SOFTWARE SECURED

The Short Guide to
Application Security For
SaaS Companies

Table of Contents

About The Author

Introduction

Chapter 1 - The Foundations

1.1 Application Security Training

1.1 Application Security Training Cont'd
1.2 Empower Your Security Champions

Chapter 2 - The CASM Framework & Integrated
Analyses

2.1 The CASM Framework

2.2 Integrating Threat Modeling

2.3 Integrating Static Code Analysis

2.4 Integrating Dynamic Code Analysis

2.5 Integrating Dependency Checking

2.6 Integrating Penetration Testing as a Service

Chapter 3 - Logging & Auditing

Chapter 4 - Internal & External Service Level
Agreements

4.1 Internal Service Level Agreements

4.2 - External Service Agreements & 4.3 -
Communication with Third Party Reporters

4.4 - Risk Acceptance & The Exception Process

Conclusion

made with

ﬂm

About The Author

Sherif Koussa is the OWASP Ottawa Chapter Co-Leader, Software
Developer, Hacker, and founder and CEO of Software Secured &
Reshift Security. Sherif brings over 14 years of experience
contributing to OWASP Ottawa, WebGoat, and OWASP Cheat
Sheets. In addition, he supported the SANS and GIAC organizations
in launching their GSSP-Java and GSSP-NET exams and contributed
to several of their courses. After switching from software
development to the field of security, Sherif took on the mission of
supporting DevOps teams to build confidence in their application
security.

made with

Beacon

https://bit.ly/3G4SpcC
https://bit.ly/30LXHK4

Introduction

UNDERSTANDING PROACTIVE VS. REACTIVE SECURITY

For most, the hectic ride of a start-up or a scale-up does not provide
the time to build systems and processes properly. The same can be
considered for an application security program. As you juggle
between building the product and supporting new clients, there is
very little time to properly build a security program. Instead, you
might find yourself running ad hoc and random security tasks just to
support particular clients or certain compliance mandates. It's like
‘Application Security Whack-A-Mole.

KEY SUBJECTS

Throughout this guide, we will cover the building blocks of typical
application security programs and we'll identify at which stage of
your growth they would be most useful. Planning ahead allows for a
more strategic and thoughtful application security program with
more favourable timeframes and budget requirements.

Here at Software Secured, we have collected the information in this
guide through a decade of working with start-ups and scale-ups. We
hope that the information provided will help to bring your company
to the next level in application security to support your growth and
maximize your exit. Please reach out if you have any questions.

Shesif Kovssa

Sherif Koussa

CEO

made with

Beacon

"Do what today others
won’t, so tomorrow, you
can do what others can’t.”

Brian Rogers Loop

- CHAPTER 1 -

THE FOUNDATIONS

These are the essentials that businesses of all sizes should have in their

cybersecurity strategy. They include security processes you can even include
before you develop a single line of code.

e Training your developers on application security
e Choosing a security champion for your team

made with

Beacon

1.1 APPLICATION SECURITY
TRAINING

Best for Seed companies.

Post-seed, team size grows beyond 6-10
developers. In this stage, it's important to make
application security a clear priority for
developers. Security can be integrated as they
write code.

Your team can't fix security vulnerabilities if they don't know
what to look for. Knowing the most prevalent bugs in
application security programs is a top priority for any
development team. Your team needs at least a well-rounded,
base-level training in order to understand the top security bugs
and how to find them. Training together is also helpful to
ensure that everyone on the team has the same base level of
knowledge so that they can work cohesively.

LEARN MORE

made with

Beacan

https://bit.ly/3netY3P

Types of Developer Application Security Training

1 General Security Awareness

This is a high level security training for employees. Usually,
security awareness training focuses on general security hygiene
such as understanding the basic concepts of social engineering
and other phishing attacks. Many CTOs make the assumption
that technical staff are better equipped to deal with phishing
and social engineering than other non-technical staff. While
there is some truth to that, the attack scene is changing so fast.
Software developers are becoming the prime target for social
engineering as they have a higher level of admin access to
multiple systems.

2 Secure Coding Best Practices

While most developers are easily able to identify what good
code looks like, they don't know how to identify secure code.
Knowing the most prevalent bugs in application security
programs should be a top priority for any development team. If
your team doesn’t already have this foundation, we
recommend at least a well-rounded, base-level application
security training for your developers in order to understand the
top bugs and how to find them. A good place to start is through
an OWASP Top 10 training, which teaches developers the most
important techniques to write secure code in any language.

3 Security Operations Best Practices

Not all security breaches happen through a phishing email or a
SQL Injection in the application. There are other scenarios that
can lead to a security breach. For example, the lack of security
operations best practices including password storage, internal
system onboarding, off boarding, setting up cloud
infrastructure in an insecure manner, building secure images,
etc.

Taking a training course does not mean that employee behavior
regarding security will change completely. Different people will
react differently to the information they intake during the
training. After providing employees with the necessary
information via training, you need to start thinking about how
to encourage behavior change following the course.

made with

Beacon

https://beacon.by/software-secured/ss201-writing-secure-code
https://www.softwaresecured.com/introduction-to-sql-injection-mitigation/

1.2 EMPOWER YOUR
SECURITY CHAMPION(S)

In today's software development culture, there is an ever-
increasing need for management to drive empowerment
within their teams. You need to seek out, identify, and
empower someone who can act as your team'’s security
champion. Find at least one champion to start, and add more if
they are available. As you grow, you may even consider
assembling a Security Champions team.

Security champions should have some security background or
knowledge of cyber security, as well as being willing, able, and
motivated to learn much more. They should be interested in
staying up-to-date about evolving developments in the field.
Your champion can be a current team member or a qualified
contractor/consultant. A thorough knowledge of the team'’s
goals is necessary. A security champion needs to be a positive
person that can offer diligent observations and constructive
suggestions to the team.

Your security champion will promote the best practices in
application security. They will work with your systems
architecture and engineering teams, and with DevOps and
DevSecOps project leaders. You may choose someone who has
excelled in their Application Security Training courses, as an
example. Their knowledge of security threats and remediation
methods will be of great assistance in preventing and
eliminating security problems earlier in the software
development lifecycle.

Your security champion(s) will act as the reminder to be
conscious about security in team meetings and design
sessions.

MORE BENEFITS OF SECURITY CHAMPIONS

made with

Beacon

https://bit.ly/3ngwtCT
https://bit.ly/3ngwtCT

- CHAPTER 2 -

THE CASM FRAMEWORK &
INTEGRATED ANALYSES

Application security isn't one-size-fits-all. You grow into it as your business
scales, your revenue increases, or your development team gets larger. Along
the way, you can look into adopting new types of integrated analyses like:

Threat modeling & secure design decisions
Automated SAST & DAST tools
Dependency checking

Penetration testing

Web application firewalls

Careful: they may not all be necessary for your business, but they aren't all
interchangeable either. Choose the ones that are right for your business
function, size, and goals.

made with

Beacon

21 THE CASM FRAMEWORK

Some describe security as boring, a progress-inhibitor or
necessary-evil. We see it as a competitive advantage. Take
DevOps for example. Netflix was able to weather the storm of
AWS blackout due to their superior DevOps practices. While
other AWS users were offline, Netflix remained operational and
pretty close to full capacity. Application security functions
exactly the same. Improving security practices helps you
compete better on many fronts and avoid any disruption due to
cyber attacks.

e Continuity. A repeatable process has a distinct start and end
point.

e Automation. Automatic processes eliminate the barrier to
execution.

e Scheduling. This process cannot be forgotten under the
distraction of tight deadlines

e Measurability. Developers must be able to draw insights
and make decisions from the results of the analyses.

Source: TechAhead

made with

Beacon

1

https://tek.io/2Z9akhB
https://tek.io/2Z9akhB

Using the Continuous Integration approach as your CASM
framework is a great choice as it provides you with each of the
continuity, automation, scheduling and measurability factors.

If the CI/CD approach cannot be used, then a security code
review process is a possible alternative. However, the code
review process will likely provide limited results in comparison.
Regardless, all reported or found bugs should be recorded and
prioritized so that they can be dealt with during the next
scheduled sprint backlog event.

The types of integrated analyses processes included in this
section, when applied together, will form the bedrock of your
application security.

2.2 INTEGRATING THREAT
MODELING

Best for Pre-Seed companies.

With limited budgets, access to additional resources
and commercial tools is likely unavailable. Threat
modeling is the most economic activity to bake
security into the SDLC. Additionally, many design
decisions are made at the pre-seed stage. These
decisions can be difficult to change in later stages,
so it's important that they are considered for
security through threat modeling.

Threat modeling is the ultimate shift left approach. It can be
used to identify and eliminate potential vulnerabilities before a
single line of code is written. Employing threat modeling
methodologies should be your first step toward building
networks, systems, and applications that will be secure by
design.

3 CHALLENGES INTEGRATING THREAT MODELING

made with

' Beacan

https://bit.ly/3GgKFoj

One reason that threat modeling is performed as a first step is
to obtain an objective viewpoint of the big picture for the
project and define the locations of potential security
vulnerabilities. This can be done once the design has been
defined conceptually.

Obtaining this viewpoint will be helpful in choosing the threat
modeling methodology that best fits the project. This step is a
mission-critical decision, so it will require that some
investigative research be completed to ensure that the right
choice is made.

Today's threat modeling is evolved from practices that were
developed nearly thirty years ago, such as drafting process (or
data) flow and attack tree diagrams. Those practices led to
the development of the well-known methodology STRIDE,
discussed later in this section.

Though STRIDE is a highly popular and effective methodology,
several others are also available. Some are more appropriate
for different IT disciplines or have different focuses, such as
applications instead of networks, for example.

No threat modeling technique is perfectly tailored to a specific
use. You should choose the one that most closely aligns
with your goals. However, your DevOps team should be
encouraged to adapt or customize threat modeling techniques
to better fit their specific use case.

Creating a process or data flow diagram is one of the best
methods you can use to gain a top-level view of your system or
application and its interaction points. Frequently, flow diagrams
can be adapted from existing network architecture diagrams.
Diagrams can be created with a pen and paper, or by using an
application like PowerPoint or LucidCharts. Flow diagrams are
useful tools which are more helpful and easier to interpret than
trying to review the process or data flow in a textual design
document alone.

13

made with

Beacon

https://bit.ly/3poS7Y9

Example of a Data Flow Diagram

Netflix e
Data Flow Diagram Database

Movie
Details

User Account
Details

Bank

Movie
Selection

Confirm
Account Type

Confirmation of

Pay
Payment Subscription

User
Database

Account Details

Generate
Customer
Receipt

Netflix Login Details

Payment User
Receipt

Source: Christopher Kalodikis

Start by assessing your system or application, and note where
and how each entry point interacts with all of its associated
external entities. One of the best formats for quickly and
dynamically creating a threat model is the use of a whiteboard
in a team environment. Determine which assets could be
infiltrated by intrusion at each noted entry point. Rank those
assets by the target’s value. The higher the value, the more
likely that asset will be of interest to a hacker. Then, identify the
known possible threats associated with each identified
vulnerable asset.

The next useful exercise in threat modeling is the creation of an
attack tree diagram that integrates all vulnerability information
that has been accumulated. This is a great aid in determining all
potential threats against either infrastructure or application(s).
Using it, you can identify specific threats, their possible entry
points, and the potential exploitation of each threat. A
thoroughly defined attack tree facilitates the ranking of threats,
too.

THE NEW OWASP TOP 10 & WHAT IT MEANS FOR YOU

14

made with

Beacan

https://bit.ly/3E6s1NE

Example of an Attack Tree Diagram

| teal customer data |
ITTI1

Hack into
fileserver

(Ibtain backup
media

f'r

Burglarize Bribe admin Hack remate wser's Hack throwgh firewal|
nﬁﬁﬂ!ﬁm,ﬂﬂﬂ at 5P 55,000 | | home sys‘rern'ﬁ-l,[m int internal netwark: 55,000

Attack cost: Attack cost: Attack cost:
$10,000 $5,000 $1,000

Hack SMTP
fateway: 52,000

uuuuuuuuuuuuuuuuuuuu

Source: eTutorials.org

After fully defining the flow and attack tree diagrams, examine
how the system or application will permit legitimate access to
resources. ldentify the external entities that will need to have
such access. Establish the process by which that access will be
granted. Determine the authentication and encryption methods
to employ. The strength of those measures should be relative
to the value of the asset(s), to ensure that the required trust
level will be maintained.

It is beyond the scope of this guide to explain how to build your
diagrams, but there are many excellent resources with
examples on the internet.

There are several threat modeling methodologies used within
the industry, as well as some tools that can aid you in
performing threat modeling. Note that a tool that can
effectively and automatically perform a complete threat model
does not exist. On the next page is a very basic explanation of
the threat modeling process.

made with

15 B i

Steps to Building a Threat Model

1. Gather threat intelligence

Identify and prioritize the current threats to your architecture,
networks, systems, and applications.

2. Identify and inventory your assets

System assets, actors, connections, and your intended goals should
all be inventoried. This includes both components and data. Be sure
to identify their respective locations. Use this inventory to have the
security team identify assets for which vulnerabilities are known.

3. Identify bad actors for DREAD risk management

Perform research to identify and assess bad actors. This is a
complex process, because the identity of bad actors varies
depending on the organization and its desirable targets. Locate
reports of specific documented cases for attacks that have targeted
the same type of organizations. Focus on the identities and
capabilities of the bad actors in those documented cases. Use that
information to develop a relevant security plan.

4. ldentify and inventory mitigation assets

This should include technology, expertise, and available processes.
Use this inventory to identify any areas that require the
procurement or development of additional mitigation assets.

Steps to Building a Threat Model

5. Identify and inventory mitigation assets

Compare your threat intelligence findings with your asset
inventories to determine your current risk assessment status. Abuse
cases and potential attack types for the system should be assessed
using models like STRIDE as a guideline. STRIDE is a modelling tool
initially developed by Microsoft© to assist security engineers in
identifying and classifying the possible threats on a server. STRIDE
stands for the categories of threats: Spoofing, Tampering,
Repudiation, Information disclosure, Denial of service, and
Escalation of privileges.

e Risk levels should be assessed and weighted using a model like
DREAD as a guideline. DREAD is a methodology developed by
Microsoft©, used as a predictive tool to assess and rate the
following potential risks: Damage, Reproducibility, Exploitability,
Affected users, and Discoverability.

Use the results of that exercise to prepare your plan for
elimination of identified vulnerabilities.

In the design phase, known or accepted risk factors should be
inventoried and included in testing, per Chapter 2, subsections 2.3
through 2.7.

6. Perform threat mapping

Analyze your network(s), system(s), and application(s) to identify
how potential threats might navigate through your assets in an
attack. Use this mapping as a tool to identify how to employ your
mitigation assets for the most effective defense possible.

STRIDE THREAT MODELING

This worksheet breaks down the six main categories of vulnerabilities in
the STRIDE threat model. You may use it to help guide your own threat
model. Use the space provided on the left to help record and track in
your early stages of building the threat model.

CATEGORY

SPOOFING

TAMPERING

REPUDIATION

INFORMATION
DISCLOSURE

DENIAL OF SERVICE

ELEVATION OF
PRIVILEGE

BREAKDOWN

lllegal access and
use of another
user's information

Malicious
modification or
unauthorized
changes

Denial of malicious
action

Exposure of
information to
unauthorized
individuals

Service denial to
valid users

Unprivileged user
gains privileged
access

EXAMPLES YOUR NOTES
Email spoofing, DNS

spoofing, IP

spoofing, DDoS

spoofing, ARP

spoofing

Wire transfer fraud,
credit card
micropayments,
changing links on
public websites

lllegitimately
claiming a
transaction did not
complete

Providing access to
source code files via
temporary backups,
revealing hidden
directories

ICMP flood, smurf
attacks, ping of
death attacks

Process injection,
horizontal privilege
escalation, vertical
privilege escalation

made with

Beacon

Other popular threat modelling methodologies that you may
wish to explore are PASTA, VAST, Trike, OCTAVE, and NIST.

NOTE: Going forward, remember that your threat model is a
living document and needs to be constantly reviewed and
updated. After a system wide threat model has been performed
it can be valuable to perform mini threat models as a secure
engineering design requirement.

Regarding frequency:

e Full initial threat modelling should be performed and
repeated annually.

¢ Delta threat modelling should be performed on any newly
proposed feature or significant change at the design phase.

2.3 INTEGRATING STATIC
CODE ANALYSIS

Best for Seed companies.

Static code analysis is a great way to catch low-
hanging fruit in code paths that are not exercised
often. It also acts as a way to standardize security
across the program. Many enterprises request that
their service provider have a SAST tool in place.

Static code analysis is a methodology used to locate
vulnerabilities in application source code. Typically, it is an
automated process that is performed prior to compilation,
without code execution, to ensure that the code meets industry
standards, leading to establishing a sustainable, secure
program.

TOP SAST TOOLS FOR DEVELOPERS

made with

h Beacan

https://bit.ly/2Z8ET7v

The testing is done with full knowledge of the program'’s
internal structure and the expected logic paths. Knowledge of
the implementation is required. Therefore, the application’s
finalized design document is a prerequisite to test preparation
and execution. Due to the transparency in the static code
analysis testing process, it is referred to as a White Box Test.

The testing itself is a time-consuming process. Fortunately,
there are automated testing tools available. Static code testing
should be conducted by an expert with considerable
experience in this discipline.

When implementing automatic SAST into your
development, the following steps are recommended:

O Expand peer code reviews and evaluations to include
security code review.

O Implement SAST on new code whenever a build or push is
performed.

O Include a process for peer approval and validation of any
exceptions or reclassification of security issues. If a
vulnerability is found that has a medium severity or higher,
escalate the issue to utilize your security or champion(s).

O Implement a full codebase scan every time a major version
releases, or quarterly if there hasn’t been a major version
update recently.

O Consider implementing unit testing for security issues which
have been a historical, common, or high-risk area.

O Perform quarterly scanning of code repositories’
configurations, history, exposure, and management of
secrets. All passwords, keys, or secrets should be kept in
secure cryptographic storage, and never in the code
repository. Any previously exposed keys need to be
updated.

O Confirmed critical severity findings should be addressed
before release. See Chapter 4 for how to identify these.

O Perform a minimum bi-annual auditing of code access
controls.

made with

20 Beacon

2.4 INTEGRATING DYNAMIC
CODE ANALYSIS

Best for Seed companies.

Integrating dynamic analysis is a great way to capture low-
hanging fruit in production. It is an easy win on a vendor
security questionnaire.

Dynamic code analysis is the process of analyzing a software
program or application after development is finalized and the
application is running. Usually, it is an automated process with
the objective of verifying the quality, reliability, and security of
the live/running application.

A primary advantage of integrating dynamic analysis into your
project process is the ability to detect vulnerabilities that are
either too obscure or too complex to be discovered by static
analysis.

One of the benefits of dynamic testing is that it finds real-time,
exploitable faults. In comparison, static analysis often finds
theoretical vulnerabilities, which are not always exploitable
faults.

21

made with

Beacan

2.5 INTEGRATING
DEPENDENCY CHECKING

Best for Pre-Seed companies.

Since the number of dependencies used by applications on
average continues to grow as the business grows, it is
important that businesses integrate dependency checking
early. This is also beneficial to ensure your business is not
stuck with inherently vulnerable components, which
become very expensive to replace later on. Dependency
checking should be a primary tool for B2B companies, as
visibility for supply chain software is very high.

The integration of dependency checking is important to your
cyber security. There are scanning tools available to perform
dependency checking. Modern applications often leverage
several common reusable components developed by third
parties. They look for known vulnerabilities that have been
publicly disclosed. An application is only as secure as its
weakest component.

OWASP has created and made available a free tool for
dependency checking. Dependency-Check is a very useful, free
tool which supports Java, .NET, and has experimental analyzers
for Python, Ruby, PHP and Node.js.

It is helpful to maintain a reference inventory report of third
party dependencies as they are added to your system. Doing so
will enable you to determine those which may become publicly
identified as having vulnerabilities.

Hosting a company’s entire virtual environment on cloud-based
servers does not negate vulnerability or the possibility of a
security breach. Many clients that utilize this approach are
complacent about security, largely because they are relying on
the hosting service to assure the security of the cloud
infrastructure.

made with

2 Beacan

https://bit.ly/3AXJk1G
https://bit.ly/3AXJk1G

However, servers could be misconfigured, which could then
provide an entry point for breaches. If an administrator were to
replicate a misconfigured server’'s image to create additional
servers, they would be multiplying the same vulnerability. There
is always a requirement for testing, risk identification, and
mitigation in cloud-based enterprise architecture.

Cloud Native Application Security (CNAS) requires the same
security disciplines that we have previously defined (i.e., static
and dynamic code reviews and analysis) (refer to Chapter 2,
subsections 2.3 and 2.4), and identification of open source
dependencies and vulnerabilities (Chapter 2, subsection 2.5)).

Using automated tools that are specific to containers and
Infrastructure-as-Code (laC) puts security and compliance
oversight in the CI/CD pipeline. This dramatic shift allows
security gurus to conduct evaluation of 1aC templates in the
design phase.

In cloud-based security, the speed at which fixes are applied to
discovered vulnerabilities and security breaches is critical. It is
important to note that DevSecOps is not DevOps with a small
security supplement. Rather, security is prioritized and
implemented directly into the DevOps process. Companies who
integrate DevSecOps and plan ahead will save development
time and ease budget constraints in the long run.

DevOps teams are continuously pushed to deliver their wares
on-time and within budgets. As a result, DevOps teams often
lack adequate time to focus on the risks posed by intrusive
security vulnerabilities. Opting for a DevSecOps team where
security is prioritized and implemented right into the
development process saves time, energy and risk.

Consider the benefits of a DevSecOps team for your project.
The earlier that you can integrate security into your existing
DevOps processes, the sooner you can begin leveraging your
newfound competitive advantage.

CHECKLIST FOR BLOCKCHAIN SECURITY

made with

> Beacon

https://bit.ly/2ZbzHQe

2.6 INTEGRATING
PENETRATION TESTINGAS A
SERVICE (PTaaS)

Best for Seed companies.Penetration testing as a service
(PTaaS) provides more than just a one-time annual pentest.
PTaaS grants constant access to a team of security experts,
meaning code can be tested as it ships out. Security
experts are also available for consultation on any other
area of your application security, including design, threat
modeling, results analysis and more. It is important to
integrate security testing early in your business to set up
efficient workflows and gain an understanding of security
concerns while the team is smaller.

Automated tooling will always have a limited capability, as it
usually cannot observe and construct the same level of
sophisticated, elaborate attack scenarios as a human hacker.
On the other hand, PTaaS is performed by humans, which
means that it is one of the most realistic and comprehensive
forms of security testing available.

Penetration testing (also known as pentesting) often uncovers
weaknesses that would otherwise go undetected during the
procedures applied in Chapter 2, subsections 2.2 through 2.6.
As the tests are human-driven, the pentester is able to apply
their own experience and closely simulate a real cybersecurity
attack. An additional benefit of penetration testing is that it
takes more time to understand an application's unique
business logic. As such, the penetration tester will design
specific application test cases for each application.

LEARN MORE

made with

2 Beacan

https://bit.ly/3E2a3vN

Penetration tests are necessary to locate and eliminate risks of
significant, disruptive security breaches that cannot be found
with the usual, automated scanning tools. The level of
customization in this type of testing will result in the lowest rate
of false positives versus automated tools which have a very
high rate of false positives.

If you are getting one-off pentests, the automated testing
described in Chapter 2, subsections 2.2 through 2.6, is still
completely necessary as an ongoing part of your process in
order to reduce the risk in between pentests. It will help evolve
your overall security posture and culture.

If you choose to use PTaas, the service includes unlimited re-
testing between quarterly deep assessments. Unlimited re-
testing means our team will check in on your application to
ensure that no vulnerabilities are present after a fix has been
applied.

Types of Penetration Testing

Q i
Ii\.j~‘ 3
<"
B @ 5 D

WEBAPP MOBILE NETWORK 10T API
APP

PENTESTING EXAMPLE: EXPLOITING LESS.)S

25

made with

Beacan

https://bit.ly/3G3rXQR

2.7 INTEGRATING A WAF

Best for Round B companies.

As your business continues to grow and service offerings
expand, the attack surface increases. At this point, it might
be more difficult to stay on guard with each application. A
WAF acts as an another line of defense against attacks. It
works in addition to any other controls.

A Web Application Firewall (WAF) should never be relied
upon as a primary line of defense against application
vulnerability. However, it does provide a good supplemental
layer of protection to augment secure coding practices.

If a WAF is ever updated or swapped for a different vendor’s
product, you could suddenly expose undetected application
weakness if Chapter 2, subsections 2.2 through 2.7, were not
implemented. Frequently, WAFs can be bypassed or
circumvented by attackers - it just takes a little longer. Think of
comprehensive security as layers of an onion. If there are too
many layers for an attacker to break through or overcome, it is
often not cost-effective to attempt an attack at all.

made with

e Beacan

- CHAPTER 3 -

LOGGING & AUDITING

Best for companies in Round A or higher.

In Round A, your company begins playing in the big league,
meaning you're now a worthy target for hackers. Logging and
auditing signals to your customers that you have a mature SDLC
that can withstand attempted attacks. This security measure can

help close bigger enterprise clients.

made with

Beacon

3.1 Logging & Auditing

Effective logging and auditing can be a bit of a balancing act. You need to log
enough to be able to perform a forensic analysis, should you ever have a
breach or other cause to validate the activity performed on a system.
However, it is not desirable to log so much that you expose anything
sensitive about the system or its users. Refer to the OWASP Top 10 2017-
A10: Insufficient Logging & Monitoring.

Logging Too Much

O Is Personal Identifiable
Information (PIl) or other user
information, when viewed in
the context of General Data
Protection Regulation (GDPR),
being retained in logging? Is PlI
logged or obfuscated by the
Universally Unique Identifier
(UUID), also known as Globally
Unique Identifier (GUID)? How
long is logging with PIl retained?

O Are there applications or system
errors that might reveal a user
system password, or key in a
stack trace (which is now being
stored in an unsecured storage
medium)?

O Is there logging that an external
customer is able to access,
which may reveal too much
internal system detail around a
hosted resource?

O Is activity logging aggregated
and tied to external alerting or
detection tools which would
bring immediate attention to a
potential attack or breach?

28

Insufficient Logging

O If a breach occurred, could you
determine the originating user,
IP, tactics/payloads, and
modifications to the application
or system?

O If alegal situation arose where
you may be called upon to
prove non-repudiation of data
on a system, what would you
do?

O If ascenario arose where the
target system had been
breached and local logs were
altered or deleted, what would
you do?

O If the system were actively under
attack, would an increase in
system requests or other attack
types be proactively alerted
and/or detected by operations
personnel?

made with

Beacan

https://bit.ly/30Q3sqb
https://bit.ly/30Q3sqb

- CHAPTER 4 -

INTERNAL & EXTERNAL
SERVICE LEVEL AGREEMENTS

Best for companies in Round A or beyond.

SLAs are typically mandated by larger clients. As one of the goals of a
Round A company is to target and close new large-size vendors, this
step should be started in the Round A stage.

For any security program to work, it will need to have consistency,
calibration, and accountability. The following specific information must be

defined in your organization’s Service Level Agreement (SLA):

e What needs to be done in any security relevant situation;
e How often, by whom, by when; and

¢ An effective way to track your organization’s compliance to its own
security policies.

made with

Beacon

4.1 INTERNAL SERVICE LEVEL
AGREEMENTS

The internal service level agreement (SLA) defines a contract between the
security and software development teams. While security teams are
responsible for identifying risk, developers are the ones in charge of fixing
found issues.

Where possible, automate and integrate all components of security issue
analysis. Anything that cannot be automatically performed or integrated
should be added to some form of a release checklist.

Specific internal SLAs for vulnerabilities discovered during scanning or pen-
testing should be assigned a severity level appropriate to the specific
weakness. These could vary based on the risk potential of the specific target
or context. The chart below is an example of an SLA.

Known open security issues and/or defects should be tracked in a common
database or issue tracking system. This database should be regularly
maintained and audited by a security focal leader. Any collection of issues
approaching or expiring the SLA date should be discussed among
management, security focals, and development to ensure that nothing is
forgotten or overlooked. Regularly scheduled meetings with stakeholders
could be an ideal way to discuss issues together.

CRITICAL STOP-SHIP. Fix before release or within 2
weeks.

HIGH Fix within 14-30 days.

MEDIUM Fix within 90-180 days.

LOW Fix within 180-270 days.

INFORMATIONAL Fix at developer's discretion or by customer

requirement only.

AVOID SECURITY THEATER: HOW TO IDENTIFY SEVERITY

made with

30 3 :

https://bit.ly/3Gk3RS7

4.2 EXTERNAL SERVICE LEVEL
AGREEMENTS

Your organization should have a publicly visible process by which to receive
responsible vulnerability disclosures by third parties (e.g., a portal in which to
log them or a secure email alias, published somewhere on your website,
under security policies). Third party reporters could include prospects,
customers, customer pen-testers, security researchers, bug bounty hunters,
etc.

It would be advisable to impose a set of SLAs for external reports, similar to
internal SLAs but containing more aggressive deadlines.

4.3 COMMUNICATION WITH THIRD
PARTY REPORTERS

Communication with third parties about potential vulnerabilities should be
carefully managed. How you handle these reports and the level of security
culture demonstrated to these third parties is critical. It can often go a long
way toward either improving or diminishing your organization’s reputation
with regards to security.

A note regarding bug bounty hunters: if your application or system has
undergone several rounds of pentesting and you are more confident in your
security posture, consider establishing a bug bounty program with clear rules
and guidelines. Pay third party reporters for their contributions. However, it
is usually not advisable to do this in place of pentesting as it can become very
costly if your security posture is not yet fully matured.

For example, many security researchers will disclose the vulnerability details
publicly, in a blog or security conference, to help advance their own
reputation. They are well within their rights to do so and were kind enough to
tell you about the issue first. Therefore, debating the issue with the third
party reporter or threatening legal action would not be recommended in this
situation.

made with

. Beacan

A common external responsible disclosure period is about 90 days from the
initial report. It is usually best to employ the following steps when dealing
with a third party reporter:

e Thank the reporter for reporting the issue to you.
e Follow up with them when you have confirmed the issue is legitimate (or
request more details from them, if needed).

e Ensure thereis a fix implemented (and communicated to the reporter, in
follow-up) before the disclosure period expires. This will serve to avoid
potential embarrassment or impact to your organization’s reputation.

External third party security issue reports can be valuable assets when
handled correctly and addressed within the time-frame that you have
specified.

4.4 - RISK ACCEPTANCE & THE
EXCEPTION PROCESS

No security policy should be completely rigid. There are going to be
situations where a team cannot practically resolve a particularly complex
security issue within the defined SLAs. Also, there will be situations where it
might make more business sense to accept some minor risk versus
expending major resources or costs to address it.

A good security program will include some form of exception process.
Document when and how a development team or other stakeholders can
present their case to senior decision-makers to request approval to override
SLAs or accept risk. There are cases when this might be preferable instead of
fixing some security issues. Be sure to clearly document these decisions.

Risk should be clearly measured. The DREAD system could be used to
quantify the risk, similarly to the way in which it was employed in threat
modelling (refer to Section 2, subsection 2.1). This approach will help assess
any potential asset damage, exploitability, impact to users, and
discoverability, versus the business case and costs to fix the weakness. This
process should be the exception to the norm and only used selectively and
infrequently, after all other feasible options are considered.

32

made with

Beacon

SOFTWARE SECURED

CONCLUSION

It is our hope that this guide will serve as an inspiration and reference
for the current best practices available to VPs of Engineering, CTOs,
Security Champions, and Developers in their quest to develop reliable,
sustainable, and secure networks, systems, and applications.

We wish you every success in your business and hope you achieve the
growth necessary to exceed your goals.

If there is anything we can do to assist you with security in your
development projects, we would be pleased to discuss your
requirements with you. Our services include:

Penetration Testing as a Service (PTaaS)

Application Security Training

Secure Code Review

One-time WebSec, AppSec and loT Penetration Testing options

BOOK A CONSULTATION

VISIT US ONLINE

info@softwaresecured.com @SoftwareSecured 1-800-611-5741

made with

Beacon

https://meetings.hubspot.com/kclifforddemo/round-robin-inbound-leads
https://bit.ly/3aWAA18

