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ADENOSINE AND BRAIN: THE VIEWS AND THE VISTAS 

Ten years ago, Newby introduced a new description of adenosine: “the retaliatory 
metabolite.”’ The theoretical notion that adenosine may protect against tissue 
injury2 evolved rapidly into a practical demonstration of powerful neuroprotective 
effects of endogenous adenosine and its  analogue^.^-^ Subsequent improvement 
in understanding both the effects of adenosine receptor stimulation and the patho- 
logical processes that accompany numerous neurological disorders ultimately led 
to proposals that adenosine-based therapies may be effective not only in stroke 
and seizures, but also in Alzheimer’s, Huntington’s and Parkinson’s diseases, and 
a number of psychiatric 

ADENOSINE AND BRAIN: THE FUNCTIONS 

Endogenous Brain Adenosine and Pathologic Stress 

Technical difficulties complicate the exact measurement of extracellular brain 
adenosine c~ncent ra t ion .~  Currently, the level of free adenosine level in the inter- 
stitial brain space ol’ unanesthetized, freely moving animals is estimated at 50-300 
nM.4 More importantly, however, several laboratories have consistently reported 
that the amount of extracellular adenosine increases dramatically following cere- 
bral metabolic stress caused by seizures, hypoxia, or i ~ c h e m i a . ~  

In focal ischemia (and probably global as well), the reduction of cerebral blood 
flow (CBF) correlates with the concomitant elevation of both adenosine and gluta- 
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mate.' However, while increased release of adenosine occurs at  CBF values of 
25 m1/100 g/min, further reduction of CBF (20 mlilOO gimin) is necessary to elevate 
concentration of the extracellular glutamate. Quite recently, Hoehn and 
showed that release of excitatory amino acids elicited by electrical field stimulation 
also results in the release of adenosine-an effect mediated in part by both N -  
methyl-D-aspartate (NMDA) and e-amino-3-hydroxy-5-methylisoxazole-4-propri- 
onic acid (AMPA) receptors. It appears, therefore, that glutamate-mediated hyper- 
excitation of neurons (such as seen in cerebral ischemia) may provide an addi- 
tional, and somewhat unexpected, stimulus for further increase in adenosine 
release. These observations indicate that, in view of the powerful inhibitory effect 
of adenosine on the release of several excitatory neurotransmitters (see below), 
it is quite likely that increase in the concentration of interstitial adenosine, which 
both precedes and accompanies massive intraischemic release of gl~tamate, '"- '~ 
constitutes part of a mechanism whose operation provides a transient, endogenous 
protection of the brain against i n j ~ r y . ~  

Cerebral Receptors of Adenosine 

Endogenous adenosine acts at three principal G-protein-associated receptor 
subtypes: Al, A2 and A3.'4s1s Both the molecular structure and the nature of the 
effector coupling are known for all three  subtype^.'^.'^ Cerebral A1 receptors are 
linked to several second messenger systems, and one of their characteristic re- 
sponses to stimulation is inhibition of adenylate c y c l a ~ e . ' ~  Activation of A2 recep- 
tors stimulates adenylate c y c l a ~ e , ' ~  whereas activation of A3 receptors inhibits it, 
and also stimulates phosphoinositide metabolism. l 8  Although their specific distri- 
bution varies,I9 all three adenosine receptor subtypes are found in the brain.'5.20 
Al receptors are predominantly found in the hippocampus, IV-VI laminas of the 
cortex, striatum, amygdala, and superior colliculus, and appear to be codistributed 
with NMDA receptors.21.22 

A1 receptors, of which two subclasses (Aza and A26) exist, abound on smooth 
muscle and endothelial cells of cerebral blood vessels, where they mediate vascu- 
lar effects of adenosine.23 High-affinity Aza receptors are particularly well repre- 
sented in the striaturn and other dopamine-rich regions of the brain,I9 where they 
are colocalized with dopamine D2 receptors, and exert profound modulatory effect 
on dopaminergic t r a n s m i ~ s i o n . ~ ~  Adenosine receptors on glial cells belong, most 
likely, to the low-affinity AZI, s ~ b c l a s s . ~  Cerebral distribution of A1 and A2 recep- 
tors follows an intriguing pattern, i . e . ,  A2 appear to be less abundant within regions 
where the density of Al sites is elevated, and vice versa. Differences in the anatom- 
ical distribution of AI and A2 receptors may have striking behavioral conse- 
quences.25 A3 receptors are found throughout the brain but their density is much 
lower than that of either A1 or A2.20 The cell type on which they are located is 
unknown. 

Physiological Effects of Adenosine Receptor Stimulation 

The principal function of adenosine in the brain is that of an inhibitory neuro- 
m o d ~ l a t o r . ' ~ . ~ ~  The inhibitory effects of adenosine are mediated mainly via both 
pre- and postsynaptic A1 receptors. 
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Activation of presynaptic A, sites inhibits neuronal calcium ~ p t a k e ~ ~ - ~ O  and 
results in reduced release of several neurotransmitters, e.g., acetylcholine, nora- 
drenaline, dopamine, serotonin, and g l ~ t a m a t e . ~ ' - ~ ~  

Stimulation of both pre- and postsynaptic A1 receptor? causes activation of 
p o t a ~ s i u m ~ ~ - ~ ~  and chloride38 conductances. The resultant elevation of the mem- 
brane potential and the depression of the membrane r e s i ~ t a n c e ~ ~ . ~ ~  decrease neu- 
ronal excitability and firing rate.35.40,41 

Apart from the involvement of adenosine A2 receptors in regulation of CBFZ3 
adenosine A-7 receptors are responsible for accumulation of cyclic adenosine 
monophosphate (CAMP) in the brain.4 The details of A2 receptor involvement in 
neuronal physiology are still poorly understood, although existing evidence indi- 
cates that excitatory AZ receptors are present in the h i p p o c a m p u ~ ~ ~  and may be 
involved in potentiation of calcium-dependent neurotransmitter r e l e a ~ e ~ ~ , ~ ~  and in 
modulation of electrically evoked release of gamma-aminobutyric acid (GABA) 
in globus p a l l i d ~ s . ~ ~  It is also known that in the striatum, A2 receptors mediate 
control of gene expression in enkephalinergic neurons,4' and that A2 activation 
attenuates activity of the colocalized dopamine D2 receptors through reduction 
of their affinity for DZ a g o n i s t ~ . ~ ~ * ~ ~ , ~ *  Finally, participation of A2 receptors in 
generation of astrocytic edema has been also suggested.49 

ADENOSINE AND NEUROPROTECTION: THE THEORETICALS 

The first experimental confirmation of neuroprotective properties of adenosine 
analogues in cerebral ischemia has been provided by Evans et ~ l . ~ *  and von Lubitz 
et u1.53.54 A variety of in vitro and in vivo models of hypoxiclischemic models of 
neuronal injury have been used in most of the subsequent studies of neuroprotec- 
tion afforded by adenosine, its analogues, and inhibitors of its ~ p t a k e . ~  Moreover, 
the effect of these approaches has been also investigated in seizures55 and in either 
clinical56 or in vitro hyp~glycemia.~' Since pathophysiology of cerebral ischemia 
has been extensively r e v i e ~ e d , ~ ~ - ~ ~  for the purpose of the present review suffice 
to say that the arrest of brain blood supply results in a rapid depolarization of 
neuronal membranes,61 massive release of excitatory neurotransmitters" and exci- 
tation of postsynaptic glutamate receptors (NMDA and ~ o ~ L N M D A ~ ~ ) ,  followed 
by influx of calcium and its release from intracellular stores.62 'The latter process 
triggers a series of cascading events60 that ultimately lead to neuronal demise. 

From the preceding brief discussion of the effects of adenosine receptor stimu- 
lation it is apparent that adenosine analogues may be applicable in interrupting 
several ischemia-associated events, e.g., membrane (hypoxic) depolarization, 
neurotransmitter release, hyperexcitation of NMDA receptors, and calcium influx. 

Endogenous Adenosine and Hypoxic Depolarization 

Rapid depolarization of neuronal membrane is one of the initial events evoked 
by either impaired or entirely interrupted supply of the cerebral blood 
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Moreover, duration of hypoxic depolarization may be the determining factor that 
dictates the subsequent fate of neurons, i.e., their survival or death.64 

Hypoxic depolarization is associated with enhanced influx of calcium through 
voltage-gated calcium  channel^,'^ and concomitant increase in neurotransmitter 
release. Since intraischemic liberation of endogenous adenosine precedes that of 
g l ~ t a m a t e , ~  and since intraischemically released adenosine both significantly de- 
lays the onset of hypoxic depolarization6* and reduces glutamate release,66 it ap- 
pears that adenosine-mediated protective processes take place already at the very 
beginning of the insult. 

Adenosine A ]  Receptors and Excitatory Neurotransmitter Release 

Significant reduction of intraischemic release of glutamate by the A, receptor 
agonist IP-cyclopentyladenosine (CPA) and the AdAr agonist N-ethylcarboxami- 
doadenosine (NECA) has been demonstrated in the 4-vessel occlusion rat model 
of ischemia.66 Reduction of glutamate release by the A: agonist N6-cyclohexyl- 
adenosine (CHA) has been also reported in focal ischemia in the rat3 and in fore- 
brain ischemia in the gerbil (Marangos and von Lubitz, unpublished). However, 
while glycine levels were significantly attenuated by CHA in a study of global 
ischemia in rabbits,67 the reduction of glutamate showed only a dose-dependent 
but statistically insignificant trend. Nonetheless, even if in the latter study gluta- 
mate release was affected only to a limited extent, the protective effect of adeno- 
sine agonist is still likely. 

Glycine is necessary for activation of the ion-gated channel of the NMDA 
receptor which regulates calcium influx.68 Moreover, several studies have showed 
that glycine antagonists and partial agonists have a neuroprotective e f f e ~ t . ~ ~ . ' ~  
Therefore, it is conceivable that, despite a variable effect on the liberation of 
glutamate, CHA-mediated reduction in glycine release may diminish the functional 
efficiency of the NMDA receptor-associated ion-gated channel, and thereby de- 
crease the subsequent calcium overload. 

Endogenous Adenosine and Glutamate Uptake Sites 

Postischemic release of glutamate is comparatively brief and abates within 
approximately 30 min." However, postischemic depression of CBF seen after 
severe ischemia (hypoperfusion stage) may result in secondary h y p ~ x i a . ~ ~  Hence, 
a supplementary elevation in the extracellular glutamate concentration is also quite 
possible and may, unless astrocytic transport mechanisms remain intact, lead to 
exacerbation of the excitotoxic processes initiated by the primary event. Interest- 
ingly, Anderson et al.72 have showed that even a brief (5-min) ischemia results in 
a prolonged upregulation of high-affinity excitatory amino acid (EAA) transport 
sites. At the same time, Schmidt et a/.73 have showed that a brief 10-min exposure 
to adenosine produces a significant increase in the density of high-affinity gluta- 
mate and aspartate uptake sites in rat hippocampal slices. Therefore, it is possible 
that intraischemic elevation of brain adenosine74 may, apart from its effect on 
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neurotransmitter release, also result in a sustained upregulation of EAA transport- 
ers. Consequently, due to its control of both release and uptake of EAAs, endoge- 
nous adenosine may play an important role in prevention of excitotoxic damage 
following very brief ischemic periods, the absence of which has been noted by 
several a~ tho r s .~ ’ , ’~  

Postsynaptic Effects of Adenosine and Neurodegenerntion 

The intensity of excitatory synaptic input depends on the amount of NMDA- 
mediated influx of Ca2+ 77 which, in turn, increases membrane depolarization and 
acts as a synaptic amplifier. Since the evoked influx of calcium is tightly controlled 
by postsynaptic A1 receptors even at low extracellular Ca2 +  concentration^,^^,^^^^^ 
such control tends to attenuate calcium-mediated synaptic amplifi~ation.~ Conse- 
quently, adenosine and its postsynaptic At receptors regulate critical input fre- 
quencies required to operate postsynaptic NMDA receptors, as was recently dem- 
onstrated by Schubert and his  colleague^.^^^^^ 

The additional, albeit indirect, benefit of reduced NMDA receptor-mediated 
depolarization elicited by interaction of adenosine with its A1 receptors is the 
effect on voltage-sensitive K’ currents.” Depolarization appears to block these 
currents and enhances neuronal excitability and firing rate.80 Hence, vigorous 
activation of A1 receptors by elevated concentrations of extracellular adenosine 
may counteract NMDA receptor-mediated depolarization, and drive the mem- 
brane potential toward voltage ranges at which depolarization-dependent block 
of potassium conductance is either less likely or does not O C C U ~ . ~  

Apart from its enhancing effect on potassium c o n d ~ c t a n c e , ~ ~ , ~ ~ . ~ ’  adenosine 
stimulates voltage-dependent C1- conductance as well.38,82 It has been suggested 
that the opening of this conductance may diminish accumulation of intraneuronal 
C1- during repetitive firing4 which, unless prevented, will eventually impair GA- 
BAergic i n h i b i t i ~ n . ~ ~  Elevation in extracellular adenosine during periods of en- 
hanced neuronal activity4’ may, therefore, assist in maintaining GABA-mediated 
inhibition, and constitute another functional aspect of the protective adenosine1 
adenosine receptor complex. 

Adenosine AZ Receptors and Neurodegeneration 

The concept of Az receptor involvement in neurodegeneration has not been 
pursued with the same vigor as that of A1 receptors. There is, however, indirect, 
evidence that A2 receptors may play a pivotal role in neuronal death observed in 
the striatum, and possibly also in the substantia nigra. Contrary to general belief, 
it is the dorsolateral aspect of striatum rather than the hippocampal CA4 sector75 
that appears to be endowed with the highest sensitivity to ischemic i n s ~ l t . ~ ~ , ~ ’  
Light microscopic evidence of neuronal impairment in the striatum is clearly dis- 
cernible already 1 h after a very light ischemic episode, while acute ischemic 
damage in the hippocampal CA4 appears 6-12 h after the event.84 Rapid, intrais- 
chemic release of dopamine and glutamate,8’,86 persistent elevation of  CAMP,^' 
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and eventual loss of dopamine D2 receptorss6 precede morphologic damage of 
striatal neurons. 

Globus et have showed that, while increased concentration of intrastriatal 
dopamine alone has no adverse effect, elevated concentration of both dopamine 
and glutamate is associated with striatal vulnerability to ischemia. Since dopamine 
D2 receptors attenuate the effect of glutamatergic stimulation,88 it is possible that 
accelerated postischemic loss of D2 receptors, rather than elevated concentration 
of both neurotransmitters per se may constitute one of the critical factors resulting 
in the apparent potentiation of glutamate-evoked damage. The most characteristic 
aspect of this damage is its containment to the medium-sized spiny neurons con- 
taining enkephalin and substance P,x4 i.e., neurons receiving glutamatergic input 
from both substantia nigra and neocortex.88 Moreover, the same medium-sized 
GABAergic enkephalin-containing neurons are also characterized by the highest 
density of adenosine A2 receptors.24 

Based on the existing evidence, and on the fact that stimulation of adenosine 
A2 receptor decreases the affinity of Dz receptors to agonist s t i m ~ l a t i o n , ~ ~  it is 
possible to construct a chain of conjectural events that may ultimately lead to the 
selective neuronal loss in the striatum. Most likely, the initial intraischemic surge 
of adenosine agitates high-affinity Aza receptors located on enkephalin-containing 
GABAergic neurons. At the same time, the colocalized DZ receptors which attenu- 
ate glutamatergic excitation supplied by cortical and nigro-striatal fibersss will 
be stimulated by dopamine, whose concentration also increases. However, the 
activated A2 receptors decrease affinity of the colocalized Dz sites to d ~ p a m i n e , ~ ~  
thereby diminishing the efficiency of their counterexcitatory effect. Ultimately, 
combination of A2-D2 interactions and postischemic loss of Dz receptors86 will 
result in a progressive shift toward unopposed glutamatergic hyperexcitation 
whose intensity will, eventually, attain the level sufficient to induce excitotoxic 
damage of enkephalin-containing GABAergic neurons. 

Contrary to At receptors, the time course of ischemia-induced adenosine A2 
receptor disappearance is unknown. However, cerebral ischemia causes elevation 
in striatal CAMP that persists for at least 4 h after the reperf~sion.~’ Since stimula- 
tion of A2 receptors leads to production of  CAMP,^,'^ its prolonged postischemic 
presence may indicate that the functional A2 receptors are preserved for several 
hours following the insult. Moreover, it was shown recently that A2 receptor 
stimulation enhances ischemia-evoked release of glutamate and a ~ p a r t a t e . ~ ~  Thus, 
although the mechanism involved in this process is unknown, the sustained opera- 
tion of A2 receptors may amplify the damage to enkephalin-containing GABAergic 
neurons even further. 

Allowing that this speculative sequence of events is correct, its repercussions 
on “downstream” damage caused by ischemia may be significant. Both global 
and prolonged forebrain ischemia cause damage in the substantia nigra as well 
as in the striatum and the h i p p o c a r n p u ~ . ~ ~ ~ ~ ~  Hence, possible involvement of A2 
receptors in development of the rapid damage to the inhibitory enkephalin-contain- 
ing neurons in the striatum may contribute to the subsequent loss of inhibitory 
input to the substantia nigra, and amplify the adverse effects of ischemia-associ- 
ated hyperstimulation also in that region. 

The pattern of striatal neuron loss in cerebral ischemia is very similar to that 
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observed in Huntington's choreas4 and, although the postischemic fate of A2 recep- 
tors is presently unknown, a significant decrease in their density was recently 
observed in striatal tissue of patients with Huntington's disease.'l Since striatal 
adenosine A2 receptors appear to play an important role in pathophysiology of 
basal ganglia associated with Huntington's and Parkinson's  disease^,^^.^^,^^ drugs 
acting at these receptors may prove very useful in the treatment of these disorders. 
Involvement of A2 receptors in neurodegenerative processes of different etiology 
is the subject of current, intensive studies at our laboratory. 

Striatum apart, stimulation of adenosine AZ receptors may result in an improved 
postischemic survival of neurons in other regions through, e . g . ,  improvement 
of postischemic CBF93 or prevention of postischemic inflammatory processes.94 
Normalization of postischemic CBF may be obtained through A2 receptor-me- 
diated v a ~ o d i l a t i o n ~ , ~ ~ . ~ ~  and through antithrombotic Moreover, since 
stimulation of A2 receptors prevents activation of neutrophils, it may, through 
concomitant reduction in free radical release, diminish the damage to the endothe- 
lial lining of cerebral blood vessels.9s Finally, stimulation of leukocyte A2 receptors 
decreases their adherence to capillary walls, and appears to be involved in prevent- 
ing postischemic "plugging" of cerebral ~ a p i l l a r i e s . ~ ~  

ADENOSINE AND NEUROPROTECTION: THE PRACTICALS 

Effects of Acute Administration 

The results of experimental studies of the neuroprotective effects of adenosine, 
its analogues, and agents affecting its turnover are the subject of several recent 

Most of those studies concentrate on investigations of either 
forebrain or global cerebral ischemia, and use survival and/or neuropathology as 
the measures of outcome. 

Due to their well-known physiological properties and their relevance in treat- 
ment of cerebral ischemia, A I  receptors are the chief subject of the existing experi- 
mental ~ o r k . ~ , ~  Significant neuroprotection has been reported in virtually all stud- 
ies of focal (but see Roussel et al, 1991), global, and forebrain ischemia in which 
A1 receptor agonists have been administered either shortly before or after the 
insult, whose duration ranged from 5 to 30 ~ n i n . ~ . ~  However, since the maximum 
interval between pretreatment and ischemia was 15 min, and maximum postische- 
mic delay did not exceed 30 min, the dimension of the therapeutic window within 
which acutely administered adenosine agonists are effective is uncertain. It is 
known, however, that rapid downregulation of A, receptors follows even a mild 
anoxic or ischemic e p i ~ o d e , ' " ~ . ' ~ ~  and that 14-24 h after ischemia, A1 receptors 
become dysf~nctional.~ Thus, since the strength of adenosine modulation depends 
on the density of A1 re~eptors, ' '~ the therapeutic window for administration of 
A]  analogues is probably not an extensive 

The veracity of neuroprotective effects of A1 receptor agonists has been con- 
firmed by studies in which A1 antagonists have been used.4 Uniformly, administra- 
tion of antagonists has resulted in severe exacerbation of mortality,'06 and in 
amplified neuronal de~t ruc t ion .~  
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Contrary to the effects of At receptor agonists, the results following acute 
administration of agents active at AZ receptors is virtually unknown. Recently, 
however, Gao and Phill i~ '"~ showed that pretreatment with a weakly selective A2 
antagonist CGS 15943 resulted in protection of the hippocampus against ischemic 
damage. Our own results (von Lubitz at  al., in preparation) indicate that A2 antago- 
nists administered prior to 10-min ischemia protect not only hippocampus but 
striatum as well. 

Presently, only one report describes the effect of acute A3 receptor stimulation 
on the outcome of forebrain ischemia.50 The study shows that preischemic admin- 
istration of a small dose (100 pg/kg) of a selective A3 agonist, N6 - (3-iodobenzy1)- 
adenosine-5'-methylcarboxamide (IB-MECA), results in an extensive hippocam- 
pal damage and a very high mortality (90%) within the initial 24 h after ischemia. 

Despite their neuroprotective efficacy, the acute treatment with adenosine At  
agonists is accompanied by two major side effects, i .e . ,  hypothermia and hypoten- 
sion. Since hypothermia results in a significant reduction of postischemic neuronal 
damage,Io7 it is possible that A1 agonists mediate their neuron-sparing effect 
chiefly through the depression of brain temperature. However, both in v i m  stud- 
iesIoR and studies in which brain temperature has been carefully maintainedIo6 
indicate that the protective effect is preserved also in the normothermic environ- 
ment. Moreover, it must be remembered that, in the context of therapies aimed 
at stroke and brain ischemia, the comparatively mild hypothermic impact of A1 
receptor agonists may constitute a benefit rather than a hindrance. 

Failure of cerebral perfusion pressure after ischemia is among the most critical 
factors that influence clinical recovery,In9 and hypotension and cardiodepres- 
sion accompanying administration of At agonists constitute potentially serious side 
effects of A1 receptor-based therapies. Cardiovascular side effects of Al receptor 
agonists may be countered by coadministration of peripheral adenosine antago- 
nists. However, von Lubitz and Marangos" have showed that, although concomi- 
tant postischemic administration of the A ,  receptor agonist CHA and the periph- 
eral adenosine antagonist 8-~-sulphophenyladenosine (8-SPT) in gerbils resulted 
in a full normalization of CHA-evoked hypotension, the combined CHAIS-SPT 
treatment does not improve either survival or neurological impairment scores 
beyond those attained with CHA alone. 

Effects of Chronic Administration 

Among all disorders for which adenosine-based therapies have been envisaged, 
only stroke offers a target for their acute administration while most, if not all, 
other central nervous system (CNS) diseases require chronic, frequently even life- 
long, exposure. However, very little is known about the chronic effects of agents 
acting at adenosine receptors in the context of neuronal pathologies. The pioneer- 
ing study of Rudolphi et showed that chronic treatment with caffeine-a 
nonspecific AJA2 antagonist-resulted in protection against ischemic damage in 
gerbils ( i . e . ,  the exactly opposite effect to that obtained with acute administration 
of another nonspecific antagonist, the~phylline). '~ Von Lubitz et  a1.106,112,t13,115 
have investigated the consequences of chronic administration of drugs acting at 
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adenosine receptors further, and have used the highly potent A1 agonist CPA 
or antagonist 8-cyclopentyl-l,3-dipropylxanthine (CPX). The work of the latter 
authors has confirmed the results of Rudolphi and his  colleague^,^^.^^^ and has 
also showed that while acute treatment with a selective A1 receptor agonist is 
highly protective, chronic treatment with the same drug has a profoundly aggrava- 
ting effect in several measures of postischemic recovery, i.e., survival, neurologi- 
cal status, and preservation of ischemia-vulnerable brain regions. Treatment with 
A1 receptor antagonists, on the other hand, produced a diametrically opposite 
effect, i.e., acute administration enhanced, and chronic administration protected 
against the damage.Io6 The same authors also showed that while acute treatment 
with adenosine A3 receptor agonist enhanced ischemia-associated damage, 
chronic treatment was highly ameliorative.s0 Preliminary studies with agents act- 
ing at A2 receptors indicate the same pattern of regimen-dependent reversal. Inter- 
estingly, regimen-dependency of the therapeutic outcome of adenosine-based 
treatment has been also described in NMDA-evoked s e i ~ u r e s ~ ~ . ~ ' ~ . ~ ~ ~  and in the 
water maze model of learning and memory.'I4 

ADENOSINE AND NEUROPROTECTION: THE PUZZLES AND THE 
PARADOXIC ALS 

Despite numerous and convincing demonstrations of neuroprotective effects 
of endogenous adenosine, and despite highly alluring results of experimental treat- 
ment of cerebral ischemia with agents acting at all three adenosine receptor sub- 
types, a number of unsolved puzzles exists. We have already mentioned the fact 
that, although critical from the therapeutic point of view, time limits for efficient 
administration of acute adenosine therapies in stroke and cerebral ischemia are 
unknown. Glial response to the activation of their A1 and A2 receptors is also 
very poorly known, although there are indications that both g l y c o g e n ~ l y s i s ~ ~ ~  and 
astrocytic edema118 may ensue. 

Degradation of endogenous adenosine contributes to the generation of highly 
destructive free radicals. ' I 9  Since administration of free radical scavengers vir- 
tually eliminated production of superoxide species during and after cerebral is- 
chemia,lI9 therapies based upon elevation of endogenous adenosine may be less 
effective than those employing stimulation of adenosine receptors with appropriate 
analogues. Unquestionably, the problem requires a detailed and urgent examina- 
tion. Finally, there is virtually no information on the interplay of individual adeno- 
sine receptor subtypes, although there are indications that such interplay may be 
critical for neuronal function and survival.s0 

The paradoxical effects of adenosine receptor-based therapies require further 
studies as well. The regimen-dependent nature of the outcome has been already 
mentioned. Prolonged stimulation by agonists or blockade by antagonists both in 
vitro and in vivo produces, respectively, either down- or upregulation of adenosine 
receptor density.'8.49,'20 However, in some studies, no changes of either receptor 
density or ligand binding properties (Kd)  were observed during prolonged exposure 
to selective AI agonists and antagonists, and to a nonselective AIlA2 antagonist 
theophylline in V ~ V O . ' ~ ~ ~ ' ' ~ ~ " ~  On the other hand, Fastbom and Fredholm have 
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showed that prolonged exposure to theophylline upregulates adenosine receptors, 
and Shi et have reported that chronic treatment with caffeine (a nonspecific 
A1/A2 antagonist) both upregulates AI  receptors and results in very dramatic den- 
sity shifts of some receptor types (e .g . ,  GABA, dopamine, noradrenaline), while 
having no effect on others (e .g . ,  NMDA). Finally, chronic caffeine-mediated 
upregulation of A1 sites and its functional consequences were the most likely 
source of protection against ischemia reported by Rudolphi et a/. 

Although the protective effect of chronically administered A1 antagonists is 
easily explained when accompanied by receptor upregulation, the nature of the 
mechanisms behind ameliorative actions of a chronic antagonist regimen observed 
in absence of increased density of At receptors remains entirely obscure. Changes 
in G-protein-mediated receptor-effector coupling have been proposed as a putative 
answer to the regimen-dependent shifts seen after chronic exposure to both nonse- 
lective and selective agonists and antagonists.106.115,116 Significant alterations in 
Gsa and GI, proteins that were unaccompanied by a corresponding change in their 
mRNAs have been seen in rat adipocytes following chronic treatment with A1 
receptor a n t a g 0 n i ~ t . I ~ ~  However, whether similar phenomena take place in the 
brain remains to be demonstrated. 

The effect of acute stimulation of A1 and A3 receptors offers another paradox. 
While both receptors are negatively coupled to adenylate cyclase (i.e., reduce its 
levels), acute preischemic activation of At causes extensive neuroprotection. 
Acute activation of A3 receptors, on the other hand, has an equally extensive but 
damaging result in cerebral ischemia,50 although it is protective against NMDA- 
evoked seizures.s1 Moreover, chronic administration of A3 receptor agonist pro- 
tects equally well against cerebral ischemia and against chemically and electrically 
evoked seizures. 50,5 I 

Clearly, there are a number of questions that require additional, extensive 
studies. On the other hand, even if several aspects of adenosine action on a living 
cell, be it a neuron, a cardiac myocyte, or a nephron are unknown, Newby’s 
“retaliatory metabolite” has already found its practical application in cardiology. 
Thus, under the name “Adenocardm,” adenosine is now clinically used in treat- 
ment of supraventricular tachycardias, and it is not a premature hope that soon 
the concept of adenosine-based therapies will also find its application in treatment 
of the disorders of the brain. 
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