To me, this is an exciting change, as it get’s application operators
out of the business of being “clerks” (e.g. responding to trouble tickets
day after day), and into the creative business of architecting,
implementing, and maintaining application operations automation.

(For the more technical readers, I should note that today, many so-
called “cloud infrastructure” tools tightly couple physical resource
allocation to an “infrastructure as a service” software system. The
problem I see with that is that it means the infrastructure can only be
used with that service offering, or other services that utilize the same
management and user interface systems as that offering. I believe that
the “service” component of laaS will eventually be decoupled from
the actual infrastructure automation for that reason.)

By the way, some of you may have picked up on a very interesting
point that can be derived from this breakdown of operations. The
separation of operations roles basically denotes the separation of
operations automation systems that should be deployed in an cloud
ecosystem; the same three elements are involved:

Now, it will take time for these roles to appear in many organizations,
but I find it hard to picture a different breakdown that will allow for
(a) maximum flexibility and efficiency in infrastructure usage, and (b)
the separation of concerns that come into play when you have an end
user consuming a second party service that is running on a third
party’s infrastructure —a very reasonable model in the world of cloud
computing.

122

COMPUTING NEXT
Risk managing the cloud

You've probably heard or read this sound bite: “The Cloud is unsafe.”
Maybe it was after some large public cloud provider had an outage.
Or maybe a bank had a data breach. Or some security researcher
identified... well, something that could possibly be connected to some
aspect of cloud computing is some way, shape, or form.

Statements like this are meaningless. We might as well say “Cars are
unsafe.” Unsafe relative to what alternatives and under what
circumstances? Unsafe in what way? What benefit do they provide
relative to the purported lack of safety?

Similarly in cloud computing, “safety” can refer to many different
types of risks. Some are specific to using a public cloud provider.
Others to outsourced hosting more broadly. Others to the dynamic IT
infrastructures with self-service that are part and parcel of cloud
computing (whether it’s out in a public cloud or within an
organization’s own physical perimeter). And, truth be told, many of
the risks talked about in the context of cloud computing are age-old IT
governance concerns—though perhaps traveling under a new name.

Let’s take a look at a few of the specific areas to think about and
examine how you might mitigate risk.

Approaching public cloud provider risk analysis solely from a classic
security perspective is usually the wrong way to think about it. It’s
expected that large providers have solid skills in physical security;
proper disposal of used storage assets, firewall configuration, and
prompt vulnerability mitigation should be givens. Due diligence
when selecting a public cloud provider is still needed! But bigger and
more complicated risks may lurk elsewhere.

For example, where is your data stored? Is it guaranteed to reside in a
specific country? Under what circumstances will the service provider
provide a third party access to your data—say, through a judicial
order? Are they guaranteed to notify you if your data is accessed
deliberately or otherwise?

123

COMPUTING NEXT

Risks like these are the bigger ones associated with a public cloud
provider and may help to guide you toward which applications you
keep in-house and which you run on a public cloud provider. The key
with this type of analysis is to balance the potential cost, the
possibility of a bad event happening, and the expected benefit.
Making such determinations isn't easy; low-probability events with
costly outcomes are notoriously difficult to properly account for in all
manner of fields. However, the goal, at a minimum, should be to
avoid making potentially costly decisions that are at least somewhat
likely to happen.

Another cloud provider risk falls under the term “portability.”
Portability covers a number of dimensions but the basic idea is that if
you write applications or store data on one provider, you want to be
able to move to another provider as easily as possible. Perhaps the
first provider failed, wasn't providing an agreed-to level of service, or
simply started to cost more than some alternative.

Barriers to portability are most evident in the case of public cloud
providers who offer programming interfaces or other provider-
specific hooks which increase the work and cost to move to another
provider. I touched on this earlier in the API discussion. However, the
same logic can apply to technology stacks within an internal
datacenter. Hybrid cloud computing management that spans both a
wide range of internal infrastructure as well as public clouds helps
provide a degree of portability. Cross-platform interoperability has
historically been best provided by open source and open standards
and we should expect this same dynamic to play out in cloud
computing.

Another area of potential risk comes about through self-service, one of
the defining features that lets a cloud computing architecture deliver
resources to users quickly. The basic issue is this: provisioning IT
resources to users has historically happened through well-defined
workflows within IT operations. The process might take a while—
weeks or months even—but it has at least the appearance of careful
control. (I say appearance because one result was often the
establishment of a “Shadow IT” which had few or no controls at all.)

124

COMPUTING NEXT

With the shift to self-service, the challenge is therefore to realize the
speed and low friction of this new operational model without simply
throwing out all the governance baked into the old one. One approach
is to deliver self-service under the umbrella of a rich policy
framework. This means authenticating users, deciding on the types of
resources they can request, and determining where those resources
can then be physically deployed. For example, development
workloads may only be able to run in some places while production
workloads are only able to run in others.

However, beyond a policy framework, it’s also important to maintain
the same application lifecycle management processes within a cloud
computing environment as it is with a more traditional IT
environment. Indeed, because clouds are designed to scale quickly, be
more responsive to changing business needs, and generally be more
dynamic, it’s more important than ever for control to be built in rather
than ad hoc. Automation is at the core of dynamic IT—but it has to be
automation that creates standardized builds and monitors those
standardized builds for changes. Otherwise, the result can be what
has come to be called “VM sprawl” — huge numbers of one-off,
unmanaged virtual machines that can send management costs
spinning out of control.

The benefits of cloud computing far outweigh its risks —risks that
have often been sensationalized based on one-off events. But that’s not
an excuse for ignoring risk. Rather, one must understand and mitigate
it.

125

COMPUTING NEXT

Cloud security: Excerpts from an interview with
Richard Morrell

Richard Morrell is Red Hat’s
Cloud Evangelist in Europe.
Richard has spent more than the
the last fifteen years working in
Open Source. He started out
working with Linuxcare and VA
Linux in San Francisco around
the same time that Red Hat was
incorporated. He joined Red Hat
in 2010. The following is summarized from a 2012 interview.

Website: http://cloudevangelist.org/
Twitter: @ EMEACloudGuy

The cloud is as safe as the vendor, the controls that are put in place,
and also by the thought and the governance that goes into the
development and the architecture of the systems that are deployed on
cloud.

If we can look at the trailblazers in cloud, who have started to move
those applications and services into the virtualized environment, into
the new world of elastic computing, we have a compelling story to
tell. But it needs people to start thinking about being courageous
enough to start building the internal controls and processes to be able
to think about the workloads they want to move to cloud to keep
them safe.

What we're doing in cloud security is really no different from the
security controls that we’ve used in the SOA [Service Oriented
Architecture] environments traditionally within data centers and with
on-premise data. What we need to think about is the cost in
ownership of how we actually get to cloud, and once we get there, the
management controls and the governance risk control piece that we as

126

COMPUTING NEXT

IT professionals are dear to as part and parcel of standard business-as-
usual activities.

The security standards in cloud have been dovetailed into a mishmash
of risk issues, with which people like the Cloud Security Alliance are
critically involved. We have been working very, very closely with the
CSA now for quite some time, and in past lives I've been pushing and
promoting the cloud security matrices. If none of you are already
aware of this, I suggest you Google the words “security matrix” and
“CSA,” and you will find that there are over 80 individuals working
out there, from the Basel, PCI-DSS, ISO, and the open-source
community, building levels of controls that you can push to your
applicable workloads. This applies to whatever vertical you happen to
be working in, whether it’s health, whether it’s finance. It enables you
to get a standing start in understanding what you need to be able to
say to your CIO or your CFO with regards to who needs to sign off
against what, and also the controls and matrices that you need to
push against the applicable standards you're building.

It’s really up to individuals who consume technologies like the latest
open source programming languages to ensure that when you go to
cloud that you work with your vendor to ensure that you have the
latest, greatest patches working there. And also have a complex risk
register so you understand, potentially, what that means from a data
leakage or a data privacy perspective.

We can’t lose focus on the fact that, at the end of the day, you need to
be able to be auditable. In the US and further afield, we have the SAS
70 certification, which is really no more than an accounting standard.
We hope it will be surpassed by the sort of standards that the Cloud
Security Alliance is pushing and promoting, and also the PCI-DSS and
Basel piece where companies are actually looking to make revenue
from applications hosted either on a public/private hybrid model or
directly on public cloud providers.

I regularly stand up at conferences and I don’t tend to conform to the
norm and the first question I ask the crowded room is, “Who wants to
go to jail first?” I'm met with a lot of white, ashen faces.

127

COMPUTING NEXT

When you're working with your chosen provider, don’t be afraid to
ask them for the levels of both security controls and also the physical
and mandatory access controls that they have built into their
architecture. They should be able to provide it. If a provider just
comes back to you saying oh we’re secure or here’s my SAS 70
certificate that’s not enough. You need to be able to push and promote
the fact that you're also talking to other cloud vendors that can do it
bigger and better. Please, can I have the right information?

You also need to be able to ensure that the data that you're moving to
cloud is secure. Think about the level of risk that your company is
willing to be exposed to. Also, is it possible that you can work with
your trusted vendors to be able to have a hybrid model where you can
tunnel databases from your data center to a cloud provider without
exposing that level of risk?

The other thing is this is fun. This is enabling us to change the
paradigm of computing. Red Hat is a trusted vendor. We have the
ability now to help you get to where you want to go. It’s like a level of
adolescence now and we're here to help you get to that next level.

128

COMPUTING NEXT
It’s not just about security

Cloud computing needs governance. Which is to say that cloud
computing needs processes, policies, and procedures. In a way, this is
no different from IT more broadly. But virtualization, dynamically
moving workloads, and an increased reliance on third parties for
many types of IT functions mean that well thought-out and
documented processes, policies, and procedures tend to be more
important in cloud computing than with a more static and manual
environment.

The traditional view of security as being largely about having a well-defended
perimeter is an increasingly obsolete concept.

Security procedures and technology are part of governance, but
governance is a broader concept.

Legal and regulatory procedures, transparency, service levels,
indemnification, notification, and portability are all part of this bigger
picture, especially as the discussion widens to include public cloud
infrastructure providers and software-as-a-service vendors. It’s all

129

COMPUTING NEXT

about mitigating risk associated with suppliers (whether supplying
software for on-premise IT or supplying infrastructure in a public
cloud).

Consistency is one of the most important ways to support well-
governed cloud architectures whether on-premise, public, or a hybrid
architecture.

Consistency refers to having a runtime environment (such as an
operating system or middleware) that is common across different
clouds, private and public, as well as virtualization platforms and
physical servers. This allows an application that uses those runtimes
—written in Linux, Java, PHP, or whatever—to thereby run in both
places. The bottom line is that the user of that application or its
developer should not generally care where the application is
deployed. (Of course, the IT operations people need to know where
workloads are running as well as specifying upfront where different
workloads are allowed to run.)

One of the ways that consistency breaks down is that public clouds
can encourage ad hoc development which doesn’t necessarily comply
with an organization’s standards for applications run on-premise. This
may be fine for prototyping or other work that is throwaway by
design or for applications only intended to ever run on a specific
provider. However, it’s far too easy for prototypes to evolve into
something more —as often happened in the case of early visual
programming languages—and the result is applications that either
have to be rewritten or that may have support, reliability, or scalability
issues down the road.

Consistency goes beyond just technical factors though. Consistency
between on-premise and public cloud environments also requires that
the full runtime —including the applications running on it—be
supported and certified by the same software developers and others
wherever it’s running, a commitment that is as much about business
relationships as technical ones.

130

COMPUTING NEXT

The intention here isn’t to harp on the potential downsides of using
public clouds. The benefits offered by public cloud infrastructures
operated by companies like Amazon and software-as-a-service offered
by someone like Salesforce.com are well documented. In the case of
infrastructure, they allow rapid experimentation and expansion. SaaS
applications can often be brought online more quickly than
conventional on-premise software and they thereby can start
delivering business value faster.

The reality is that cloud computing in some form will happen
throughout all organizations whether it’s the evaluation and adoption
of a new customer relationship management platform through a
formal IT process, the ad hoc use of public cloud infrastructure by
developers, or the “bursting” of an on-premise cloud to a public cloud
to gain temporary capacity. Especially given the importance of
properly securing data and minimizing lock-in to specific third-party
provider, it’s critical to bring cloud computing activity that involves
corporate data or production applications under a common
governance umbrella.

So better to acknowledge that reality and, to the degree possible, make
it an explicit part of overall IT governance. An IT organization might,
for example, freely allow personal devices to access corporate e-mail
but put in place mechanisms such as tokens, which add a layer of
security to that access. As one CIO told me, perhaps the most
important process is to involve users in formulating the policies rather
than creating an IT vs. everyone else dynamic.

Cloud computing isn't “risky” any more than IT, more broadly, is
risky. Rather, like all IT activities, cloud computing projects should be
undertaken in a way which both mitigates risk and considers those
projects in the context of IT as a whole. Cloud computing projects and
IT activities more generally must also take into account the ultimate
objective: to support the business in a way that balances costs with
benefits.

131

COMPUTING NEXT
Red Hat’s Chris Wells on hybrid cloud management

Excerpts from an interview with Chris Wells,
product marketing manager for CloudForms,
Red Hat’s open hybrid cloud management
product. Chris runs product marketing for
Red Hat’s cloud management products. Chris
came to Red Hat from Quest Software, where
he managed over fifty of their key enterprise
products.

Can you just give us a high level view of what CloudForms is and
what a hybrid cloud management product does generally?

When we take a look at Red Hat CloudForms, it’s really doing several
different things for you. The whole goal is we want to give customers
the ability to build out and manage their own private clouds and then
go into a hybrid cloud model to be able to leverage a public cloud
infrastructure. We also want the ability to go across heterogeneous
infrastructures. We really want to give customers the choice of where
they’re going to run things in the cloud, meaning that they want to be
able to pick whether it’s physical machines or different types of
hypervisors. And then also give them a choice of different types of
public cloud providers.

When we take a look at CloudFormes, it’s fundamentally about not just
being able to be able to run systems on different types of
infrastructure, but it’s also about being able to manage the
applications that will then run in that infrastructure and do all of the
traditional systems management tasks around that. Patching systems,
provisioning systems, configuring systems.

132

COMPUTING NEXT

BUILD & MANAGE MANAGE APPLICATION
HYBRID CLOUDS LIFECYCLES
DESIGN
HYBRID
CLOUD
)
PHYSICAL BUBLIC z -
CcLouD -
3 ¢
™

VIRTUAL GOVERNED
SELF-SERVICE

(8
" 4

CloudForms overview showing main functional elements.

DEpPLOY

I <user> i

So at Red Hat, we believe that if you want to get to your own private
or hybrid cloud environment, you want to offer an ability such as self-
service provisioning. So, fundamentally, you’ve got to be able to
manage across multiple different types of infrastructure, as well as
manage different types of applications that run in that cloud
infrastructure.

Then there’s a whole policy that you can put in front of it to decide
who can do it, what kind of access, what the system dependencies are
so, as an IT infrastructure team, you still have control of your
infrastructure.

I assume that this is where you see a difference with a private or
hybrid cloud that’s governed by IT and the shadow IT by credit card
you see with Amazon?

I've talked to quite a few customers. I'm talking to centralized IT
teams. They’re nervous about shadow IT that’s in other parts of their
business units and organization, because they know, at the end of the
day, that they’re going to be held accountable, the centralized IT

COMPUTING NEXT

teams, for the security of data, the availability of infrastructure, even if
it'’s being done by a shadow IT organization. They know it’s
eventually going to come back onto them. They’re trying to figure out
ways to give their internal customers that flexibility that a public
cloud provider would provide but have all those controls.

There are analogues to the whole consumerization of IT, whether
it’s iPhones or Android phones or tablets or what have you. The
best-of-breed IT organizations really don’t want to just say, “No,
you can’t use any of this stuff, even if it makes your jobs easier,
faster, more efficient.” But on the other hand, they really just can’t
say, “Hey, sure, put the corporate data on your laptop. No big deal.”

I think what’s changed is we’ve had some cultural changes in IT over
the last few years. Whereas I'd argue 10 years ago, centralized IT
teams were very rigid, very structured. You did it their way or the
highway. And what’s changed? You talked about the consumerization
of IT. You've had people walk in with their smartphones and say,
“Hey, I need to have this smartphone access our email.” And IT now
can’t just ignore that demand. On the infrastructure side, what’s
changing is that the public cloud providers, which have come online
over the last few years, have set a new bar that IT has to answer. I
have an option. I can take my corporate credit card and go get a
virtual machine on a public cloud provider very quickly and very
easily, and if my centralized IT team can’t give me that service, I'll go
someplace else.

So the point is, the IT teams have to react. And they’re looking for
ways to be able to do that that allows them to leverage existing
investments they already have in their organization, because they
can’t throw out existing infrastructure. But yeah, it does give them
that ability to be more agile and more flexible, more responsive to
what the business wants.

Self-service is really a pretty fundamental aspect of cloud
computing, whether we're talking public clouds or private clouds. A
lot of the time, we hear this expressed in the form of users having
access to a service catalog. What does that mean?

134

COMPUTING NEXT

The easiest way to think of a service catalog is it’s just a listing of all of
the applications or resources that you want to be able to give someone
access to. Ideally, you want to have this on-demand web page or
portal that someone can go to and say, “Hey, look, I need a database
instance or an application server instance or a web server,” or
whatever it happens to be. I think the easiest use case is probably
around developers. If I'm a developer, I'm going to be spinning up a
sandbox [an isolated environment to “play” in] for an application
server very quickly. I want to get access to it to get my job done. But it
may only live for a relatively short amount of time, because once I
finish that development or test whatever, I just want to throw it away.

Traditional IT process today, if I'm a developer, I've got to putin a
self-service ticket. Maybe I've got to send an email. It’s got to go to
someone. It might take them a couple of days to meet the request, get
the hardware, get the software. Most companies I talk to say that
could be a three, four week process before I have my sandbox.

How does this service catalog get built in a cloud management
product like Red Hat’s CloudForms?

The way we would do it inside of CloudForms is that what you're
going to start with, once you have all your hybrid infrastructure in
place, you're going to focus on is creating what we call the
Application Blueprint. The Application Blueprint is the outline of all
the software and configuration that you want to be able to provide to
someone.

You're also going to define all the policy that goes around it, like who
has access to it, what the application itself has access to, what kind of
infrastructure it is allowed to run on. Can it run on a public cloud
provider? Does it run in a test environment? A virtual environment?
Does it run production on a physical environment? You're going to
define all these requirements.

And then, finally, you're going to actually publish into the service
catalog. The easiest way to think of a service catalog is to just think of

135

COMPUTING NEXT

it as a web portal, a web page that’s going to have a list of all the
things that an end user is allowed to have access to.

It could look as simple as, “Here are all of our different flavors of a
base virtual machine. It has just an operating system in it.” You could
layer it on with middleware and application tools. It could have a
database, it could have a web server. It’s really whatever you want to
define.

I think a lot of people would think of that as a golden image, if you
will. To be able to click on that and get a golden image. That'’s
conceptually what it is. The way that we do it in CloudForm:s is a little
bit different than a pure golden image, but it’s the same kind of
concept.

How is it different, a golden image and CloudForms?

It’s different in that most people like images because when you've
built an image and you have all of the content and configuration in it,
it has two really big advantages. One advantage is you've got it all
defined in one file so you’ve got that gold master that you're going to
build everything from so it’s very repeatable. The other thing that’s
very nice about an image is that it’s very fast to deploy. It’s basically all
executable and ready to go, so when it comes time to deploy and
provision a new system you can do it very fast. The real downside to
an image is an image is like a big blob. It’s a big file, if you will. So if
you need to go in and make any changes to it, like make a small, one
percent change to update a particular software package for a security
concern or something, you essentially have to update the whole
image. You can't just manage that one little piece.

CloudForms uses a template. Think of it almost like a configuration
file that basically outlines all the different components that are going
to go into it, that always goes out and grabs the freshest software, if
you will, the software that’s the most up to date security wise,
package wise, whatever you've tested and certified. You kind of get
the best of both worlds. You're not having to manage really large files

136

COMPUTING NEXT

and images yet the speed to deploy is very fast. It’s a very automated
process that you can repeat again and again and again.

This is really the idea that you're bringing together the self-service
ease of Amazon and other public clouds with IT compliance and
governance, all that kind of good stuff.

Absolutely. I think that’s what the hybrid cloud is all about. The
hybrid cloud is all about being able to leverage all of the infrastructure
that’s appropriate for that job, whether it be your internal
infrastructure or external infrastructure, but having all the policy and
control around it.

137

COMPUTING NEXT

Investment and RO in the Cloud

Increased agility. Faster time-to-market. Increased business value.
Phrases like these pepper cloud computing marketing literature.
Cloud computing concepts are more focused on IT as a business
enabler than on simply making IT cost less. But that doesn’t mean
costs don’t matter. They always do.

The trick, then, is to develop an understanding of how the businesses
benefits might be quantified. The resulting analysis will mostly consist
of soft costs, which are often justifiably viewed with suspicion—
especially if they come from a vendor trying to sell you something.
Nonetheless, they’re a good starting point. After all, the alternative is
to assume that the benefit is worth nothing. And, as a business school
professor of mine was fond of saying “Zero is a very precise number.”

Some of the metrics that you might use for your analysis include:

Time to deploy a new service (application). One of the main features
of cloud delivery models is that users are given self-service access to
computing resources. On-demand provisioning can dramatically
decrease the time needed to kick off a new project or to ramp up work
on an existing one. At the same time, self-service takes place under a
managed, policy-based framework so the IT department can maintain
appropriate control over usage patterns. While a soft benefit, this
speed and agility can be quantified through a combination of
productivity measures.

Standard Operating Environments. Research from Gartner shows
that an average of 80 percent of mission-critical application service
downtime is directly caused by human error or process failure. A
significant portion can be attributed to change management and
configuration management, which the centralization of policy and
workflow controls in a cloud computing infrastructure can help
reduce. Gartner goes on to note that downtime can tarnish a
company’s image and reputation. While this can be hard to quantify,
downtime can also cause a company to miss out on orders or may
force overtime to make up for lost productivity.

138

COMPUTING NEXT

Admin to server ratio. One of the big efficiency differences between a
public cloud provider and traditional enterprise IT lies in how many
servers (or virtual machines) an administrator can manage. For
traditional enterprise IT, a few dozen servers per admin is a fairly
typical number. For a large cloud provider, a ratio of servers per
admin into the thousands is not unheard of. Much of the difference
can be attributed to the high level of standardization which large
cloud providers drive into their operations. While it won't typically be
possible for an enterprise to adopt such cookie cutter practices, a
private or hybrid cloud can nonetheless provide a means to develop
and deploy a more standardized catalog of services to users, thereby
reducing the amount of one-off work that admins need to perform to
keep images updated and patched.

If we broaden the discussion to explicitly include public cloud
services of various kinds, a number of interesting angles appear. The
most obvious is the trading off of capital expenditures, CAPEX, for
operating expenses, OPEX. You no longer have to buy servers—or at
least not as many of them —but you have to rent them on an ongoing
basis.

Is this a good tradeoff? Well, it depends. The initial hurdle which
many organizations face when doing this sort of analysis is that they
often don’t have a good handle on their internal IT cost. I'd argue that
one of the benefits of public clouds (even for organizations that don’t
use them) is that they encourage this sort of benchmarking. Which is a
good thing.

In general though, the results suggest that we can draw certain
generalizations about public cloud vs. on-premise IT costs.

Many large organizations run IT operations that are competitive with
public clouds—at least on the basis of cost. For example, the
aforementioned 2009 “Clearing the Air on Cloud Computing” study
by management consultants McKinsey found that “current cloud
computing services are generally not cost effective for larger
enterprises.” Various assumptions in this report were widely
criticized at the time. However, a wealth of anecdotal evidence in the

139

COMPUTING NEXT

time since suggests that McKinsey’s basic point mostly holds; large
data center operations running generally well-understood and
predictable workloads can be as cheap or cheaper than public clouds.

An increasingly common meme is “Rent the peak and own the base.”
In other words, use your own servers for baseline loads and use
public clouds to handle the spikes—or new applications whose usage
characteristics you don’t understand well yet. A poster child for this
approach is social gaming company Zynga.

That said, a few sizable companies have gone all-in on public cloud.
Internet movie and TV subscription service Netflix is perhaps the best
known example of a firm that’s made the strategic decision to move
just about everything to a public cloud (Amazon Web Services in their
case). The strongest argument for this approach is probably focus.
Companies can do lots of things in-house, but they're generally best
only doing those things for which they bring competitive
differentiation. Netflix has decided that running servers—as opposed
to the code and data on those servers—isn't a differentiator for them.
It doesn’t hurt that, in Netflix’ case, the number of subscribers
provides a more direct linkage between revenue and IT capacity
consumed than is the case with many firms.*

And this is ultimately one of the great benefits that public cloud
services can bring. Sure, if you're a smallish business, a public cloud
provider is probably going to offer you computing at a lower hourly
cost than you can achieve yourself. Or an online SaaS vendor will be
able to save you money relative to installing and operating your own
Microsoft Exchange server.

However, whether private or public or (as is increasingly the case)
hybrid, organizations would be well advised to not only focus on
quantifying OPEX and/or CAPEX reductions but also to consider how

45 In financial markets, companies are routinely willing to spend a bit more on
average to align their revenue sources and their payment obligations in an attempt to
reduce risk—not that doing so always works of course.

140

COMPUTING NEXT

the agile and flexible delivery of IT services via the cloud can help the
organization execute on its mission —whatever that may be.

141

COMPUTING NEXT

IT as business enabler

Historically, users viewed IT departments as being staffed by people
who ran the basic infrastructure “plumbing,” but were inflexible
when it came to doing anything new, and were generally far more of
an inhibitor to the business than an enabler. That take was at least
mildly unfair in most cases, but it was grounded in certain realities.

For most organizations, IT was primarily focused on a fairly standard
—if hardly standardized —set of tasks. Functions like enterprise
resource planning, financials, human resources, and e-mail all had to
work. But they weren't things that especially advantaged the
organization most of the time. Yes, it’s pretty important to have a
working accounting system but few businesses win because they have
a better accounting system than they guy down the street.

Today, we often see the same underlying issue presented in the
context of the amount of money that companies spend on innovation
versus keeping the lights on. The figures and the phrasing depend on
which analyst’s report you're reading but typical numbers are
something like: for every 30 cents spent on doing new things in
support of the business, 70 cents gets spent on maintenance and the
rest of the routine.

With the important caveat that there’s enormous inertia in existing
applications, systems, and so forth, I think the situation is changing.
Let me point to a number of data points.

First is how cloud computing is widely viewed as an investment to
help the business rather than primarily a way to just cut costs (as
virtualization primarily was at first).

Take, for example, the results of a survey that Michelle Bailey
presented at market research firm IDC'’s Directions 2011 conference. It
found that “response to the business is a significantly more important
driver for private cloud adoption than costs.” In fact, organizations
primarily interested in reducing costs were actually less interested in
adopting private clouds. Among the drivers cited by those looking to

142

COMPUTING NEXT

adopt private clouds were: to improve response to changes in
workload, to aid in disaster recovery, to improve availability, and to
speed deployment time.

Thinking about IT as an organization which can help drive revenue
rather than just cost money is also a common theme at CIO-oriented
events I attend.

At one 2012 event, the CIO of electronics distributor Avnet talked of
using “IT to accelerate profitable growth.” He went on to discuss
investing in IT for strategic advantage. He didn’t dismiss the
importance of efficiency. Anything but. However, he discussed
efficiency more in the context of being able to support a rapidly
changing global business and managing IT sustaining costs to allow
for investments in innovation than about cutting the bottom line.

Rob Baxter, the CIO of Shamrock Foods, discussed how the payback
for installing a high-definition video conferencing system was
“priceless” from a business process perspective. The financial payback
from travel savings wasn’t bad either: 13 months.

This too was a common theme. Make IT projects successful for the
business and the financial benefits will come. Another example came
from the CIO of a community college. The school went with a broad-
based client virtualization and public cloud e-mail approach to better
accommodate a wide range of “bring your own” student devices. But
they too saved money compared to their prior internally hosted
approach.

Another theme was a more proactive IT group. Bertrand Odinet, the
CIO of mining firm Freeport-McMoRan Copper & Gold, described IT
as having “to set a vision for the executive team to understand what
tech can do. What will differentiate us? Clarity of business
imperatives is critical.” It’s easy to see that, more than ever, CIOs
bridge the worlds of operating IT and supporting, even driving,
corporate strategy.

Mundane, largely undifferentiated IT functions are often best farmed
out to specialists. Payroll is the canonical historical example. It’s easy

143

COMPUTING NEXT

to underestimate the challenges of untangling legacy systems and
processes. And governance concerns are not just an excuse to stay on
a “business as usual” path. But the fundamental point that IT should
focus on where they can add distinct value is valid. Many companies,
both historically and today, think they have more unique IT needs
than they do. Off-the-shelf software or SaaS should always be at least
considered.

What the broader argument about outsourcing undifferentiated IT
misses, though, is that for every e-mail or customer relationship
management system that would be better moved offsite to a SaaS
vendor, there’s a new differentiated application or new capability that
IT can deliver. And these new applications and capabilities can
support or even create new business opportunities. The old functions
may be getting less differentiated but new ones taking their place are
arguably more central than ever to a company’s success.

144

COMPUTING NEXT

Best practices for the cloud

Ultimately, there is no single right way to build a cloud on-premise or
to procure cloud services from an external cloud provider. Something
that’s appropriate to build lightweight applications used only by
developers may not be appropriate for an application which interacts
with live customer credit card data. However, based on experiences
with helping customers build and otherwise consume clouds, the
following are some of my recommendations ton crafting a savvy
cloud strategy based on solid governance principles.

Software-as-a-Service applications, public cloud resources, and
mobile devices of many types are going to be used by people within
an organization whether officially sanctioned or otherwise.
Therefore, it makes sense for IT to recognize this reality and establish
appropriate policies that leverage the flexibility and acquisition ease
of cloud resources without compromising the security of data or
other aspects of IT governance. For example, IT might, after doing
due diligence, create a list of approved public cloud providers in the
same manner as many organizations have a list of other approved
vendors.

Recognize that selecting a public cloud provider or hosted
application requires the same sort of due diligence that should
accompany any outsourcing project to ensure that the selected
provider is a trusted destination for your applications and data.

Even if you have decided to use infrastructure or applications in the
cloud, it is critical that you always have a path to exporting or
maintaining a regular backup of your data in a usable form. The
organization’s informational governance policies have to apply to all
corporate data, wherever it resides. While these concerns are
typically greatest with Software-as-a-Service, understanding where
data resides and how it is protected is important in any situation in
which you lack direct visibility and control.

Wherever possible, favor cloud providers which use or can interface
to common sets of APIs. However, recognize that cloud computing is
a rapidly developing area that doesn’t have, nor is likely to develop
in the near future, a single set of standards. Use open, hybrid
management to enable operability among different clouds.

145

COMPUTING NEXT

Develop a strategy which allows applications and data, to the degree
possible, to be moved with the minimum of effort between public
cloud providers, from private clouds to public clouds, and from
public clouds to private clouds. While transparent movement of
resources is not always possible, especially in the case of proprietary
applications and platforms hosted by a single provider, the goal
should be to maximize mobility and only to give it up when the
benefits outweigh the considered risks.

When initially hosting applications on a public cloud, develop and
deploy them with an eye to maintaining a consistent, certified
environment across multiple private clouds and public clouds. This
will typically be done through a runtime, such as an operating
system or middleware, that is certified with your applications and
can be deployed across a heterogeneous and hybrid infrastructure.

While recognizing that individual applications have their own
unique circumstances, establish overall policies that define
acceptable cloud usage within the organization. These policies
should, among other factors, take into account organizational audit
requirements and any relevant regulations or industry best practices.
These policies should be flexible enough not to prohibit reasonable
uses which will happen whether sanctioned or under the radar.
Having consistent environments across on-premise and public
environments can eliminate much of the uncertainty associated with
using a unique, publicly-hosted service.

Different cloud platforms will be more suitable for some uses than
for others. It also makes sense to have some diversity of suppliers as
a risk mitigation technique. Nonetheless, you should make an effort
to control unwarranted proliferation of platforms, especially to the
degree that they are not fully interoperable, if only because of the
effort required to monitor all suppliers for continued adherence to
your established policies.

Investigate SaaS solutions primarily for those functions that are
relatively standardized, needed by a wide range of organizations,
and that are not core to your business (even if they’re important).
Customer Relationship Management and email are common
examples.

Many of the new governance concerns related to cloud computing
primarily relate to public clouds and how they interface with private
clouds. However, be aware that the pervasive virtualization and
automation which help define clouds also introduce new wrinkles

146

COMPUTING NEXT

for audit and other aspects of governance relative to an environment
in which applications run on a known physical server.

Enable developers to utilize public cloud resources as appropriate,
but with an eye to having consistent development tools and platform
environment on-premise and in the cloud. Cloud-based application
development and test strategies should take into account the
complete application lifecycle, including production deployment.

You can start small with a proof-of-concept or a pilot project.
However, implementing a cloud architecture is best approached as a
strategic project that leverages existing IT resources and that
provides maximum flexibility going forward.

147

COMPUTING NEXT

The Platform

As we've covered in various contexts, enabling new applications to be written
and deployed more quickly is no small part of cloud computing. However,
most of what we ve discussed so far relates to doing so at the infrastructure
layer whether on-premise or in a public cloud. The reality, though, is that
many application developers have no need or desire to work at this low level.
Hence, there’s a lot of developing interest in Platform-as-a-Service which
explicitly provides abstractions and tools aimed at making developers more
productive.

148

COMPUTING NEXT

Structure and Interpretation of ¢

> ind tdition 1

(! .

L] ‘ }
Oreiindiidit i

S u Ad

 The Practice of Programmin

149

COMPUTING NEXT
The rise of the hybrid platform

The Platform-as-a-Service moniker covers a lot of ground. At its
broadest, it’s almost a generic term for Web APIs. At its narrowest, it
means a set of programmatic interfaces into a specific hosted
application —essentially a way to extend Software-as-a-Service.
However, for our purposes here, think of Platform-as-a-Service as an
abstraction that lets developers focus on writing, running, and
managing applications without having to unduly concern themselves
with low-level plumbing such as provisioning and tuning operating
system images.

Such a PaaS is an application platform comprised of an operating
system, middleware and other software allowing applications to run
on the cloud with much of the management, security, scaling and
other stack related headaches abstracted away. The PaaS deals with
system administration details like setting up servers or virtual
machines, installing libraries or frameworks, configuring testing tools,
and so forth. Ideally, the workflow for on-boarding an application
should be as simple as pushing application code from a standard
development environment on a PC using a version control system like
Git, then going to an application’s Web address to see the changes live.

In a later chapter, I'll peel back the abstraction and get into how it
works. For now though, suffice it to say that it's a means to make

developers more productive by letting them focus on developing

rather than becoming mired in the requisite infrastructure.

Given that context, it's not surprising that most initial Platform-as-a-
Service offerings were hosted services. After all, a hosted service is
almost always going to serve as an easier and preferred on-ramp for
developers who don’t want to worry about operational details. That’s
certainly been our experience at Red Hat with our OpenShift Online
Platform-as-a-Service offering, which makes deploying an application
as easy as pushing it to a code repository. A PaaS like OpenShift
Online handles details like auto-scaling, self-service, and monitoring

150

COMPUTING NEXT

applications—leaving developers to focus on creating applications
with familiar tools, languages, and frameworks.

However, a hosted service is, as the name implies, hosted by someone
else. And, for many organizations, that loss of control isn't acceptable,
at least not for all of their applications. Using a Paa$S that makes use of
standard languages and development frameworks helps to a degree;
once developed in that manner, an application can be deployed in any
environment provisioned with appropriate operating system or
middleware runtimes.

But because such a transplanted application loses access to the
operational automation of a PaaS platform, a hosted service may still
not be seen as ideal. As a result, the best alternative for many
enterprises will be a hybrid PaaS approach, which allows
organizations to gain the advantages of a PaaS while operating it in
the manner of their choosing—whether hosted, on-premise, or a
combination of the two.

As we'll see, in Red Hat’s case, OpenShift Enterprise provides an on-
premise counterpart to a hosted service. This makes it easier for
system admins and enterprise developers to meet the needs of their
developers, even when some or all of that development has to take
place on infrastructure which the IT department directly controls.

151

COMPUTING NEXT

The Synthesized Cloud: Hybrid Service Models by
James Labocki

As a Technical Product Marketing Manager in
Red Hat’s Cloud Business Unit, James Labocki
enables Red Hat’s Solution Architects and Red
Hat Consulting teams to understand Red Hat's
technical cloud strategy. In doing so he defines
the strategy for Red Hat CloudForms, an open
hybrid cloud-management framework. James
brings a unique perspective based on his
experience as a customer, a consultant, and now
a vendor of open source solutions. Previously, James helped customers realize
the benefits of open source in their next generation architectures as Cloud
and Virtualization Architect within Red Hat’s Government Team. The
following is adapted from a November 2012 blog post.

Website: www.allthingsopen.com
Twitter: @jameslabocki

Often, when speaking with organizations about a cloud opportunity I
find myself asking questions to find out the appropriate service
model, such as Infrastructure-as-a-Service (IaaS) or Platform-as-a-
Service (PaaS) for the customer.

“Do you want to just bring your code?”

“Would you like to access the operating system and perform
optimizations?”

“How do you feel about kernel semaphores?”

OK, maybe not that last one, but you get the idea. The answers to
these questions often help me determine which one of the models,
and thereby solutions, to recommend for the situation.

152

http://www.allthingsopen.com
http://www.allthingsopen.com
https://twitter.com/jameslabocki
https://twitter.com/jameslabocki

COMPUTING NEXT

The Synthesized Cloud

Taking a step back, what is the purpose of having separate and
distinct cloud computing models? Why couldn’t the models be
combined to allow organizations to use elements of each based on
their needs?

One of the benefits of cloud computing is that it allows organizations
to standardize while increasing reuse of software components. Given
this, it should be a goal to provide organizations with the ability to
use not just a hybrid cloud, but a hybrid service model —one in which
elements of laaS can be combined with elements of a PaaS. By
realizing a synthesis of IaaS and PaaS service models, organizations
can leverage the benefits of cloud computing more widely and realize
its benefits even in what are often considered legacy, or traditional
applications. Cloud Efficiencies Everywhere is, after all, a goal of Red
Hat’s Open Hybrid Cloud. I'll refer to this combining of IaaS and PaaS
into a single service model as the synthesized cloud and I believe it is
critical to realizing the full potential of cloud computing.

Why not just use PaaS?

Most organizations I have met with are extremely interested in PaaS.
They find the increase in developer productivity PaaS can offer very
attractive and the idea of “moving the chalk line” up to have
developers bringing code instead of hardware descriptions as very
exciting. PaaS is great, no doubt about it, but while PaaS can accelerate
delivery for “Systems of Engagement,” it often does not account for
systems of record and other core business systems. There is evidence
that supports the idea that organizations are shifting from systems of
record to system of engagement, but this is not a shift that will
happen overnight and, in some cases, systems of record will be
maintained alongside or complemented by systems of engagement.

Beyond systems of record, there are technologies that exist at the
infrastructure layer that can be exposed to the platform layer that
might not yet be available in a PaaS (think data analytics and

computing grid platforms such as Hadoop, Condor, etc). In time,

153

COMPUTING NEXT

some of these technologies might be moved into the PaaS layer, but
we likely continue to see innovation happening at both the
infrastructure and platform services model layers. In short, Iaa$S finds
its fit in both building new applications that require specific
understanding of the underlying infrastructure (networks, storage,
etc) and as the foundation for hosting a PaaS. Consequently, the
infrastructure services layer will always be important in
organizations.

For these reasons, our service model must remain open and flexible
while simultaneously having a single way to describe and manage
both abstraction levels.

Use the Correct Mix

The ability to use both platform and infrastructure elements is critical
to maintaining flexibility and evolving to an optimized IT
infrastructure. Red Hat is well positioned to deliver the synthesis of
Infrastructure and Platform service models. This has as much to do
with the great engineering work and strategic decisions being made
by Red Hat engineers as it does the open source model’s propensity to
drive modular design.

Some points to consider:

OpenShift Enterprise, Red Hat’s PaaS, runs on Infrastructure
(specifically, Red Hat Enterprise Linux).

Thousands of other applications run on Red Hat Enterprise Linux
(RHEL).

Application Blueprints provide sustainable, reusable descriptions of
any software running on Red Hat Enterprise Linux.

Red Hat CloudForms can deploy Application Blueprints to a number
of underlying resource providers.

Because Application Blueprints can deploy any software running on
RHEL and OpenShift Enterprise is software running on RHEL, we can

154

COMPUTING NEXT

deploy a Platform as a Service alongside traditional applications
running on RHEL.

Design Time Run Time
Developer As,g':?:; Developer User

User Parameters

Configuration
Hardware Profiles 59”31
lemen 1aaS laaS
Element Element
Image Image Ime
PaaS Small a o
Element Medium Large
laaS laaS
Element Element
AppForm
Image Image Image
Pointer Pointer Pointer

Virtualization | Private Cloud Public Cloud
Application Blueprint

Figure 1 depicts the use of an Application Blueprint to deliver a
hybrid service model of IaaS and PaaS. At design time, a developer
and a system architect work together to design the Application
Blueprint. This involves using CloudForms to define and build all the
necessary images that will serve as the foundations for each element
in the AppForm (a running Application Blueprint). CloudForms
allows the system architect and developer to build all these images
with the push of a button and tracks all the images at each provider.
In this case, a single PaaS element and two IaaS elements were
described in the Application Blueprint.

The design process also allows the system architect and developer to
associate hardware profiles to each of the images, and specify how the
software that runs on the images should be configured upon launch.
Finally, user parameters can be accepted in the Application Blueprint,

155

COMPUTING NEXT

to allow for customization when the Application Blueprint is
launched by it’s intended end user. The result of designing an
Application Blueprint is a customizable reusable and portable
description of a complete application environment.

Once the Application Blueprint is designed and published to a
catalog, users or developers are able to launch the Application
Blueprint, the result of which is an AppForm at runtime. The running
AppForm can contain both a PaaS and a mix of IaaS elements and
CloudForms will orchestrate the configuration of the two service
models together upon launch according to the design of the
Application Blueprint.

An Example

Imagine an organization has a legacy human resources system of
record. It’s a client-server model* built on an Oracle relational
database. Over time, they’d like to morph this system into a system
that is more engaging for their employees. They’d also like to begin
providing some data analysis to select individuals in the human
resources department. In this case, replacing the system of record
with a completely new system of engagement is not an option. This
may be because of the cost associated with a rewrite or the fact that
there are many back end processes that tie into the Oracle database
that cannot be easily changed.

In this example, the Application Blueprint is designed to include an
OpenShift PaaS which delivers a scalable, managed application
platform (Tomcat in this case) and both an Oracle database and
Hadoop. Once the Application Blueprint is launched users or
developers can access this entire environment and begin working.
This goes beyond gaining increased developer efficiency at just the
platform layer—it drives many of the efficiencies of PaaS across the
infrastructure as well.

46 Client-server describes a specific application architecture in which part of the
application runs in a datacenter (the server) and part of the application runs on a
traditional PC (the client). For our purposes here, though, just think of it as a
traditional enterprise application that’s hard to use and hard to change.

156

COMPUTING NEXT

Design Time Run Time
System
Developer Architect Developer User

I
| b

User Parameters

Configuration
Hardware Profiles T:';g:‘s)
\ Oracle Hadoop
. RDBMS
Image
Tomcat Small IVI|'::|?J?71 I[nage
(via PaaS) arge
Oracle Hadoop
RDBMS -
AppForm
Image Image Image
Pointer Pointer Pointer

Virtualization | Private Cloud' Public Cloud
Application Blueprint

Further Benefits of a Hybrid Service Model

There are many other benefits to this synthesis of PaaS and IaaS
service models. One other I'd like to explore is its effect on system
testing. With a hybrid service model, not only do developers have
access to all the qualities of both PaaS and IaaS in a single description
that is portable, but the Application Lifecycle Environment framework
contained within CloudForms, along with its ability to automatically
provision both PaaS and IaaS, can be leveraged to lay the foundation
for a governed DevOps model.*
testing, accelerating delivery of applications, while allowing for

This provides greater efficiency in

4 DevOps refers to a melding of traditionally separate roles—the application
developer and the system operator. It’s arguably sort of a trendy term but it does
point to a general breaking down on the walls between traditionally rather isolated
functions.

157

COMPUTING NEXT

control over important aspects of both the Infrastructure and Platform

layers.
Developer
Commit AppForm
- \ 4
Request Omoss Git
New Test
FA’ le Environment Meaven le r (o Hadoop
| Jenkins < , RDBMS
< >
v
Image Image Ima.
ge
Policy Small Medium Large
Scheduling
Tomcat AppForm
> (via Paas) Oracle Hadoop | "PP
Deployment < , RDBMS
"SI < b
Test
PaaS Image Image Image
_ and Small Medium Large
Application laaS g
Blueprint 7
CloudForms Virtualization | Private Cloud. Public Cloud

Figure 3 illustrates how the hybrid service model allows for a
governed DevOps model to be implemented. Before the hybrid
service model, developers needed to request the required IaaS
elements in order to complete a system test. This process is often
manual and time consuming. With a hybrid service model in place,
upon commit of new code to the source control system, the
continuous integration systems contained within the PaaS layer can
request a new test environment be created that includes the required
IaaS elements for system testing. This greatly reduces the time
required to test, and in turn, accelerates application delivery.

158

COMPUTING NEXT
Streamlining application development with Paa$S

Alot of the attention around “cloud applications” focuses on
Software-as-a-Service, which is to say complete applications delivered
directly to the users of those applications. And SaaS is indeed an
important cloud story. Whether we're talking about consumers and
smaller businesses gaining access to applications they didn’t have the
resources or skills to run in-house in the past or whether we're talking
about largely undifferentiated apps like email, SaaS can do away with
the need for a lot of routine IT.

However, the infiltration of technology into more and more types of
businesses—even ones that we didn't historically think of as especially
dependent on information or computing, such as agriculture—has
also fueled a huge appetite for custom applications. In fact, arguably
the only thing staunching that appetite is the money and time it takes
to develop applications. And that’s what makes PaaS so interesting
given how it’s so focused on increasing developer productivity. Such
productivity has a direct relationship to how quickly businesses can
bring new services and products online—and how quickly they can
start making money for the organization.

Some of this productivity increase comes from faster access to
resources; no waiting for IT to order servers, provision them, and
provide access. But that’s really a benefit of cloud computing more
broadly —whether a public cloud or a properly planned private one.
The big benefit of Paa$S specifically is that it lets developers focus on
the things that matter for application development and ignore the
things that don’t. This means designing compelling user interfaces
and appropriate database architectures, not configuring firewall
settings or tuning operating system resource limits.

The benefits of PaaS aren't just limited to developers though. As an
industry, we're seeing a shift away from strictly segregated operations
and developer roles. The term “DevOps” was coined to capture this
idea that application development increasingly embeds operational
concepts such as availability and scaling. In part, this is the result of

159

COMPUTING NEXT

architectures which deal with these concepts at the application, rather
than the underlying infrastructure, layer.

PaaS is a great match for a DevOps model because the PaaS itself can
help provide auto-scaling, self-service, standard pre-configured
services, and other features which historically would have been
considered part of IT operations. Under a hosted model, these
capabilities are all provided directly to the developer and the
underlying plumbing —adding server resources as needed,
remediating infrastructure failures, monitoring for security issues—is
handled by the service provider. With an on-premise PaaS, on the
other hand, IT operations controls (and is responsible for) the
infrastructure but can choose to pass a degree of that control over to
the developers. PaaS can therefore be a win for admins as well as
developers by providing a framework and tools for delegating
responsibilities while retaining overall control of policy.

Many organizations see PaaS as an opportunity to standardize
development workflows—leading to increased consistency and
productivity. Standardization within a given organization can only
become more important as the number and scale of applications
increase and as more organizations move to more agile development
models and more rapid, incremental updates to production systems.

The tremendous excitement around PaaS can be seen both through the
growing adoption within the developer community, and the number
of vendors entering the space with both online and on-premise PaaS
solutions. Although initially used primarily by early adopters &
innovators—including individual developers, startups, and small
companies —PaaS is entering the mainstream.

What is enabling this mainstream adoption by larger enterprises and a
broader section of the market?

One change is that PaaS is becoming more multi-lingual. Red Hat has
conducted surveys at several events; the results consistently show that
most respondents intend to develop software for cloud environments
using a similar mix of languages to those they’re using today. PaaS

160

COMPUTING NEXT

platforms which limit developers to a specific language on a specific
hosting platform have often been criticized by developers because
they constrain this choice. It’s telling that a number of language- and
framework-specific PaaSes have shifted toward a more polyglot
(multiple languages/frameworks) approach.

Red Hat OpenShift, for example, has the concept of “cartridges,”
which are the mechanism through which platform services are
exposed. In the initial on-premise offering, there are cartridges for
Java, PHP, Ruby, Perl, and Python as well as, for data services,
MySQL and Postgres. It also has community-supported node.js and
MongoDB flavors.

Another important consideration is the support for different
operational models. An online service serves as a simple on-ramp for
a developer who just wants to try out a service. Certain new-style
Internet businesses will even be comfortable with using an online
service for all their production applications—especially if, as in the
case of OpenShift, their code can be moved elsewhere without making
changes.

However, many organizations still prefer or require that at least a
subset of their applications run in an environment over which they
have full control. They want the operational benefits of PaaS but they
want to be in charge of the infrastructure. They may also prefer to
expose fewer options to developers than is typically the case under a
DevOps model. Arguably, this more traditional “ITOps” philosophy
will morph into more functionally integrated organizational
structures over time. Nonetheless, such changes will happen
incrementally and, therefore, PaaS offerings that can support a variety
of operational philosophies have significant benefits.

161

COMPUTING NEXT
A PaaS architectural example: OpenShift

OpenShift Enterprise is a commercial product, offered through a
subscription like other Red Hat open source products, that lets IT
organizations set up and manage their own PaaS. As with all other
Red Hat subscription offerings, OpenShift Enterprise takes the open
source code that Red Hat donated to the OpenShift Origin project
(under the Apache 2.0 license) and makes it into a reliable and
supported product for enterprise use.

S

No Lock-In
Languages & Frameworks

Java Nodejs Ruby Python PHP Perl

OPE N S H I F T JavaEE Rails django Zend Spring + @
Platform Open Source Ecosystem

Community = Partners | Red Hat)
Dev JBS"(?dg'V Frameworks SQL NoSQL Messaging Languages + ;10
—
e N s | Enterprise-Class |
Jenkins Enterpri
T (Mavenfn | o Middleware
LA SeCWRY Powering Your Apps

Multitenancy JBoss EE6 Txns CDI Msq +

Secure Multitenant 0OS

Red Hat Enterprise Linux

Red Hat Storage

Architecturally, the only dependency for OpenShift Enterprise is Red
Hat Enterprise Linux (RHEL). OpenShift Enterprise can run on a bare
metal system running RHEL. It can run on virtual infrastructure
provided by Red Hat Enterprise Virtualization or another
virtualization platform. The RHEL infrastructure can be managed and
provisioned using tools such as Red Hat CloudForms or Red Hat
Network Satellite. But OpenShift Enterprise is a PaaS orchestration
layer that is independent of any specific tooling or infrastructure
(other than RHEL).

162

COMPUTING NEXT

OpenShift Enterprise runs in one instance of RHEL (the “broker”)*
which manages one or more other instances of RHEL (the “nodes”).
OpenShift Enterprise then provides the mechanisms for multiple
applications to run within those nodes securely and with predictable
performance, as well as providing monitoring and auto-scaling
capabilities for those applications.

Application multi-tenancy, whereby multiple applications (each
consisting of one or more “gears”) can co-exist within each node, is
provided through a variety of RHEL features and managed by the
OpenShift Enterprise broker. These RHEL features include:

e SELinux, an implementation of a mandatory access control (MAC)
mechanism in the Linux kernel, checks for allowed operations at a
level beyond what standard discretionary access controls (DAC) can
provide. It was initially created by the US National Security Agency
and can enforce rules on files and processes in a Linux system, and
on their actions, based on defined policy. SELinux provides a high
level of isolation between applications running within OpenShift
Enterprise.

e Control Groups (Cgroups) offer a powerful way to allocate
processor, memory, and I/O resources among applications. They
provide fine-grained control of resource utilization in terms of
memory consumption, IO (storage and networking) utilization and
process priority —enabling the establishment of policies that provide
quality-of-service guarantees.

e Kernel namespaces separate groups of processes so that they cannot
“see” resources in other groups. Thus, from the perspective of an
application running in OpenShift, it has access to a complete running
RHEL system even though, in reality, it may be one of many
applications running within a single instance of RHEL.

Collectively, these technologies implement an approach that is similar
in certain respects to what are sometimes called “containers,” but with
greater isolation and minimal resource overhead. The philosophy
behind OpenShift was informed by its genesis as an online service,

48 Multiple instances of the broker can be deployed as a high availability cluster for
redundancy purposes.

163

COMPUTING NEXT

now called OpenShift Online, in which high security and high
efficiency are both paramount.

Auto-scaling, which is built into the OpenShift Online service, is also
available in the on-premise OpenShift Enterprise. When you deploy
an application through OpenShift, you can deploy it with scaling
either enabled or disabled. If you deploy your application with scaling
disabled, what you deploy is what you’ll have, whether it’s in one
gear or several.

If you deploy with auto-scaling enabled, then the application can scale
up and consume additional gears based on the usage of that
application and its needs for more resources. For example, instead of,
say, putting a MySQL Database and JBoss EAP Enterprise Middleware
into one gear, you would put MySQL into a separate gear, put JBoss
EAP in its own gear, and then set up a software-based load balancer,
which such as HAProxy, as a third gear. HAProxy would then detect
the level of requests coming to the application. If it sees traffic
exceeding a certain threshold, it will make a request to the broker to
spin up an additional JBoss EAP gear and configure it using JBoss
clustering techniques.

In addition to a variety of programming languages and frameworks—
including the latest Java EE 6 technologies —OpenShift also supports
popular development tools. One such tool is Apache Maven, a
software project management tool. Maven can manage a project’s
build, reporting, and documentation from a central model. Another is
Jenkins, which is often used as a continuous integration system,
making it easier for developers to integrate changes to the project, and
making it easier for users to obtain a fresh build —thereby increasing
productivity. LDAP directory service and Kerberos network
authentication protocol plug-ins let IT integrate OpenShift PaaS into
their enterprise authentication systems so that when developers come
to OpenShift they can authenticate with their LDAP and/or Kerberos
credentials.

OpenShift Enterprise’s architectural approach has big benefits for
developers and their organizations. It’s built on a proven secure multi-

164

COMPUTING NEXT

tenant operating system, Red Hat Enterprise Linux, but provides
maximum flexibility in how that operating system is deployed and
managed. It provides support for tools and languages that are both
powerful and familiar. And it gives a great deal of control to
administrators while making the move from being a RHEL
administrator to a PaaS administrator as seamless as possible with
default policies and settings which satisfy many requirements right
out of the box.

165

COMPUTING NEXT

Multi-tenancy in PaaS with Matt Hicks

4

Matt Hicks is one of the founding members of the Red Hat OpenShift team.
He has spent over a decade in software engineering with a variety of roles in
development, operations, architecture, and management. His real expertise is
in bridging the gap between developing code and actually running it in
production.

Adapted from a June 2012 interview with Red
Hat Principal Engineer Matt Hicks who
discusses what’s needed to provide security
and predictable performance in a Platform-as-
a-Service environment in which traditional
infrastructure techniques to isolate
applications, such as using separate operating
system instances, aren’t always appropriate.

Website: http://mattoncloud.org/
Twitter: @matthicksj

Multi-tenancys; it’s a tough term because it’s fairly abstract. When we
talk about multi-tenancy; it’s good to frame it. My definition would be
being able to run multiple workloads on the same instance of an
operating system. That operating system might be a virtual instance, it
might be a bare-metal instance. Multi-tenancy means that when you
run these workloads, they’re segmented from each other, they're
secure, they can’t access each other’s data, they can’t access the other
processes, and they each have somewhat of a feeling that they own
the entire machine.

We know using the operating system to provide segmentation really
well. Virtual machines are an important layer that does this, a great
means of providing essentially separate operating systems on a single
physical server.

The challenge with VMs is, especially in the PaaS space is that our
density requirements, the amount of stuff that you have to run, is

166

COMPUTING NEXT

extremely high, and the cost pressure to get your costs low is very
intense as well. A virtual machine carries a lot of operational costs for
doing that segmentation. You have sysadmins that are putting up
tirewall rules and putting them in separate networks, and they have to
be patched and updated. If you run a workload per VM, it’s very
secure, it’s very well segmented, but it'll probably be very expensive
in a PaaS model.

When we look at multi-tenancy, one of the things that worries me
about multi-tenancy is the people that just run traditional, Unix-style
segmentation. They take a VM, they run a bunch of processes on it,
and then they basically pray that permissions and everything are set
right and there is security between them. That’s what we tend to call
discretionary access control; you'll see the acronym, DAC.

Discretionary access control requires that you're essentially perfect.
You have all the permissions right. You have all the users properly
segmented. The machine is always patched. There are no backdoors
for somebody to get from one app to the other.

I think that’s very risky. We see a lot of that in the market. That’s what
people are doing for multi-tenancy. I think that’s a security problem
just waiting to happen.

Luckily there’s a very industry-standard way of solving this. That’s
moving from discretionary access control to mandatory access control
with SELinux. The power of doing that is that it’s like moving from a
blacklist model, where you have to say all the things that aren’t
allowed. SELinux moves stuff to more of a whitelist model, where you
list the things that are allowed on those machines, and it brings with it
a tremendous amount of security in a multi-tenant space.

In PaaS, we know what applications are doing. It’s a very effective
thing for us to be able to list the actions that they should take and then
block everything else. I think, with SELinux, there’s a ton of security
and segmentation ability with normal multi-tenancy. You can get the
best of both worlds there.

167

COMPUTING NEXT

Organizations like the National Security Agency have been involved
in the development of SELinux, so some pretty high-security people
have had a big hand in this. It's becoming best practice across the
board. Even if you're using virtualization, you want your hypervisors
controlled by SELinux because it is that good at helping to avoid
exploits. Combining that with the power of being able to segment
Unix processes, it’s a great combination. You get the density benefits
of avoiding VM sprawl. You have a smaller list of VMs that you have
to carry that operational cost of updating and maintaining them on,
and you can carry a wide variety of workloads within those VMs and
get a tremendous amount of segmentation between them just with
SELinux. It’s not new; it’s really leveraging the capabilities that are
already in the Linux operating system.

In the Platform-as-a-Service space, we're really seeing multi-tenancy
as sort of an evolving standard in that space. The way it’s achieved is
very different, but the major players, from Google to Heroku to
VMware’s CloudFoundry, are all using process segmentation, to one
degree or another, to achieve the density that’s required in PaaS. I
think what we’ll see going forward is, when you're in the PaaS space,
the demands of being able to segment based on multi-tenancy are
going to be the standard. I think that the techniques right now are
different across the board. Some people fork the frameworks
themselves to take out the insecure things. Some people are just using
technologies like LXC with nothing else. Our view is we use basically
every tool in the toolkit plus SELinux to be able to have the most
secure option. I think that will still evolve a little bit, but I think it’s
pretty safe to say that multi-tenancy in this space is probably here to
stay.

In the Paa$S space users interact with components of the operating
system, but it’s pretty well accepted that you don’t have control of the
full machine. You might need to get access to ports, but you don't
have every port on the system. You might need to get access to HTTP
routing, but you don’t own the actual top-level Apache Web server
instance. I think that’s been pretty well established in the market. That
benefit of limiting the use case lets us make multi-tenancy much more

168

COMPUTING NEXT

powerful. If we didn’t have any limits, we’d have to give each user
their own virtual machine because they would expect to be able to
control everything on it.

Virtual machines have a great role in being able to provide
segmentation. But all of the traditional hosting techniques that were
used 20 years ago to segment stuff are still being used by us today;,
plus this newer generation of tooling, like Linux control groups and
SELinux and kernel namespaces. You don’t have full control of the
machine, like they would in a VM, but it helps us strike the balance a
little bit better and lets users have a lot of ability even though they’re
in this sandbox on the machine.

One of the things I love about PaaS is the demands of things like
density are really driving this resurgence in tools that have been
around, in some cases, for a couple of decades. I think it’s an exciting
space to see the combination of those tools with newer technologies
being brought together. It makes that spectrum a lot more powerful,
whether physical hardware is what you need for your use case, or
whether you can do it with purely virtual machines, or whether you
have the need to start packing density in controlled use cases and go
more down the containers and SELinux-type model. It’s great. [have
more fun with Linux these days than in a long time.

169

COMPUTING NEXT
Will the cloud change programming?

There are hundreds of programming languages —perhaps thousands
if experimental and academic variants are included. That said, the
number of widely used languages is much smaller, numbering
perhaps in the dozens, with fewer still broadly relevant to general-
purpose server operations and Web software.

In fact, what'’s so notable about the computer programming language
landscape over time isn’t so much its diversity and adaptability, but
rather its inertia. COBOL and Fortran, the longtime standards for
business and scientific programming respectively, remain in use —
albeit less widely so than at one time. Object-oriented programming,
which bundles data together with the associated functions that
operate on that data for more structured and maintainable code, came
into initial widespread use largely through extending an existing
language, C. (Although the practice was embedded in many other
languages over time.) C itself, originally designed as a language for
programming systems at a very low level, was put into use for all
sorts of application programming tasks for which it was arguably not
very well-suited.

Does this change with cloud computing or, to be more precise, with
an increased emphasis on browser-centric application access, big and
unstructured data processing, and the development of a huge mobile
ecosystem?

To some degree, it already has. Scripting languages, including
JavaScript but also Perl, Python, PHP, Ruby, and others are children of
the Web. Languages such as these, which lend themselves to writing
code quickly with less of the stringent correctness checking common
to traditional enterprise code-writing, have become the norm in many
Web environments.

But, so far, cloud computing hasn’t sparked much change beyond
what the Web already did. When Red Hat conducted a survey among
US VMworld (virtualization giant VMware’s user show) attendees in
2011, we asked about the primary language and framework for

170

COMPUTING NEXT

software development that respondents use today and that they plan
to use in the cloud. Java EE and Microsoft .NET led the results with
about 30 percent each with most of the other responses divided
among Web-oriented languages like Perl, Python, and PHP. Not really
a surprise given the enterprise-y and somewhat Windows-centric
orientation of VMworld, which isn’t exactly an open source
development hotspot. What struck me as more interesting was that
the “use today” and the “planning to use in the cloud” questions
tallied up to essentially identical results. At least this audience seems
to have a strong bias towards portably bringing their current
development tools into cloud-based environments.

Of these results, Al Gillen, program vice president for system software
at market researcher IDC, said that he “thought it very revealing that
yesterday’s frameworks were target for tomorrow’s apps.” He went on
to write that “tools will evolve and utilize new programming
frameworks, then use will evolve over time, not so revolutionary.”

Nor have the more radical approaches to dealing with large-scale
parallel operations on the server side taken off in a big way. We’ve
mostly seen a combination of incrementalism and the adoption of
specific tools and libraries, such as MapReduce, which target specific
important types of problems such as looking for patterns in large data
sets.

Hosted platform-as-a-service clouds introduce new possibilities to
broaden the Web programming landscape. However, to the degree
that an application programming interface (API) is limited to a single
provider, moving an application elsewhere will require at least some
porting. As a result, while we do see some providers offering APIs
that are specific to a hosted environment, there’s a strong argument
for the flexibility of application portability across on-premise and a
variety of hosted clouds.

The overall picture I see is one of change, but change that is mostly
evolutionary and that doesn’t involve a radical overnight shift away
from existing models.

171

COMPUTING NEXT

The developer landgrad - Another way to look at
DevOps by Coté

Michael Coté works on cloud strategy at Dell. He
wrote this 2011 blog post while an analyst at
RedMonk. Previous to RedMonk, he was a developer
at BMC Software at the Austin campus. His primary
work was developing the BMC Performance Manager
(née PATROLExpress), a web application for network
and Web site monitoring.

Website: http://drunkandretired.com
Twitter: @cote
Developers are Insourcing

Developers have been in-sourcing tasks they’d previously jettisoned
from their core functionality for a few years now and cloud
computing has brought one more land-grab: operations. Agile tricked
developers into caring about QA and testing, but also requirements
and product management. Now, DevOps is “tricking” developers to
care about operations. I put tricking in quotes because the developers
actually want this—the good ones at least. The benefits, or at least
goals, are clear: delivering software that users like with a more
frequent cadence. Those are the two aspects of software development
that most interest me now: frequent functionality and using rapid
feedback-loops to improve the user experience and overall usefulness
of the software.

A Brief, Hand-wavy History

At the very beginning, development teams did everything, or at the
very least were intimately involved: gathered requirements, writing
the code, testing the code, running the code. IT being expensive,
organizations sought to divide up those tasks into shared resources,
often under different management chains. Developers, of course, also
just wanted to write code: not “talk with customers about what they

172

http://www.bmc.com/
http://www.bmc.com/
http://www.google.com/search?hl=en&lr=&q=%22BMC+Performance+Manager%22&btnG=Search
http://www.google.com/search?hl=en&lr=&q=%22BMC+Performance+Manager%22&btnG=Search
http://www.bmc.com/products/proddocview/0,2832,19052_19429_2064403_9548,00.html
http://www.bmc.com/products/proddocview/0,2832,19052_19429_2064403_9548,00.html
http://drunk
http://drunk
http://drunk
http://drunk

COMPUTING NEXT

needed” (requirements and product management) or keep their
applications humming along nicely in production (operations).

Throw in mainframe MIPs accounting and high costs, and you can see
how separating out those rascally developers from expensive
mainframe toys makes business sense, at least in a spreadsheet. (Side-
note: with the metered pricing of cloud computing, thus far there’s no
reason to think that in 10 or so years, cloud computing resources will
be any less iron-gripped controlled than mainframe resources—-that is,
use and consumption of them will be slowed down in favor of
controlling costs. We'll see.)

And writing and running tests? What developer wants to do that?
Agile Starts to In-source: QA®

One of the emergent principles of Agile (perhaps an anti-pattern) is
that once the core team who wrote the software gives control of that
software to another group, overall quality tends to go down. This isn't
across the board, but you tend to see that. As an individual, if you
don’t somehow “own” the software, you won't give it the same love
and care that an “owner” will. This applies to QA and operations,
usually not so much to product management.

Agile is always trying to get developers to do more process. To own
more of the software lifecycle. It never says this outright, but cynical
developers will spot it right away: “wait, my job is to write code, not
write-up use cases and rank them. Let alone help take care of my
software in production, in the hands of dirty users. I mean: are you
going to pay me more?”

Somehow, Agile got developers to care about QA. It started small with
unit testing by promising, after a huge amount of initial work, to
make them more productive. Then functional tests came in, and now
if you've got yourself wired up correctly, you can test whole use cases
(or “stories” to use the term Agile hid the dread “use case” behind).

4 Quality Assurance, i.e. the organization or function that tests code.

173

COMPUTING NEXT

The bigger win was getting QA to be part of the development team. In
reality, good QA people are often the foremost experts on the product
—they’re the ones that spend hours, weeks poking and prodding it.
Getting their input, starting at the beginning, is a great way to
improve software. As with developers who are writing and running
tests, the QA person ceases to be “just QA”: they’re one of the many
owners of the software.

“I take the requirements from the customer to the developers.”

Seeking feedback and rich interaction with users hasn't always been a
strong-point of developers. They haven’t wanted to do product
management (in this context: figuring out what users/customers want
and then prioritizing which ones get into which release). “That’s
someone else’s job” is what you'd hear. As with QA, that role has
seeped a bit into developers hands as well. There’s simply not enough
time in the day to write code, test, and also do product management,
so it’s probably a good idea to have a whole person filling that role:
but, having that person be the sole conduit between developers and
users is not entirely helpful.

Thanks to the ability to run software as a service (SaaS) and mature
cloud offerings, a lot of the feedback teams need to do product
management can now be automated. If you're running your
application as a SaaS, you can see what every single user is doing all
the time. It’s like you have infinite one-way mirror usability tests
going on. Public web apps (Amazon, Facebook, etc.) have known this
for a long time, getting into advanced practices like A/B feature
testing: let’s release two different ways of implementing this feature to
sub-sets of users and see which one results in more book sales, and
then we’ll switch everyone over the better one. What you're driving at
is feeding aggregated user behavior data into the product
management process.

There’s a quote I use all the time from Alterity’s Brian Sweat that I use
all the time to summarize this point:

174

COMPUTING NEXT

I can actually look at [a feature] and say, ‘nobody uses feature X." It’s
not even being looked at. And it really helps us shape the future of the
app which, on a desktop product, we don’t have a lot of data like that.

There’s two concepts running around here that I speak a lot about:
frequent functionality and rapid feedback loops. Getting features in
small chunks in production sooner and then collecting a huge amount
of usage feedback from users. You're first delighting your users by
keeping your software up-to-date and more functional (a lesson
learned from the consumer space where new frequent functionality
and integrations with other services is key for long-term success) and
also giving yourself the chance to see what works best (or worst!) with
users. You can empirically improve the quality of your software. And
here, by “quality” I don’t mean “bug free” (which is a less helpful
definition in this context) but something more like “the ability to help
users do their job better, faster, and more profitably.”

Operations

Ask any developer if they’d like to take a pager and be woken up at
3am to reboot a server. You can guess what the answer is. A blank
stare that says “no” in a string of four-letter words. These guys are
coders, not pager monkeys.

And yet, developers are increasingly taking on that task, even if
perhaps not letting those bat-belt ops guys clip a pager onto the
developer’s t-shirt. The speed at which cloud computing technologies
and practices allow developers to get their core job done (spinning up
virtual labs, getting access to resources without having to wait 6
weeks for the DBA to create a new column in a table, etc.) has sold
developers on cloud computing. Throw in SaaS-ified parts of the
development tool-chain like GitHub, and you start to see why
developers like cloud-based technology so much: it speeds up their
work, gives them more power (they don’t have to ask IT permission
for a server, and then wait for it), and overall improves their ability to
produce good software.

As developers using cloud computing technologies get closer and
closer to production, you can see them starting to in-source even

175

COMPUTING NEXT

operations. At the bleeding edge, those using Platform-as-a-Services
(PaaS) are almost forced into doing this. Indeed, as its name implies,
much of DevOps is about bringing the operations function back to the
core team.

This doesn’t suggest that you get rid of the operations people —the
good ones at least. Rather, it means that, as with QA and product
management, their role moves from “keeping the lights green” to
“delivering good, productive experiences.” Operations becomes one
of the product owners, not just the “monkeys” who hook up wires to
servers and increase disk-space.

As some point, IT became a cost-center, a provider of “services” to the
business. That’s terrible for them. No one wants to be the manager of a
“shared resource.” Just go ask your janitorial staff or the guy who
keeps your office supply closet stocked how secure and well paid they
are. Before the current crop of IT Management technologies finally
ripened (Agile development, virtualization, open source, and now
cloud), perhaps, taking this “services” approach was cost effective.
But, now it means that IT has one way to show value to the rest of the
company: budget cuts. For IT, the promise is to become top-line
revenue: part of the way a company makes money, not hidden
somewhere in the expenses.

(Hey, I'm a big IT Management guy here, so realize that I'm being
tongue-in-check with this whole “monkey” thing. If you want equal
servings the other way: “Developers? Those are the guys who write
bugs, right?”)

Automation

All of this in-sourcing relies on automating parts of what'’s being
brought back to the core development team: automating testing with
the right testing frameworks and continuous integration tools,
automating understanding how users are interacting with your
software with cloud-driven feedback, and automating IT management
in production.

176

COMPUTING NEXT

Evaluating Offerings & Programs

To me, this understanding that automation is key is critical because it
means what I've been seeing here and there is driven by actual, new
technology: not just vapor-ware and Unicorn-meat. It means
something else great: if someone comes peddling DevOps or some
other wacky cloud-based way to improve your software delivery
process, you can ask them to show you the tools—" where’s the beef?”
and all that.

Avoiding Outsourcing

[1if you worked for AT&T in my day, it was a great bureaucracy. Who in the
hell was really thinking about the shareholder or anything else? And in a
bureaucracy, you think the work is done when it goes out of your in-basket
into somebody else’s in-basket. But, of course, it isn’t. It's not done until
AT&T delivers what it’s supposed to deliver. So you get big, fat, dumb,
unmotivated bureaucracies.

—Charles Munger

There’s a tremendous amount of “cultural change” (read: getting
employees to do things differently and like it) needed, but the hope is
that this trend of developers in-sourcing tasks means that cultural
change will be possible. It doesn’t happen often, but many parts of the
IT department (developers, QA, and a bit of ops) are actually looking
for new ways of doing things. The best part is that the promise —that
some folks have been realizing —is that IT can become part of the
business, not just a cut-to-the-bone cost center that keeps email up
and running and AntiVirus software updated.

Or, to put it all more simply: Conway’s Law.*

%0 An adage named after computer programmer Melvin Conway stating that
“organizations that design systems ... are constrained to produce designs which are
copies of the communication structures of these organizations.”

177

COMPUTING NEXT

The golden age of enterprise apps:Why Paa$S
matters

When the notice for a panel about enterprise PaaS I would be
appearing on went live a while ago, it attracted the attention of an
anonymous commenter. The tone of the comment was about what
you’d expect from an anon—which is to say of a tenor that could
result in rather unpleasant repercussions if delivered in person. But,
that aside, the substance of the remark is worth considering. To wit, is
it true that, as this individual wrote, “PaaS for IT is complete 100% BS.
All new applications are SaaS. Who is funding IT to build new
applications?”

It's not a completely risible opinion. After all, we don’t need to look far
to see great examples of Software-as-a-Service replacing packaged on-
premise applications which, in turn, had often replaced largely
bespoke software sometime in the past. Certainly, it’s unlikely any
business would write a payroll or benefits application for its own use
and few enough would sensibly tackle custom customer relationship
management given the existence of Salesforce.com, SugarCRM, and
others. Indeed, the idea that standardized functions can be largely
commoditized is central to many cloud computing concepts more
broadly. And, certainly, many organizations spend way too much time
and money reinventing the wheel because they see themselves as a
uniquely special little flower. (And they’re mostly not.)

But to extrapolate from such examples to the death of application
development is to take an unfounded leap.

For one thing, it misunderstands a platform such as Salesforce.com.
Yes, Salesforce is a SaaS used by countless enterprise sales forces and
marketing teams to track customer contacts, forecasts, and sales
campaigns. But that’s the view from the perspective of the end user.
From the perspective of independent software vendors and enterprise
developers, Salesforce is a platform that can be extended in many
ways. Just to give you an idea of scale, Dreamforce —Salesforce’s
annual developer conference—had over 90,000 attendees in 2012.

178

COMPUTING NEXT

That’s a huge conference. Industry analyst Judith Hurwitz calls
Force.com, the platform aspect of Salesforce, a “PaaS anchored to a
Saa$S environment.”

Thus, even using a SaaS doesn’t eliminate application development. In
fact, it may enable and accelerate more of it by reducing or
eliminating a lot of the undifferentiated heavy lifting and allowing
companies to focus on customizations specific to their industry,
products, or sales strategy.

Another analyst, Eric Knipp of Gartner, states the case for ongoing
application development even more strongly. He writes that “While I
don’t debate that ‘the business” will have more “packages’ to choose
from (loosely referring to packages as both traditional deployed
solutions and cloud-sourced SaaS), I also believe that enterprises will
be developing more applications themselves than ever before.” In fact,
he goes so far as to call today “a golden age of enterprise application
development.”

The reason is that PaaS makes development faster, easier, and —
ultimately —cheaper. But businesses don’t have a fixed appetite for
applications, which is to say business services that they can either sell
or leverage to otherwise increase revenues or reduce costs. We're
especially hearing a lot of talk around business analytics and “big
data” today. Likewise for mobile. But, really, information and
applications are increasingly central to more and more businesses,
even ones that one didn't historically think of as especially high-tech
or IT-heavy.

The companies that grew up on the Web have always had IT
technology at their core. Nearly as well known are examples from
companies that design and manufacture high technology components,
or financial services firms which depend on the latest and greatest
hardware and software to rapidly price and execute trades. These
types of businesses are cutting edge on the “3rd Platform,” as IDC
calls it—but that’s what we’ve come to expect in these industries.
What's most different today is that the cutting edge IT story doesn’t
begin and end with such companies. Rather, it’s nearly pervasive.

179

COMPUTING NEXT

Media today is digital media. The vast server farms at animation
studios such as Dreamworks are perhaps the most obvious example.
And their computing needs have only grown as animation has gone
3D. But essentially all content is digitized in various forms. For
example, sports clips are catalogued and indexed so that they can be
retrieved at a moment’s notice —whether for a highlights reel or a
premium mobile offering (a huge monetization opportunity in any
case).

How about laundry? Now, that’s low tech. Yet Mac-Gray Corporation
redefined laundry room management. It introduced LaundryView,
which allows students/residents to monitor activity in their specific
laundry rooms so they can see whether a machine is free or their
laundry is done. It’s been visited by 5 million people and the company
has added on-line payment and service dispatch systems.

Agriculture is an industry that suggests pastoral images of tractors
and rows of crops. Yet, seed producer Monsanto holds more than
15,000 patents for genetically-altered seeds and other inventions. (A
category of intellectual property protection which may be
controversial but a depth of IP which is no less striking for that.)

I could continue to offer examples both familiar and less so. However,
the basic point is straightforward: increasingly, information
technology isn’t something important to a few industries and uses but
is, rather, permeating just about everywhere. It’s about creating new
types of services, better connecting to customers, increasing efficiency,
delivering better market intelligence, and creating better consumer
experiences.

And that means businesses will need to leverage platforms that
streamline their development processes and make it possible to more
quickly and economically create the applications they need to be
competitive. Will they leverage pure SaaS too? (And, for that matter,
public cloud services such as those provided by the likes of Amazon
and Rackspace?) Sure. The focus should be on differentiating where
differentiating adds value, not spending time and resources on “me-
too” plumbing.

180

COMPUTING NEXT

But that’s what PaaS is best at. Making it easier for developers to focus
on applications, not infrastructure. Enterprise application
development is a long way from dead. But maybe the old way of
doing it is.

181

COMPUTING NEXT
Cloud as the death of middleware? by Mark Little

Dr. Mark Little serves as the senior director of
middleware engineering at Red Hat. Prior to taking
over this role in 2008, Mark served as the SOA
technical development manager and director of
standards. Additionally, Mark was a distinguished
engineer and chief architect and co-founder at Arjuna
Technologies, a spin-off from HP. He has worked in
the area of reliable distributed systems since the
mid-80s with a PhD in fault-tolerant distributed systems, replication, and

transactions.

Originally published February 13, 2010.
Website: http://markclittle.blogspot.com/
Twitter: @nmcl

Over the last few months I've been hearing and reading people
suggesting that the Cloud ([fill in your own definition]) is either the
death of middleware, or the death of “traditional” middleware. What
this tells me is that those individuals don’t understand the concepts
behind middleware (“traditional” or not). In some ways that’s not too
hard to understand given the relatively loose way in which we use the
term ‘middleware’. Often within the industry middleware is
something we all understand when we're talking about it, but it’s not
something that we tend to be able to identify clearly: what one person
considers application may be another’s middleware component. In
my world, middleware is basically anything that exists above the
operating system and below the application (I think the fact that these
days we tend to ignore the old ISO 7 Layer stack® is a real shame
because that can only help such a definition.)

STA family of information exchange standards developed starting in the late 1970s.
Most of the actual protocols ended up little used, although the stack model has been
widely referenced, primarily in computer networking discussions.

182

COMPUTING NEXT

But anyway, middleware has existed in one form or another for
decades. There are obvious examples of “it” including DCE, CORBA,
JEE and .NET, but then some other not so obvious ones such as the
Web: yes, the WWW is a middleware system, including most of the
usual suspects such as naming, addressing, security, message passing
etc. And yes, over the past few years I've heard people suggest that
the Web is also the death of middleware. For the same reasons that
Cloud isn’t its death knell, neither was the Web: middleware is
ubiquitous and all but the most basic applications need “it”, where
“it” can be a complete middleware infrastructure such as JEE or just
some sub-components, such as security or transactions. Now this
doesn’t mean that what constitutes middleware for the Cloud is
exactly what we’ve all been using over the past few years. That would
be as crazy a suggestion as assuming CORBA was the ultimate
evolution of middleware or that Web Services architecture would
replace JEE or .NET (something which some people once believed).
Middleware today is an evolution of middleware from the 1960s and
I'm sure it will continue to evolve as the areas to which we apply it
change and evolve. I think it is also inevitable that Cloud will evolve,
as we decide precisely what it is that we want it to do (as well as what
“it” is) based upon both positive and negative experiences of what’s
out there currently. (That's why we have the Web today, after all.)

Implementations such as Google App Engine are interesting toys at
the moment, offering the ability to deploy relatively simple
applications that may be based on cut-down APIs with which people
are familiar in a non-Cloud environment. But I'm fairly sure that if
you consider what constitutes middleware for the vast majority of
applications, the offerings today are inadequate. Now maybe the aim
is for people who require services such as security, transactions, etc. to
reimplement them in such a way that they can be deployed on-
demand to the types of Cloud infrastructures around today. If that is
the case then it does seem to solve the problem (bare minimum
capabilities available initially) but I take issue with that approach too:
as an industry we simply cannot afford to revisit the (almost) NIH>

52 Not Invented Here.

183

COMPUTING NEXT

syndromes that have scarred the evolution of middleware and
software engineering in general over the past four decades. For
instance, when Java came on the scene there was a rush to
reimplement security, messaging, transactions etc. in this new, cool
language. The industry and its users spent many years revisiting
concepts, capabilities, services etc. that existed elsewhere and often
had done so reliably and efficiently for decades, just so we could add
the “Java” badge to them. OK, some things really did need
reimplementing and rethinking (recall what I said about evolution),
but certainly not as much as was reworked. This is just one example
though: if you look back at DCE, CORBA, COM/DCOM,, .NET etc.
you’ll see it has happened before in a very Battlestar Galactica-like
situation.

Therefore, if we have to reimplement all of the core capabilities that
have been developed over the years (even just this century) then we
are missing the point and it really will take us another decade to get to
where we need to be. However, don’t read into this that I believe that
current middleware solutions are perfect today either for Cloud
applications or non-Cloud applications. We’ve made mistakes. But
we’ve also gotten more things right than wrong. Plus if you look at
any enterprise middleware stack, whether from the 21st or 20th
century, you'll see many core capabilities or services are common
throughout. Cloud does not change that. In my book it’s about
building on what we’ve done so far, making it “Cloud

aware” (whatever that turns out to mean), and leveraging existing
infrastructural investments both in terms of hardware and software
(and maybe even peopleware).

Of course there’ll be new things that we’ll need to add to the
infrastructure for supporting Cloud applications, just as JEE doesn't
match CORBA exactly, or CORBA doesn’t match DCE, etc. There may
be new frameworks and languages involved too. But this new Cloud
wave (hmmm, mixing metaphors there I think) needs to build on
what we’ve learned and developed rather than being an excuse to
reimplement or remake the software world in “our” own image. That
would be far too costly in time and effort, and I have yet to be

184

COMPUTING NEXT

convinced that it would result in anything substantially better than
the alternative approach. If I were to try to sum up what I'm saying
here it would be: Evolution Rather Than Revolution!

185

COMPUTING NEXT

The Path
Ahead

Much of this book has focused on cloud computing in the here and now with
a certain big company user and big company computer infrastructure slant.

Think of cloud computing, in this sense, as being about trends in how
complexes of computers are architected, how applications are written and
loaded onto those systems and made to do useful work, how servers
communicate with each other and with the outside world, and how
administrators manage and provide access. This trend also encompasses all
the infrastructure and “plumbing” that makes it possible to effectively
coordinate data centers full of systems working as a unified compute resource
as opposed to islands of specialized capacity.

186

COMPUTING NEXT

187

COMPUTING NEXT
Devices, data, and developers

Cloud computing, in the sense I've used it throughout this book,
embodies all the big changes in back-end computation. Many of these
are in some way the product of Moore’s Law, Intel co-founder Gordon
Moore’s 1965 observation that the number of transistors it’s
economically possible to build into an integrated circuit doubles
approximately every two years. This exponential increase in the
density of the switches at the heart of all computer logic has led to
corresponding increases in computational power—even if the specific
ways that transistors get turned into performance have shifted over
time.

Moore’s Law has also had indirect consequences. Riding Moore’s Law
requires huge investments in both design and manufacturing. Intel’s
next-generation Fab 42 manufacturing facility in Arizona is expected
to cost more than $5 billion to build and equip. Although not always
directly related to Moore’s Law, other areas of the computing
“stack” — especially in hardware such as disk drives—require
similarly outsized investments. The result has been an industry
oriented around horizontal specialties such as chips, servers, disk
drives, storage arrays, operating systems, and databases rather than,
as was once the case, integrated systems designed and built by a
single vendor.

This industry structure implies standardization with a relatively
modest menu of mainstream choices within each level of the stack:
x86 and perhaps ARM for server processors, Linux and Windows for
operating systems, Ethernet and InfiniBand for networking, and so
forth. This standardization, in concert with other technology trends
such as virtualization, makes it possible to create large and highly
automated pools of computing which can scale up and down with
traffic, can be re-provisioned for new purposes rapidly, can route
around failures of many types, and can provide streamlined self-
service access for users. Open source has been a further important
catalyst. Without open source, it’s difficult to imagine that

188

COMPUTING NEXT

infrastructures on the scale of those at Google and Amazon would be
possible.

In this final section, I widen my beam and consider some other
intersecting and supporting trends, trends that indeed are often
conflated with cloud computing

Mobility —the device if you would —is, in a sense, the flip side of the
cloud. If cloud computing is the data center of the future, mobility is
the client. Perhaps the most obvious shift here is away from “fat
client” PC dominance and towards simpler client devices like tablets
and smartphones connecting through wireless networks using Web
browsers and lightweight app store applications. This sea change is
increasingly changing how organizations think about providing their
employees with computers, a shift that often goes by the “Bring Your
Own Device” phrase.

However, there’s much more to the broad mobility trend than just
tablets and smartphones. The “Internet of Things,” a term attributed
to RFID pioneer Kevin Ashton, posits a world of ubiquitous sensors
that can be used to make large systems, such as the electric grid or a
city’s traffic patterns, “smarter.” Which is to say, able to make
adjustments for efficiency or other reasons in response to changes in
the environment. While this concept has long had a certain just-over-
the-horizon futurist aspect, more and more devices are getting
plugged into the Internet, even if the changes are sufficiently gradual
that the effects aren’t immediately obvious.

Mobility is also behind many of the changes in how applications are
being developed —although, especially within enterprises, there’s a
huge inertia to both existing software and its associated development
and maintenance processes. That said, the consumer Web has created
pervasive new expectations for software ease-of-use and interactivity
just as public cloud services such as Amazon Web Services have
created expectations of how much computing should cost. The
Consumerization of Everything means smaller and more modular
applications which can be more quickly developed, greater reliance
on standard hosted software, and a gradual shift towards languages

189

COMPUTING NEXT

and frameworks supporting this type of application use and
development. It’s also leading to greater integration between
development and IT operations, a change embodied in the DevOps
term.

Another trend is big data. It’s intimately related to cloud computing
and mobility. Endpoint devices like smartphones and sensors create
massive amounts of data, and large compute farms bring the
processing power needed to make that data useful.

Gaining practical insights from the Internet’s data flood is still in its
infancy. Although some analysis tools such as MapReduce are well-
established, even access to extremely large data sets is no guarantee
that the results of the analysis will actually be useful. Even when the
objective can be precisely defined in advance—say, to improve movie
recommendations —the best results often come from incrementally
iterating and combining a variety of different approaches.

Big data is also leading to architectural changes in the way data is
stored. NoSQL, a term which refers to a variety of caching and
database technologies which complement (but don’t typically replace)
traditional relational database technologies, is a hot topic because it
suggests approaches to dealing with very high data volumes.
Essentially, NoSQL technologies relax one or more constraints in
exchange for greater throughput or other advantage. For example,
when you read data, what you get back may not be the latest thing
that was written. NoSQL is interesting because so much of big data is
about reading and approximations—not absolute transactional
integrity, as with a stock purchase or sale transaction.

All this data is also physically stored differently. Just as high-value
transactions are processed so as to minimize failures or mistakes, so
too is its associated data stored on arrays of disks using high-end
parts and connected using specialized networks. But these come at a
high cost and, anyway, they're not really designed to scale out to very
large-scale distributed computing architectures. Thus, big data is
increasingly about scale-out software-based storage that spreads out
along with the servers processing the data. We are effectively circling

190

COMPUTING NEXT

back to a past when disks were all directly attached to computer
systems—rather than sitting in centralized storage appliances. (Of
course, the scale of both computing and storage is far, far greater than
in those past times.)

And, last but by no means least, there is the developer. If we look at
some aspects of software development, not much has changed with
cloud computing; notably, the mix of programming languages seems
relatively stable. However, in other respects, there’s a whole lotta
shakin” goin’ on.

Platform-as-a-Service, as we’ve seen, decreases the friction associated
with writing applications by introducing an abstraction that’s more
attuned to the needs of developers. In turn, this is leading to new
operational models in which developers are first-class citizens and
responsible for more operational aspects of the code they create.

But perhaps the biggest change is not in the tools but in what those
tools can consume—the application programming interfaces that have
become part and parcel of just about every data source, social
network, and content repository on the Internet, whether public or
private. This is leading to a situation where modular programs and
data sets can interact in sometimes unexpected ways as, in James
Urquhart’s phrase “complex adaptive systems:” systems made
possible by large-scale computing, data, and the ability to access from
(mostly) anywhere and anywhen.

191

COMPUTING NEXT
Into a post-PC world

In August of 2012, market researcher IDC lowered its PC outlook
below an already anemic forecast:>®

The worldwide PC market is now expected to grow just 0.9% in 2012,
as mid-year shipments slow. According to the International Data
Corporation (IDC) Worldwide Quarterly PC Tracker, 367 million PCs
will ship into the market this year, up just a fraction of a percent from
2011 and marking the second consecutive year of growth below 2%.

Meanwhile, Apple iPad sales continued to skyrocket (especially the
then-relatively new iPad Mini). As of this writing, Android tablets
remain more of a mixed bag when it comes to gaining buyers, but
they’ll gain traction over time as well.>*

Those numbers would seem to lay out the case for a post-PC world
rather starkly. Especially when you consider that they don’t even
consider phones which, in many emerging markets, are the
“computer” of choice. Indeed, in 2011, IDC explicitly attributed some
of the soft demand to new types of devices. “Consumers are
recognizing the value of owning and using multiple intelligent
devices and because they already own PCs, they’re now adding smart
phones, media tablets, and eReaders to their device collections,” said
Bob O’Donnell, an IDC vice president. “And this has shifted the
technology share of wallet onto other connected devices.”

However, if you're, say, the major music labels, that sort of growth
would be considered amazingly good. Album sales continued their
free fall in 2010, falling another 13 percent in what had become a
rather predictable year-end accounting. (Album sales actually gained
a bit over 1 percent in 2011, thanks to digital albums, and one
particular blockbuster —but that was the best news since 2004.) Or you

5 http://www.idc.com/getdoc.jsp?containerld=prUS23660312
5% As of this writing, Amazon'’s Kindle Fire tablet, which runs a variant of Google’s

Android operating system, is the most widely sold non-Apple tablet. And the basic
pattern of these numbers has continued.

192

http://www.idc.com/
http://www.idc.com/
http://www.idc.com/tracker/showproductinfo.jsp?prod_id=141
http://www.idc.com/tracker/showproductinfo.jsp?prod_id=141

COMPUTING NEXT

could be Eastman Kodak, whose core business, film sales, declined
something like 98 percent in the last decade.

Against that backdrop, it’s hard to call a product class flat to (barely)
positive growth passé, at least compared to things that are well on
their way to becoming niches even in the near term.

There’s a reason for this. Start creating presentations, working with
big spreadsheets, or otherwise engaging in many types of content
creation and you quickly leave a tablet’s comfort zone. These tasks
aren’t impossible but they are usually a lot easier and more
straightforward on a notebook.

In short, the PC is hardly dying even if its growth slows and it stops
being the default choice of client device for as many different things.

That said, it’s both fair and meaningful to use the “post-PC”
shorthand. (IDC now favors the “PC Plus” term, which seems at least
equally reasonable.) By way of (doubtless imperfect) analogy, there
was once an “Age of Rail” when that mode of transportation was very
much at the center of the transportation and economic world. We still
have railroads but it would be hard to criticize someone who,
sometime in the 1950s, opined that we were now in a “post-rail”
world, at least as far as long-distance passenger service was
concerned.

For one thing, even beyond sales numbers, I see a huge amount of
evidence that tablets are changing all manner of long-held ways of
accessing and consuming information and media. At a 2011 Campus
Technology event in Boston, iPads were perhaps the biggest single
topic of conversation. One anecdote that particularly struck me was
the observation that, after getting accustomed to tablets for about a
year, students wanted to move away from traditional textbooks en
masse.

Furthermore, tablets aside, PC-centricity is very much a developed
markets view. Move beyond the U.S., Western Europe, and Japan, and
much of the rest of the world is centered on phones—both smart and
otherwise.

193

COMPUTING NEXT

The shift to hosted services from Facebook to Google to iCloud is a big
part of this change. The PC as the home’s digital hub never really
happened in the purest sense envisioned by the likes of Intel’s one-
time Viiv “digital home” initiative. However, the PC was nonetheless
mostly the place where you stored your music and downloaded your
software. That hub is rapidly moving out into the network and local
devices can increasingly be thought of as “disposable.”

Finally, these changes are noteworthy because they have major
implications for the vendor landscape. The PC era evolved to
something of a monoculture, the stability of which was maintained in
large part by an application ecosystem which placed a heavy
premium on having a universal (or at least near-universal) processor
and operating system platform. That’s no longer nearly so much the
case in a post-PC world.

194

COMPUTING NEXT
Bringing your own devices

The shift away from from the PC as the anchor of the client universe
has been largely a consumer-led phenomenon. But the implications
are much broader. In business, the new generations of mobile devices
—whether phones, tablet, or employee-purchased PCs—are being
used with corporate IT systems. The shorthand for this trend is “bring
your own device,” BYOD for short.

The basic concept has been around for quite some time. But it’s
usually been couched in the context of a program delivered through
an IT department that leveraged specific types of technology to keep
the business applications and data separate from the personal
applications and data on a PC. It’s probably telling that, in this guise,
BYOD was mostly touted by companies, such as Citrix, that made
products designed to deliver business applications to employee PCs
and then securely manage them.

For a variety of reasons, though, PCs—especially in larger businesses
—continued to be handled pretty much the same way they always
had been. IT usually offered employees a limited choice of company-
provided PCs and handled the installation and maintenance of
software on those PCs. More and more of those PCs became laptops
over time. And the tools to manage those systems improved
incrementally. But, in general, the typical approach to corporate PCs
in, say, 2010 wasn't all that different from the standard practice in
2000.

But that’s changing. For a data point, consider a 2012 report from
Forrester Research’s Frank Gillet®® which found that about 74 percent
of the information workers in a survey used two or more devices for
work—and 52 percent used three or more. Furthermore, the mix of
devices used for work was different than what IT provides. About 25

% http://blogs.forrester.com/frank_gillett/12-02-22-
employees_use_multiple_gadgets_for_work_and_choose_much_of_the_tech_themsel
ves

195

COMPUTING NEXT

percent were mobile devices, not PCs, and 33 percent used operating
systems from someone other than Microsoft.

The vast majority of these gadgets aren’t BYOD in the sense of a
formal IT program that provides a stipend for employees to purchase
specific types of devices. Gillett also noted that: “If you only ask the IT
staff, the answer will be that most use just a PC, some use a
smartphone, and a few use a tablet.” It's something of an irony that
BYOD in its original tops-down, vendor- and IT-driven sense has
largely fallen flat even while grassroots BYOD is going gangbusters.

Another 2012 report by market researcher IDC that looked at BYOD
trends in Australia and New Zealand suggests that more formal
BYOD programs may become more common. “Widely publicized and
high-profile BYOD case studies are further adding to the peer
pressure. One in every two organizations are intending to deploy
official BYOD policies, be it pilots, or partial- to organizational-wide
rollouts, in the next 18 months,” wrote analyst Amy Cheah.

What's perhaps the more interesting tidbit in this report though is that
it offers something of a counterpoint to the assumption that BYOD is
something that everyone outside of IT strongly wants and prefers.
Something that young workers demand of their employers. Cheah
writes that “IDC’s Next Generation Workspace Ecosystem research
has found that only two out of ten employees want to use their own
device for work and for personal use, which means corporate devices
are still desired by the majority.”

Why the apparent disconnect between the apparent pervasiveness of
employee-purchased devices in the workplace and the continued
desire for IT-supplied hardware? How does one reconcile the
enthusiasm for BYOD in some circles with the distaste in others?

First, it’s a given that different people have different preferences.
Employees span a wide range of personal preferences, salary levels,
job descriptions, and technical competencies. That some prefer to just
be given the tools they need to do their job and have them fixed or
replaced at company expense if they stop working is hardly

196

COMPUTING NEXT

surprising. Company policies also differ. Some IT departments may
indeed see BYOD as a means to cut out an existing cost, others as a
way to give the employees who want it more flexibility.

However, I also suspect that the way we use the BYOD term today
blurs an important distinction. Whatever the future may bring, in the
here and now there are important differences between smartphones
and tablets on the one hand, and PCs on the other.

As far as smartphones are concerned, any debate over whether BYOD
will or should happen is long past. People mostly buy their own
phones and generally use the same one for both personal and
company use. One need only look at the financial statements of
BlackBerry-maker RIM to chart the decline of dedicated enterprise-
optimized smartphones. The only real question is to what degree a
company subsidizes monthly carrier charges for an employee-owned
phone.

Tablets shouldn’t cause much debate either. In their current form,
tablets are primarily an adjunct to a PC that can make reading, Web
surfing, game playing, and other types of media consumption more
natural and comfortable. Some like using them to take notes. Time
will tell whether tablets and PCs re-converge in the coming years, but
in their current form, tablets can’t take the place of a PC for general
business use. (Unless they're configured for some dedicated task.)
Thus, though many employees do indeed want to connect their tablets
to corporate e-mail and networks, they’re doing so as additional
devices—not substitutes for something currently supplied by an
employer.

Smartphones and tablets also have in common that they can be
thought of as cloud clients. They don’t store much data. They
synchronize to online backups (or a PC). They're pretty simple to use
insofar as they mostly work or they don’t work.

PCs are different.

They can store a lot of files and other data, which will be all mixed
together unless special care is taken to isolate personal files from

197

COMPUTING NEXT

employer files. A variety of products that use virtual machines and
other technologies can provide isolation within a single PC for
different types of use. However, none of these products has gone
mainstream and, for many users, such approaches seem too intrusive
for a personal system. Thus, a PC used for work is arguably not truly
personal any longer if a company has, for example, some legal reason
to examine stored files.

With more and more applications sporting Web interfaces rather than
requiring dedicated client software that has to be installed on
individual PCs, it certainly becomes more practical for employees to
use their own PCs for company work. And for some, that will be their
preference either because they want a particular type of laptop or
simply because what they do personally and what they do
professionally is so mixed together anyway. This requires following
proper security practices, backup procedures, and being comfortable
doing your own tech support. But it can be a reasonable trade-off, all
the more so if the company is willing to provide some sort of stipend
in lieu of supplying a PC.

However, I'm skeptical that it makes sense in most cases to have an
all-encompassing “Bring Your Own PC” (BYOPC) program. Many
people still find PCs (including Macs) to be sometimes confounding
and frustrating pieces of gear that develop subtle and hard-to-debug
problems. The same people may have difficulty following IT security
policies, such as enabling encryption, on a personally-supplied and
administered machine. Ultimately, there are still enough complexities
with PCs that it’s just not practical for IT to get completely away from
supporting clients in most environments.

I also suspect that Vittorio Viarengo is onto something when he wrote
me that: “It is not about BYOD. It is about SYOM (spend Your Own
Money). That’s why people like corporate devices.”

It’s increasingly common practice for people to use their personal
smartphones for both business and pleasure, whether their cell phone
bills are subsidized or not. And there doesn’t seem to be a widespread

198

COMPUTING NEXT

expectation that employers will start buying tablets for their
employees.

However, most companies still buy and support business PCs. 1
suspect what we're seeing is a certain lack of enthusiasm —at least by
many employees—for that part of the status quo to radically change,
especially if it means turning a company expense into a personal one.

As journalist Steven Vaughan-Nichols writes: “BYOD is a slippery
slope. It started because we loved our tech toys and wanted to use
them for work. That was great for executives who could afford to buy
the latest and greatest iPad every time Apple released one. But when
BYOD becomes a requirement, it’s a pain for those in the upper salary
brackets and a de facto cut in pay for those who don’t make the big
bucks.”

199

COMPUTING NEXT
The web app vs. the app store

As we’ve seen, server virtualization has become a familiar fixture of
the IT landscape and an important foundation for cloud computing.

But virtualization is also relevant to client devices, such as PCs. To a
greater degree than on servers, client virtualization takes many forms,
reflecting forms of abstraction and management that take place in
many different places. Client virtualization® includes well-established
ways of separating the interaction with an application from the
application itself, the leveraging of server virtualization to deliver
complete desktops over the network (Virtual Desktop Infrastructure—
VDI), and the use of hypervisors on the clients themselves. In short,
client virtualization covers a lot of ground, but at bottom, it’s about
delivering applications to users and managing those applications on
client devices—including employee-provided PCs as discussed in the
last chapter.

Client virtualization is essentially a tool to deal with installing,
updating, and securing software on distributed “stateful” clients—
which is to say, devices that store a unique pattern of bits locally. If a
stateless device like a terminal breaks, you can just unplug it and
swap in a new one. Not so with a PC. At a minimum, you need to
restore the local pattern of bits from a backup.

However, client virtualization (in any of its forms) has never truly
gone mainstream, whether because it often cost more than advertised
or just didn’t work all that well. It's mostly played in relative niches
where some particular benefit—such as centralized security —is an
overriding concern. These can be important markets and we see
increased interest in VDI at government agencies, for instance. But
we're not talking about the typical corporate desktop or consumer.

Furthermore, today, we access more and more applications through
browsers rather than applications installed on PCs. This effectively

5% You also hear terms such as endpoint virtualization applied to virtualization on
client devices.

200

COMPUTING NEXT

makes PCs more like stateless thin clients. And, therefore, it makes
client virtualization something of a solution for yesterday’s problems
rather than today’s.

Except for one thing.

Client virtualization, in its application virtualization guise, has in fact
become prevalent. Just go to an Android or iOS app store.

Application virtualization has been around for a long time. Arguably,
its roots go back to WinFrame, a multi-user version of Microsoft
Windows NT that Citrix introduced in 1995. It was, in large part, a
response to the rise of the PC, which replaced “dumb terminals”
acting as displays and keyboards for applications running in a data
center with more intelligent and independent devices. Historically,
application virtualization (before it was called that) focused on what
can be thought of as presentation-layer virtualization —separating the
display of an application from where it ran. It was mostly used to
provide standardized and centralized access to corporate
applications.””

As laptops became more common, application virtualization changed
as well. It became a way to stream applications down to the client and
enable them to run even when the client was no longer connected to
the network. Application virtualization thus became something of a
packaging and distribution technology. One such company working
on this evolution of application virtualization was Softricity,
subsequently purchased by Microsoft in 2006.

I was reminded of Softricity when I spoke with David Greschler, one
of its co-founders, at a 2012 cloud computing event. He’d moved on
from Microsoft to PaperShare but we got to talking about how the
market for application virtualization, as initially conceived, had
(mostly not) developed. And that’s when he observed the functional
relationship between an app store and application virtualization, and

5 In spite of its identification with “thin clients,” a sort of next generation terminal, in
practice the devices used with application virtualization were mostly regular PCs.

201

COMPUTING NEXT

how application virtualization had, in a sense, gone mainstream as
part of mobile device ecosystems.

If you think about it, the app store model is not the necessary and
inevitable way to deliver applications to smartphones, tablets, and
other client devices.

In fact, it runs rather counter to the prevailing pattern on PCs—
regardless of operating system —towards installing fewer unique
applications and running more Web applications through the browser.
Google even debuted Chrome OS, designed to work exclusively with
Web applications, to great fanfare. As connecting to networks in more
places with better performance improves and as standards, such as
HTMLD5, evolve to better handle unconnected situations, it’s a
reasonable expectation that this trend will continue.

But the reality of Chrome OS has been that, after early-on geek
excitement, it’s so far pretty much hit the ground with a resounding
thud. At least as of 2012, it’s one thing to say that we install fewer apps
on our PCs. It’s another thing to use a PC which can’t install any apps.
Full stop.

What's more, it’s worth thinking about why we might prefer to run
applications through a browser rather than natively.

It’s not so much that it lets developers write one application and run it
on pretty much anything that comes with a browser. As users, we
don’t care about making life easier for developers except insofar as it
means we have more applications to use and play with. And,
especially given that client devices have coalesced around a modest
number of ecosystems, developers have mostly accepted that they just
have to deal with that (relatively limited) diversity.

Nor is it really that we’d like to be able to use smaller, lighter, and
thinner clients. Oh, we do want those things—at least up to a point.
But they're usually not the limiting factor in being able to run
applications locally and natively. We don’t want to make clients too
limited anyway; computer cycles and storage tend to be cheaper on
the client than on the server.

202

COMPUTING NEXT

No, the main thing that we have against native applications on a client
is their “care and feeding,” by which I mean the need to install
updates from all sorts of different sources and deal with the problems
if upgrades don’t go as planned. And remember how a PC’s software
sometimes needs to be refreshed from the ground-up to deal with
accumulating “bit rot” as added applications and services slow things
down over time?

And that’s where centralized stores for packaged applications come
in. Such stores don’t eliminate software bugs, of course. Nor do they
eliminate applications that get broken through a new upgrade—one
need only peruse the reviews in the Apple App Store to find
numerous such examples. However, relative to PCs, keeping
smartphones and tablets up-to-date and backed up is a much easier,
more intuitive, and less error-prone process.

Of course, for a vendor like Apple that wants to control the end-to-
end user experience, an app store has the additional advantage of
maintaining full control of the customer relationship. But the
dichotomy between an open Web and a centralized app store isn’t just
an Apple story. App stores have widely become the default model for
delivering software to new types of client devices and have certainly
become the primary path for selling that software.

The Web apps versus native apps (and, by implication, app stores)
debate will be ongoing. It doesn’t lend itself to answers that are simple
either in terms of technology or in terms of device and developer
ecosystems.

Witness the September 2012 dust-up over comments made by
Facebook CEO Mark Zuckerberg that appeared to diss his company’s
HTML5 Web app, calling it “one of the biggest mistakes if not the
biggest strategic mistake that we made.”

However, as CNET’s Stephen Shankland wrote at the time: “Those are
powerfully damning words, and many developers will likely take
them to heart given Facebook’s cred in the programming world. But
there are subtleties here—not an easy thing for those who see the

203

COMPUTING NEXT

world in black and white to grasp, to be sure, but real nonetheless.
Zuckerberg himself offered a huge pro-HTMLS5 caveat in the middle

of his statement.”>8

It's often observed that new concepts in technology are rarely truly
new. Instead, they’re updates or reimaginings of past ideas both
successful and not. This observation can certainly be overstated, but
there’s a lot of truth to it. And here we see it again—with application
virtualization and the app store.

% http://news.cnet.com/8301-1023_3-57511142-93/html5-is-dead-long-live-html5/

204

http://news.cnet.com/8301-1023_3-57511142-93/html5-is-dead-long-live-html5/
http://news.cnet.com/8301-1023_3-57511142-93/html5-is-dead-long-live-html5/

COMPUTING NEXT
The Four “V’s” of Big Data

Certainly “Big Data’s” most obvious characteristic—and the one from
which it derives that shorthand moniker —is its quantity or volume.
While we also find the big data term applied to data sets that aren’t all
that, well, big, there’s no question that data creation is a growth
industry.

A 2011 study by IDC predicted that 1.8 zettabytes of data would be
created that year, about an order of magnitude increase in just five
years. That’s a lot. A zettabyte is a trillion gigabytes, a thousand
exabytes, or 1,000,000,000,000,000,000,000 (10"21) bytes. In fact, it’s a
unit of storage capacity that you probably wouldn’t have encountered
outside of a trivia contest until very recently.

About 80 percent of this data is unstructured, meaning that it’s not
stored as a formatted field in a database. Whatever its exact nature, its
usually more difficult to process and use than data stored in a regular
format or at least semantically tagged in documents. At the same time,
it's growing far more quickly than structured data, increasing the
challenge associated with using it effectively. The volume and growth
rate of unstructured data also aren’t well-suited for many traditional
enterprise storage systems which were designed primarily with the
needs of transactional database systems in mind.”

Apache Hadoop is probably the software one hears most often
discussed in the context of big data. It was created by Doug Cutting,
who was working at Yahoo! at the time, and Michael J. Cafarella. The
processing module in Hadoop is MapReduce, which is intended to
“simplify writing applications which process vast amounts of data in-
parallel on large clusters (thousands of nodes) of commodity
hardware in a reliable, fault-tolerant manner. A MapReduce job
usually splits the input data-set into independent chunks which are
processed by the map tasks in a completely parallel manner. The
framework sorts the outputs of the maps, which are then input to the

% Red Hat'’s acquisition of Gluster, a very large-scale, software-only distributed
filesystem was largely in response to these unstructured data trends.

205

COMPUTING NEXT

reduce tasks. Typically both the input and the output of the job are
stored in a file-system. The framework takes care of scheduling tasks,

monitoring them and re-executes the failed tasks.”®

Hadoop’s complexity can be a challenge, especially when dealing with
data that isn't, in fact, all that big.®! However, because it’s structured as
a fairly flexible framework, other projects are adding alternate
interfaces and otherwise expanding the ways in which the core
capabilities can be used. Companies have also started packaging
Hadoop and offering it as a commercial product.

Big data is not just about data volume though—whatever yardstick
for delineating bigness one cares to use.

Another metric is velocity, a term apparently first applied to data by
then-Meta Group’s Doug Laney in a 2001 research note.®? At the time,
he was discussing speed mostly in the context of data used to support
interactions and generated by interactions on e-commerce sites.
However, in many cases, the need for almost instantaneous results has
only grown. IBM, for example, notes that “For time-sensitive
processes such as catching fraud, big data must be used as it streams
into your enterprise in order to maximize its value.”®® Using data in
this way stands in contrast to the historical batch mode of data
analysis in which a snapshot was taken of production data, the
snapshot was analyzed, and a report was created.

Google’s Avinash Kaushik injects the caution that the focus should be
on what he calls “right-time” data rather than “real-time” data. He
notes that “if don’t have capacity to take real-time action, why do you

% http://hadoop.apache.org/docs/r0.20.2/mapred_tutorial.html

¢ Discussed by RedMonk analyst Stephen O’Grady in 2011: http://redmonk.com/
sogrady/2011/01/13/apache-hadoop/

62 Laney’s note also introduced the variety term. http://blogs.gartner.com/doug-laney/
files/2012/01/ad949-3D-Data-Management-Controlling-Data-Volume-Velocity-and-
Variety.pdf (Meta Group was subsequently acquired by Gartner Group.)

8 http://www-01.ibm.com/software/data/bigdata/

206

http://www-01.ibm.com/software/data/bigdata/
http://www-01.ibm.com/software/data/bigdata/

COMPUTING NEXT

need real-time data?®* Real-time data becomes interesting if you can
get the humans out of the process.”

Further making data “big,” which is to say challenging to work with,
is variety. Unstructured data is often thought of as text—which,
indeed, it often is—but it also includes streams of numbers, video, and
photographs. Devices such as smartphones are becoming something
akin to “accidental sensors” as they snap pictures and encode them
with locations.® Google’s flu trends program takes advantage of the
correlation between online searches related to flu symptoms and
disease hotspots. Live video feeds create the possibility of all manner
of analysis, both for good and ill purposes.

Volume, velocity, and variety —the three characteristics described in
Laney’s research note—are the most common axes used to define big
data. However, one sees a fourth sometimes applied: veracity. This
isn't something that applies uniquely to big data. But it’s a useful
reminder that unreliable data is data that people won't trust to use in
decision making. Lack of confidence in data can also be an excuse to
abandon data-driven methodologies in their entirety.

And ensuring data veracity is a tough problem, especially when
crunching quickly through large volumes of noisy, unstructured, and
varied data sources. (Cleansing data can be hard enough even when
the problem is much more bounded.) However, it's worth
remembering that the ultimate objective of data analysis is to gain
some insight that will result in being able to take a meaningful action.
And if the quality of the data won't take you there, it's not worth
much—no matter how big it is.

Having said all this, there’s nothing inherently special about these
particular “Vs” or indeed any methodology to characterize data at all
except to the degree that it affects its analysis from either a
methodological or a technological perspective. And it’s even less

64 O'Reilly Strata Conference, Santa Clara, 2012.

8 http://news.cnet.com/8301-13556_3-20008026-61.html

207

http://news.cnet.com/8301-13556_3-20008026-61.html
http://news.cnet.com/8301-13556_3-20008026-61.html

COMPUTING NEXT

useful to dismiss real world case studies that don’t adhere to some
academic taxonomy:.

Indeed, perhaps the biggest “Big Data” storyline isn’t even about
bigness at all. Rather it’s about the systematic uses of data to make
decisions and take actions whether that data is big, small, or
somewhere in between.

208

COMPUTING NEXT
Data, models, and insight

I suppose, given the magnitude of the data explosion, the feeling that
it must inherently embody great wisdom is inevitable.

Not that this is anything new in the data game.

Probably no data-mining—as we used to call analysis of relatively
large customer data sets—legend has been more pervasive than the
“beer and diapers” story, which apparently dates back to an early
1990s project that data-warehousing pioneer Teradata (then part of
NCR) conducted for the Osco Drug retail chain.

As the story goes, they discovered that beer and diapers frequently
appeared together in a shopping basket on certain days; the presumed
explanation was that fathers picking up diapers bought a six-pack
when they were out anyway. This correlation was then used to
optimize displays and pricing in the stores.

That'’s the story anyway. The reality, as best anyone can determine, is
more muddled.® The evidence suggests that the project indeed
existed. However, the beer-diapers correlation may or may not have
been supported by the data. And, in any case, Osco seems not to have
made any subsequent changes taking advantage of the purported
relationship. That the story has lasted so long probably says more
about the dearth of compelling data-mining success stories supported
by strong case studies than anything else.

But the vast increase in data volume leads some to think the game has
fundamentally changed.

In 2008, Wired magazine’s Chris Anderson wrote a provocative article
titled “The End of Theory: The Data Deluge Makes the Scientific
Method Obsolete.”®” His thesis was that we have historically relied on

% http://www.dssresources.com/newsletters/66.php

57 http://www.wired.com/science/discoveries/magazine/16-07/pb_theory

209

http://www.wired.com/science/discoveries/magazine/16-07/pb_theory
http://www.wired.com/science/discoveries/magazine/16-07/pb_theory

COMPUTING NEXT

models in large part because we had no other choice. However, “with
enough data, the numbers speak for themselves.”

Most experts don't think it’s that simple though. Useful insights don’t
just pop out of data. You have to ask the right questions. Put another
way, there’s something of an overabundance of optimism among
naive big data proponents that a lot of data by itself is sufficient to
solve just about any problem.

Speaking at O’Reilly’s Strata data conference in 2012, Xavier
Amatriain of Netflix put it thusly: “Data without a sound approach
becomes noise.” Amatriain also offered insight into how finding the
best results requires blending many different approaches, including
adding additional types of data as appropriate.

The algorithms stemming from the much-ballyhooed Netflix Prize are
actually a small piece of Netflix’s overall movie recommendation
process. There are a couple of reasons. The first is that the winning
algorithms turned out to be very computationally intensive, in
addition to being inflexible in other ways. The more important reason
though is that predicting how customers would rate a movie, the
objective of the Netflix Prize, was never the ultimate objective. That
was to deliver better recommendations and, thereby, presumably
increase the likelihood that they would remain Netflix subscribers. It
turned out that marginally improving ratings prediction only went so
far in improving recommendations overall.

Netflix therefore combines personalization, a wide range of
algorithms, a huge amount of A/B testing (whereby different
approaches are tried with different customer groups and the results
evaluated), data from external sources, and even some randomness
for serendipity. Data certainly plays a role, in fact a very central role,
but it’s far more complicated than feeding in the biggest possible
datasets and letting the machine learning algorithms churn.

Peter Fader, co-director of the Wharton Customer Analytics Initiative
at the University of Pennsylvania, talks of a “data fetish” that is
leading to predictions of vast profits from mining data associated with

210

COMPUTING NEXT

online activity. However, he goes on to note that more data and data
from mobile devices, don’t always lead to better results. One reason is
that “there is very little real science in what we call “data science,” and
that’s a big problem.”

For example, there’s a widespread assumption that personalized
advertising is more effective advertising. But a reader’s comment on
Michael Wolff’s “The Facebook Fallacy” nicely summarizes why this
might not be the case.®®

There is not now, nor is there anything on the horizon, that is a
scalable, automated means of exploiting people-generated data to
extract actionable marketing information and sales knowledge. A well-
known dirty little secret in the advertising world is that, even after
millennia of advertising efforts, not a single copywriter can tell you
with any confidence beyond a coin flip whether any given
advertisement is going to succeed. The entire “industry” is based on
wild-assed guesses and the media equivalent of tossing noodles
against the kitchen wall to see what might stick, if anything. It doesn’t
matter whether it’s print, TV, or on-line media, no one can predict what
will actually work. FB engineers are probably even less well-equipped
intellectually than the average ad hack in being able to come up with a
better mousetrap to get people to buy what sellers want to hawk.

Other examples come from the talk given at that 2012 Strata
conference by Hal Varian, Google’s chief economist, who showed off
Google Correlate. This tool lets you explore how search trends relate
to data—such as time series economic data. This opens up possibilities
such as finding leading indicators in search data for various types of
economic activity.

Google Correlate obviously depends on access to Google’s vast
database of search terms. However, Varian’s talk also touched on
many of the complexities of interpreting correlations. For some
purposes, it makes sense to seasonally adjust data, and for others it
doesn’t. You have to choose search patterns intelligently and you need
to use appropriate statistical techniques to interpret the results.

%8 http://www.technologyreview.com/news/427972/the-facebook-fallacy/

211

http://www.technologyreview.com/news/427972/the-facebook-fallacy/
http://www.technologyreview.com/news/427972/the-facebook-fallacy/

COMPUTING NEXT

Google’s Kaushik even tries to quantify the amount of energy that
should be devoted to applying intelligence to data problems. He
suggests spending $10 on tools and $90 on the people who will deal
with the data and running lots of experiments. It’s all about “scientific
method,” “design of experiments,” and statistical analysis.

Data has value. And, in fact, for certain types of problems insights will
fall out of data more naturally than in others. For example, certain
types of problems, such as natural language recognition, use so-called
“low bias models” that benefit from a lot of training data. Language
recognition has also proven stubbornly resistant to more top-down
models-based approaches over the years.

And if examples of big wins through data are often still more
anecdotal than systematic, they’re nonetheless real.

In a 2012 piece in The New York Times,® Charles Duhigg wrote about
how Target statistician Andrew Pole “was able to identify about 25
products that, when analyzed together, allowed him to assign each
shopper a ‘pregnancy prediction” score. More important, he could also
estimate her due date to within a small window, so Target could send
coupons timed to very specific stages of her pregnancy.” Duhigg then
goes on to tell a story about how, in one case, Target apparently knew
about a high schooler’s pregnancy before her father did.

As it turns out, the events recounted in Duhigg’s story are not
especially recent; Pole did his initial work in 2002, and it’s not an area
of its business Target wants to discuss. In part, this is doubtless
because it views what it does with data-mining as a trade secret.
However, I'm sure it also stems from the reality that a lot of people
find this sort of analysis at least a little bit “creepy” (to use the most
common word tossed around the Internet about this story).

% http://www.nytimes.com/2012/02/19/magazine/shopping-habits.html

212

http://www.nytimes.com/2012/02/19/magazine/shopping-habits.html
http://www.nytimes.com/2012/02/19/magazine/shopping-habits.html

COMPUTING NEXT

Sasha Issenberg wrote in a 2012 Slate article” that “as part of a project
code-named Narwhal, Obama’s [re-election campaign] team is
working to link once completely separate repositories of information
so that every fact gathered about a voter is available to every arm of
the campaign. Such information sharing would allow the person who
crafts a provocative e-mail about contraception to send it only to
women with whom canvassers have personally discussed
reproductive views or whom data-mining targeters have pinpointed
as likely to be friendly to Obama’s views on the issue.” This contrasts
with past practice whereby e-mails were more shotgun and stuck to
relatively safe and unprovocative topics as a result.

It’s generally believed that Obama’s win in the 2012 US presidential
election was, at a minimum, aided by a new generation of these data
driven efforts. Data’s stock was further raised by the widely watched
predictions of New York Times blogger Nate Silver, whose careful and
systematic analysis of poll results proved strikingly accurate —and
suggested the superiority of careful data analysis over punditry.

We also see examples from the sciences. Certainly the search for the
Higgs Boson at the Large Hadron Collider in CERN is about big data.
CERN amassed more than 200 petabytes (1,000 terabytes) of data
about 800 trillion particle collisions. Physicist Axel Naumann
explained that “most of that [the collision data] is actually incredibly
boring, we need to sift through them and find the interesting ones,
and even those, we don’t see immediately because we can't really tell
what we see,” he explained. “We can only give it a probability, and so
by doing this billions and billions and billions of times, we are pretty
certain that we see something or don't see something. ... We do a
statistical analysis on a huge amount of data and at the end we can
give the results.””!

70 http://www.slate.com/articles/news_and_politics/victory_lab/2012/02/
project_narwhal_how_a_top_secret_obama_campaign_program_could_change_the_2
012_race_.html

7 http://www.itbusinessedge.com/cm/blogs/lawson/the-big-data-software-problem-
behind-cerns-higgs-boson-hunt/

213

COMPUTING NEXT

In the bigger picture, we're in the early days of what sometimes goes
by the name of the “Internet of Things,” the idea that we’ll have
pervasive meshes of sensors recording everything and integrated
together into feedback loops that optimize the system as a whole.
IBM, with rather more marketing dollars than the academics who first
coined the concept, talks about this idea under an expansive “Smarter
Planet” vision.

We’ll only see more stories about great results being achieved by
applying data to some problem in a novel way. Especially when
there’s solid underlying science, algorithms, and models limited only
by the quality or quantity of the inputs, more and different types of
data can indeed lead to impressive results and outcomes.

But this doesn’t mean that bigger data will always hold the key.
Sometimes data is just data—noise, really. Not information. It doesn’t
matter how much you store or how hard you process it. And even
when it does hold insight, intelligence will usually be needed to
extract it.

214

COMPUTING NEXT
The new databases

As data volumes have grown, so too has the interest in
complementing existing database architectures with new technologies
generally capable of handling larger quantities of data for certain
types of workloads.

“Database” had come to be largely synonymous with a relational
database management system (RDBMS) or, more specifically, a
relational database that is accessed using the SQL query language.
Some simpler products run on desktops, but if you are talking about
products used for serious business computing on a server, SQL is it.
The widespread adoption of open source products such as MySQL
and PostgreSQL only cemented SQL’s dominance by making it
available to a broad audience which couldn’t afford licensing fees for
products from Oracle or other large database vendors.

An RDBMS stores data in the form of multiple tables related to each
other by keys that are unique among all occurrences in a given table.
The “relational database” term was originally defined and coined by
IBM’s Edgar Codd in a 1970 paper. Products based on this database
model came to largely replace a variety of hierarchical and other
technology approaches. While it could be lower performance than
alternatives, it tended to offer more flexibility in how data could be
laid out, added, and accessed, cementing its role as a standard.”

As computer systems got faster (and SQL RDBMSs were enhanced in
many ways), concerns about the performance of the basic approach
largely receded into the background. In general, efforts to displace
RDBMSs—such as object databases—ended up sometimes generating
a lot of hype but not much actual use.

However, with the advent of truly massive scale distributed
computing infrastructures, we're starting to see the significant

72T use the term “standard” here somewhat loosely. While all “SQL databases” have
certain things in common, there are also enough differences to make each product
somewhat unique, especially when making use of more advanced features.

215

COMPUTING NEXT

adoption of technologies which don’t necessarily replace RDBMSs,
but certainly complement them.

One basic issue is that RDBMSs are architected to process and store all
transactions with absolute reliability. (ACID —atomicity, consistency,
isolation, and durability —is a set of properties commonly used to
describe the requirements.) This is a good thing if we're talking about,
say, financial transactions. A bank balance has to immediately reflect a
withdrawal; the system has to prevent multiple withdrawals of the
same balance from happening simultaneously.

RDBMSs and their associated infrastructure also tend to reflect the
assumption that data will be retained for a significant period. Again,
this makes a lot of sense in the context of the traditional role of
databases. A business not only wants to keep transaction records for at
least several years—in many cases, it’s legally required to do so.

However, we're seeing the increased use of alternative approaches in
large distributed systems which don’t have as stringent consistency
requirements or which generate lots of intermediate results that don't
need to be stored permanently. In exchange, they can use replication
for maximum performance and availability.

One form this takes is “eventual consistency,” which Amazon CTO
Werner Vogels describes as tolerating inconsistency for “improving
read and write performance under highly concurrent conditions and
handling partition cases where a majority model would render part of
the system unavailable even though the nodes are up and running.””?
Amazon SimpleDB implements such a model. It “keeps multiple
copies of each domain. When data is written or updated (using
PutAttributes, DeleteAttributes, CreateDomain or DeleteDomain) and
Success is returned, all copies of the data are updated. However, it
takes time for the update to propagate to all storage locations. The
data will eventually be consistent, but an immediate read might not
show the change.”

73 http://www.allthingsdistributed.com/2008/12/eventually_consistent.html

216

COMPUTING NEXT

We're also seeing products that essentially augment RDBMSs by
reducing the volume of data that they need to store. An example
could be a travel reservation application where the actual “books”
need to go into an RDBMS but many of the transactions associated
with “looks” can be handled in a distributed way without touching
the database every time.

These techniques and technologies don’t replace RDBMSs in the way
that RDBMSs replaced older technologies such as hierarchical
databases. Rather, they trade off characteristics that have been
considered non-negotiable must-haves in the realm of database design
such as full consistency.

Memcached, an open-source distributed memory caching system, was
one early example. It distributes data (together with an associated
structure to look up that data) across multiple systems to reduce
accesses to external data stores.

We're also seeing genuinely new (or reimagined) approaches to
database architectures. A lot of software that is more asynchronous
and read-intensive than traditional business applications doesn’t have
the same constraints, on the one hand, and needs to massively scale
performance across many systems, on the other. And for the
organizations implementing that software, pairing RDBMSs with
distributed data stores of various forms isn't just the right
architectural approach; it may be the only way they reach the scale
levels they need at a price point that makes business sense.

Collectively, these database architectures are often lumped together
under the “NoSQL” moniker which is not so much a description of a
particular approach as an indication that a product or project uses a
paradigm other than a traditional relational database. As with so
much emerging software these days, NoSQL projects typically have
open source roots. For example, RedMonk analyst Stephen O’Grady
wrote in 2011 that:"*

74 http://redmonk.com/sogrady/2011/07/06/mongodb-is-the-new-mysql/

217

http://redmonk.com/sogrady/2011/07/06/mongodb-is-the-new-mysql/
http://redmonk.com/sogrady/2011/07/06/mongodb-is-the-new-mysql/

COMPUTING NEXT

MySQL became the most popular relational database on the planet by
turning its weaknesses into strengths and successfully leveraging its
ubiquity. It was, in that respect, one of the original guerrilla success
stories in the open source world.

As the market moves ahead into a world with room for both relational
datastores and NoSQL alternatives, we can expect to see patterns from
the former repeat themselves within the latter. The most obvious of
these, to date, is the degree to which MongoDB is following in the
footsteps of MySQL.

It would be foolish to predict the same success that MySQL enjoyed for
MongoDB, because the underlying market context has changed. But it
is clear that—whether it is intentional on 10gen’s part or no—
MongoDB is, according to a variety of metrics, the new MySQL.

One of the things that’s been most interesting to me is that we’ve seen
so many attempts to introduce new database approaches over the
years. We’ve had object databases, in-memory databases, and others.
The outcome has always been pretty much the same. Either the
approach turned out to be more limited than advertised or the need
was handled by adding features to SQL databases. But NoSQL seems
to be the real deal.

As Red Hat’s Ashesh Badani puts it: “The movement towards NoSQL
has not gone unnoticed. Examples abound of agile development
shops and large enterprises alike adopting NoSQL —in greenfield
deployments as well as complementing existing application
infrastructure. While there are a variety of NoSQL tools available that
differ based on the way they store data (document, key-value, graph,
etc), MongoDB has been among the most popular with thousands of

downloads and deployments in demanding environments.””>

75 https://openshift.redhat.com/community/blogs/red-hat-invests-in-10gen-are-you-
saying-nosql-when-you-hear-cloud

218

https://openshift.redhat.com/community/blogs/red-hat-invests-in-10gen-are-you-saying-nosql-when-you-hear-cloud
https://openshift.redhat.com/community/blogs/red-hat-invests-in-10gen-are-you-saying-nosql-when-you-hear-cloud
https://openshift.redhat.com/community/blogs/red-hat-invests-in-10gen-are-you-saying-nosql-when-you-hear-cloud
https://openshift.redhat.com/community/blogs/red-hat-invests-in-10gen-are-you-saying-nosql-when-you-hear-cloud

COMPUTING NEXT
The world of atoms still matters

This book has predominantly discussed a distributed world of bits, of
software. But, as we draw to a close, it's worth remembering that “the
cloud” is ultimately still something physical. “There’s that pesky
speed of light” as Lee Ziliak of Verizon Data Services put it as a 451
Group conference in 2012. The context was that hybrid cloud
environments may logically appear as something homogeneous but
application architectures need to take the underlying physical reality
into account.

Latency, the time it takes to move data from one location to another,
often gets overlooked in performance discussions. There’s long been a
general bias towards emphasizing the amount of data rather than the
time it takes to move even a small chunk. Historically, this was
reflected in the prominence of bandwidth numbers—essentially the
size of data pipes, rather than their speed.

As I wrote back in a 2002 research note,”® system and networking
specs rate computer performance according to bandwidth and clock
speed, the IT equivalents of just measuring the width of a road and
and a vehicle engine’s revolutions per minute. While they may be
interesting, even important, data points, they’re hardly the complete
story. Latency is the time that elapses between a request for data and
its delivery. It is the sum of the delays each component adds in
processing a request. Since it applies to every byte or packet that
travels through a system, latency is at least as important as
bandwidth, a much-quoted spec whose importance is overrated. High
bandwidth just means having a wide, smooth road instead of a
bumpy country lane. Latency is the difference between driving it in an
old pickup or a Formula One racer.

The genesis of that decade-ago research note was rooted in the
performance of “Big Iron” Unix servers and tightly-coupled clusters
of same. At the time, large systems were increasingly being designed

76 http://www.illuminata.com/?p=1581

219

http://www.illuminata.com/?p=1581
http://www.illuminata.com/?p=1581

COMPUTING NEXT

using an approach which connected together (typically) four-
processor building blocks into a larger symmetrical multiprocessing
system using some form of coherent memory connection. These
modular architectures had a number of advantages, not least of which
was that they made possible upgrades which were much more
incremental.

The downside of modularity was that, relative to monolithic designs,
it tended to result in longer access times for memory that wasn't in the
local building block. As a result, the performance of these Non-
Uniform Memory Access (NUMA) systems depended a great deal on
keeping data close to the processor doing the computing. As NUMA
principles crept into mainstream processor designs—even today’s
basic x86 two-processor motherboard is NUMA —operating systems
evolved to keep data affined with associated processes.

However, while software optimizations have certainly helped, the
biggest reason that NUMA designs have been able to become so
general-purpose and widespread is that modern implementations
aren’t especially non-uniform. Early commercial Unix NUMA servers
from Data General and Sequent had local-remote memory access
rations of about 10:1. The differences in memory access in modern
servers—even large ones—is more like 2:1 or even less.

As we start talking about computing taking place over a wider
network of connections, the ratio can be that much greater. More than
once over the past decade, I've gotten pitches for various forms of
distributed symmetrical multiprocessing systems which were
intriguing —but which depended on somehow mitigating the effect of
the long access times for data physically distant from where it was
being processed. The outcome was rarely a good one. The problem is
that, for many types of computation, synchronizing results tends to
make performance more in line with the slowest access than the
fastest access. Just because we make it possible to treat a distributed
set of computing resources as a single pool of shared memory doesn’t
mean that it will necessarily perform like we expect it to when we
load up an operating system and run a program.

220

COMPUTING NEXT

This lesson is highly relevant to cloud computing.

By design, a hybrid cloud can be used to abstract away details of
underlying physical resources such as their location. Abstraction can
be advantageous; we do it in IT all the time as a way to mask
complexity. Indeed, in many respects, the history of computer
technology is the history of adding abstractions. The difficulty with
abstractions is that aspects of the complexity being hidden can be
relevant to what’s running on top (such as where data is stored
relative to where it is processed).

Two factors accentuate the potential problem.

The first is that a hybrid cloud can include both on-premise and
public cloud resources. There’s a huge difference between how much
data can be transferred and how quickly it can be accessed over an
internal data center network relative to the external public network.
We're talking a difference of orders of magnitude.

The second is that, with the growing interest in what’s often called
“Big Data,” we’re potentially talking about huge data volumes being
used for analysis and simulation. This volume often presents
challenges in and of itself. But, as we’ve seen, “Big Data” is also about
the “velocity” of the data—how quickly it needs to be captured and
analyzed —which directly speaks to the matter of latency.

All of this points to the need for policy mechanisms in hybrid clouds
which control workload and data placement and for the ability to
store data in the most appropriate location across a hybrid
infrastructure.

Policy controls are needed for many reasons in a hybrid cloud. Data
privacy and other regulations may limit where data can legally be
stored. Storage in different locations will cost different amounts.
Fundamentally, the ability of administrators to set policies is what
makes it possible for organizations to build clouds out of
heterogeneous resources while maintaining IT control.

221

COMPUTING NEXT

However, policy aside, there is still the matter of physics whether
you're talking about the speed of light or the size of a network pipe.
Talk large volumes of data and the concept of “data gravity” rears its
head. As data gets big, it becomes hard to move —meaning that it has
to be worked on in place. Hybrid data storage that doesn’t depend on
specialized hardware is needed. (Gluster, which Red Hat bought at
the end of 2011, is an example of software-only hybrid storage that’s
oriented towards data that doesn’t have a fixed structure, which
represents the growing bulk of today’s data.)

How applications and their data need to relate to each other will
depend on many details. How much data is there? Can the data be
pre-processed in some way? Is the data being changed or mostly just
read? However, as a general principle, processing is best kept
physically near the data that it’s processing. In other words, if the data
being analyzed is being gathered on-premise, that’s probably where
the processing should be done as well.

If this seems obvious, perhaps it should be. But it’s easy to fall into the
trap of thinking that, if differences can be abstracted away, those
differences no longer matter. Latencies can be one of those differences
—whether in computer system design or in a hybrid cloud.

222

COMPUTING NEXT
Four tensions

As with many things, computer technology is often about tradeoffs:
performance vs. price, simplicity vs. sophistication, size vs. speed.
Cloud computing is no different. In this last chapter, I lay out four
tensions that I believe will play a large part in how cloud computing
develops going forward.

Private versus public

As we've seen, cloud computing began as a story about public cloud
resources and mega-service providers—former Sun Microsystems
Chief Technology Officer Greg Papadopoulos’ metaphorical “five
computers” or author Nick Carr’s “Big Switch.” In the main, it
morphed into a broader and more hybrid pattern, combining a
mixture of dedicated and shared resources.

The hybrid concept has been widely embraced by both the vendor
community and IT departments for reasons that this book has
discussed at length. It minimizes lock-in to any single vendor and it
provides maximum flexibility around where data is stored and
applications are run. The movement towards hybrid is clear. That’s
why industry analysts such as Gartner are recommending that
organizations “design private cloud deployments with
interoperability and future hybrid in mind.”””

However, a public cloud endgame still has its adherents. Some, like
Amazon CTO Werner Vogels (who has referred to private clouds as
“false clouds”), come from vendors deeply committed to a pure-play
public approach. But it’s at least an intellectually defensible argument
based on economies of scale across many dimensions including
purchasing power, operational scale and expertise, and geographical
coverage.

My expectation is that for interesting planning horizons—which is to
say five to ten years—hybrid will remain the rule for most medium to

77 Design Your Private Cloud With Hybrid in Mind 24 February 2012 #G00230748

223

COMPUTING NEXT

large organizations. The use of public cloud resources will increase
but so will the use of dedicated computing resources owned by end
user organizations. Relatively speaking, though, smaller companies
will increasingly use public clouds, often in the form of Software-as-a-
Service just as consumers do today.

Brownfield versus greenfield

Public cloud advocates will generally concede that it often makes
sense to leave certain existing enterprise applications running on
custom infrastructures in place while putting new applications or
functions in a public cloud. In so doing, they’re drawing a distinction
between IT shops dealing with legacy applications and hardware
("brownfield”) and clean-sheet-of-paper architectures (”greenfield”).

It’s true enough that, without legacy encumbrances, it is more
straightforward to adopt a new Software-as-a-Service application or to
architect for a greenfield public cloud deployment. That said,
brownfield versus greenfield is only one of the factors that go into
deciding where and how to run an organization’s applications.
Functionality, portability, cost, regulatory compliance, performance,
and other factors all matter too.

Brownfield versus greenfield does matter in other ways. For example,
brownfield drives requirements for hybrid cloud management which
can handle a heterogeneous mix of virtualization platforms and other
enterprise infrastructure. On the other hand, “cloud-style”
Infrastructure-as-a-Service projects such as OpenStack are clearly
oriented towards organizations looking to stand up their own version
of a cloud within a datacenter they control. So it’s a relevant and even
important distinction, but it doesn’t map neatly to private versus
public.

Flexibility versus integration

Vertical stacks were once simply the-way-systems-were-built. This
model largely gave way to horizontal layers such as microprocessors,
operating systems, and databases developed by different specialist

224

COMPUTING NEXT

vendors and brought together at the end user. (Former Intel CEO
Andy Grove describes this shift in his book Only the Paranoid Survive.)

However the “Web 1.0” era, circa 2000, brought vertical integration to
the distributed systems world in the guise of so-called appliances,
many intended to plug into the network and perform some
newfangled Web-by function such as Web serving or video streaming.
Appliances promised simplification and optimization but, in practice,
they were widely viewed as too narrow and inflexible. James
Urquhart noted on his Wisdom of the Clouds blog: “Even if, say, a
vendor solution is a ‘drop in” technology initially, the complexity and
tradeoffs of a long-term dependency on the vendor adds greatly to the
cost and complexity.”

Of course, it’s not as simple as integration “bad,” flexibility “good.”
One of the most successful companies in any industry has famously
turned a highly integrated approach into billions of dollars. You may
well have a device from Apple close at hand. Enterprises aren’t
adverse to simplification, either, so long as it gets the job done.

That said, take a broad view of the landscape and flexibility which
minimizes dependence on individual vendors seems to win more
often than not. Open source is a case in point. Open source projects,
although they’ve matured into solid commercial products in many
cases, rarely, if ever, start out as the easy-to-use, just-works alternative.
Indeed, open source has a generally deserved reputation for
prioritizing features over fit and finish. Yet, open source adoption
continues apace, because of its success as a model for development
and innovation, while the appliance model has generally failed
outside of the consumer market.

Convenience versus control

Cloud computing security and related topics are important. They’'ve
also been discussed widely and often, albeit frequently with such a
dearth of sophistication that the talk obscures rather than illuminates.

At one level, protecting against data breaches in the data center is a
fairly straightforward security problem without many new wrinkles

225

COMPUTING NEXT

relative to the practices IT professionals have been following for
decades. However, in many respects, we are in a place that’s different
in kind from times past.

Some of this difference is about connectedness and scale. While
security models have been shifting from walled perimeters to defense-
in-depth since the early days of the Web and e-commerce, cloud-
based applications made up of composable services from multiple
vastly increase potential attack surfaces. It’s a vastly more complicated
security problem than setting the ports correctly on a firewall.

Perhaps even more problematic, though, is even determining how
specific data and data relationships need to be treated and which laws
apply. As journalist Dave Einstein noted in Forbes: “Adding to the
uncertainty is piecemeal evolution of regulations governing privacy
and data security, which depend largely on where you live and do
business. Europe, Australia, and Canada are in the forefront of
tackling data protection, while the U.S. lags, leaving a thorny legal
landscape for multinational Internet companies.”

Some of the issues date back to before the Internet went mainstream.
The issues have just become more visible and more complicated.
We’ve already seen big fines imposed for even relatively minor
medical records breaches. Expect to read about more fines in the
coming year but only incremental movement ahead on the macro
issues around appropriate uses of data.

More broadly, we as an industry and we as consumers have probably
not really processed all the implications of a shift towards massive
hosted and interconnected services. They’re much easier and more
convenient than the traditional way of building and hosting our own
services, but they offer these benefits in exchange for ceding control
relative to the era of the distributed PC or earlier generations of the
Internet with its more distributed forms of communication and
information exchange.

At the same time, a reduced level of control is inherent to network
effects and power laws, which tend to lead to centralization. It’s also

226

COMPUTING NEXT

worth remember that, on the Internet, no service is an island. Even if
you host everything yourself, you're ultimately connected to the
network through an Internet service provider of some sort. There’s
much work to be done in this area, which includes figuring out just
what we want to be in the cloud.

227

To Infinity and
Beyond

COMPUTING NEXT

229

COMPUTING NEXT

My first product, as a product manager, was the MV/7800. It was a
32-bit minicomputer, a “single board” computer successor to the
“Eagle” that Tracy Kidder popularized in Soul of a New Machine. It
wasn't really a single board computer though.

You needed other boards made by Data General to talk to basic things
like a network. And you needed a Data General operating system like
AOS/VS to do, well, just about anything. Wanted to do email? We had
Comprehensive Electronic Office—a pretty good product for the time
if rather primitive by today’s standards. Databases too, whether built
to the developing SQL standard or something wholly different like
INFOS.

Disk drives? We designed and built them in Durham, NH, hundreds
of megabytes at a time. We had tape drives too. The silicon for that
single-board computer? The DG-specific stuff came out of a
Sunnyvale fabrication plant.

This paradigm shifted with the microcomputer era, which is to say the
shift to the PC. The vertically integrated stack blew up, and horizontal
integration became the name of the game. As former Intel CEO Andy
Grove observed: “Throughout the decade of the eighties, the way
computing was done changed, from the old vertical way to the new
horizontal way.” In principle, the customer had a lot more choice with
this model. Choose your components and snap them together. In
practice though, the market seemed to favor monopolies —or at least
oligopolies—within each layer. Intel owned the processor, and
Microsoft seemed to be heading to do the same on the operating
system side. Oracle’s SQL, at least above a certain scale point, was the
last word in databases.

The world seemed on rewind, albeit turned on its side. But it didn’t
actually end up that way.

In many respects, the processor world did indeed standardize around
a single vendor, a single architecture —x86. AMD has competed there
against Intel, but with only a brief window of success. The ARM

230

COMPUTING NEXT

architecture has been more successful with new-style client devices
than in servers, but that’s a battle that is still to play out.

On the software side, the evolving landscape is far more radical.

Open source changed computing and all that it touches (which is to
say just about everything). It redefined the economics of IT and gave
control over their software back to users. But the effects went far
beyond the source code. Ultimately, open source made possible a style
of community-led development that hadn’t really been possible
previously. It effectively turned what had been a top-down vendor-led
approach to designing and delivering product into one that springs
from ideas coming from everywhere. Open source development can
look messy compared to integrated proprietary products, but time
and time again, the choice, flexibility, and innovation stemming from
open source have won out.

Furthermore, open source has helped stimulate the creation of the
truly open and extensible standards, protocols, and APIs which make
the modern interconnected computing world possible. The Internet as
we know it would not be possible without open source, and neither
would cloud computing. It isn’t that the cloud wouldn’t have
developed as quickly or that it would cost more or not become as
functional: it’s that cloud computing simply would not exist without
open source. The majority of leading public cloud providers rely on
open source, and that reliance on open source is permeating many
other cloud computing-related projects and products as well.

But cloud isn't just another software development project done the
open source way. It extends the idea of sharing code to sharing
compute resources, networks, and storage. It recognizes that IT isn't
just about the enterprise datacenter —or just about a particular public
cloud provider. It taps the wellspring of innovation wherever that
innovation is taking place rather than depending on one company’s
engineering team. It puts users, not vendors, in the forefront of
technology decisions and directions. It enables new approaches to
developing, delivering, and integrating applications and data across
distributed environments.

231

COMPUTING NEXT

Open and hybrid are at the nexus of so many central trends in
computing. Open in the sense of open source, independent
communities, open standards, free to use APIs, and the other
characteristics of openness. Hybrid in the ability to move and manage
applications and their associated data across a varied infrastructure
wherever that infrastructure resides.

Linux as the operating system of the cloud. Developers and
applications, its engines for revenue. The data and data analysis
explosion and the corresponding need to deal with data gravity across
distributed systems. The shift from hardware to software-based
redundancy and scaling approaches. Composable software that
integrates APIs and services from all over.

Today’s IT is fundamentally distributed and hybrid in nature and
open source software is increasingly pervasive. Not universal—and
there are counterexamples of “walled gardens,” especially in the
world of consumer-oriented services. But, that caveat aside, the level
of interoperability, standardization, and “coopetition” today is
unprecedented.

Cloud computing requires bridge building and collaboration across
organizations, APIs, and application silos. It’s inherently a cooperative
endeavor even while the same companies, projects, and individuals
simultaneously compete with each other. This is a dynamic in which
open source excels. Cloud innovation is also being driven by open
source cloud IaaS projects such as OpenStack and even through open
hardware initiatives such as the Open Compute Project. Being a
cutting-edge technology company increasingly means building on the
innovations and contributions of broader communities and other
technology companies rather than going it alone.

Cloud computing takes advantage of all this innovation and diversity
that comes from open source and from the dynamic community-
driven development that open source makes possible. It marries this
with new levels of scale and new software architectures that both
leverage that scale and make it useful. It introduces new and more
flexible ways of accomplishing traditional tasks and makes possible

232

COMPUTING NEXT

new services and types of social interactions never dreamed of until
recently. It intersects with and amplifies essentially all of the big
trends going on in computing today from the Big Data explosion to
the Internet of Things. It's simultaneously radical and evolutionary. It
will have lasting impact—however the details develop and the
terminology morphs.

233

COMPUTING NEXT
Photo credits

Author photo: Donna Jean Kaiser

The cloud turns on: Don DeBold, Flickr/Creative Commons http://
www.flickr.com/photos/ddebold/5113676687/

The shipping container and the cloud: Steve Gibson, Flickr/Creative
Commons http://www.flickr.com/photos/photohome_uk/1494590209/

Open sign: Christopher Sessums, Flickr/Creative Commons http://
www.flickr.com/photos/csessums/4748225394/

Crane and clouds: Caleb Roenigk, Flickr/Creative Commons http://
www.flickr.com/photos/crdot/7321516752/

The Practice of Programming: Alexandre Dulaunoy, Flickr/Creative
Commons http://www.flickr.com/photos/adulau/3086751588/

Contributor headshots were provided by the authors.

Photos not otherwise credited, including the cover, are by Gordon
Haff.

234

http://www.flickr.com/photos/ddebold/5113676687/
http://www.flickr.com/photos/ddebold/5113676687/
http://www.flickr.com/photos/ddebold/5113676687/
http://www.flickr.com/photos/ddebold/5113676687/
http://www.flickr.com/photos/photohome_uk/1494590209/
http://www.flickr.com/photos/photohome_uk/1494590209/

COMPUTING NEXT

Cloud computing is the most transformative force in today’s computer industry. Big

trends are converging. They change how we think about computers, how we operate
them, and how we use them to create new possibilities for businesses and individuals. It’s
also the next iteration of open source;it taps the wellspring of innovation wherever that
innovation is taking place and puts users, not vendors, in the forefront of technology
decisions and directions.

‘,‘) In this book, Gordon Haff takes you on a

N journey from the past through tomorrow.
From early cloud computing analogues in
the early days of standardized
manufacturing, through today’s rapidly
evolving [T operations, through the
morphing world of application
development, to an open and hybrid
future that’s just beginning to unfold.

Gordon Haff is cloud evangelist for Red Hat, the
leading provider of commercial open source software.
He writes extensively on, speaks at customer and
industry events about, and develops strategy for Red
Hat’s portfolio of open hybrid cloud solutions. Prior to
Red Hat, as an IT industry analyst, Gordon advised
companies on product and marketing strategies and was
frequently quoted in publications like The New York Times
as an industry expert.

235

