High-Availability in the Cloud
Architectural Best Practices

Josh Fraser, VP Business Development, RightScale
Brian Adler, Sr. Professional Services Architect
RightScale

- World’s #1 cloud management system
- Managing cloud deployments for 4+ Years – globally
- More than 40,000 users; launched over 2.5MM servers
- Powering the largest production deployments on the cloud
Where RightScale fits

RightScale Cloud Management Platform

Best Practices

- Architect
- Configure
- Manage
- Control
- Codify
- Portability

Cloud-Ready Solutions
- Management Tools
- Automation
- Transparency
- User Administration

Cloud Infrastructure Providers

Fast On-Ramp
Productivity
Agility
Control
Portability

Applications

Real Cloud Experience. Shared.
High Availability in the Cloud
Summary

- Solid track record of AWS operational excellence
- Need design for failure
- Use architectural best practices
- Back up and replication need to be taken seriously
- Unsurpassed availability of resources and options are now available
Designing for Failure (in a good way)

- Large scale failures in the cloud are rare but do happen
- Application owners are ultimately responsible for availability and recoverability
- Need to balance cost and complexity of HA efforts against risk(s) you are willing to bear
- Cloud infrastructure has made DR and HA remarkably affordable versus past options
 - Multi-server
 - Multi-AZ
 - Multi-Region
 - Multi-Cloud
What do we mean by “Cloud”?

• A cloud is a physical datacenter entity behind an API endpoint

• What does that really mean?
 • Amazon Web Services is not a cloud
 • EC2 is not a cloud
 • Eucalyptus, Cloud.com, OpenStack are not clouds
 • EC2 US-East, ‘my private cloud’… these are clouds
 • An availability zone is not a cloud (but it is part of one)

Think of a cloud as a “resource pool” accessed via an API
Distributed Platform Managing Multiple Clouds

- ServerTemplates are a “design once, deploy multiple times” approach
- RightScale handles the heavy lifting between different clouds
Multi-cloud Best Practices: ServerTemplates

• Integrated approach that puts together all the parts needed to architect single & multi-server deployments
ServerTemplates are Server DNA

Cloud Agnostic
One Asset, Multiple Options

"Web Server"

Public Cloud

Private Cloud

Future Cloud
HA Architectures
HA/DR Checklist for Risk Mitigation

- Determine who owns the architecture, DR process and testing.
- Develop expertise in-house and / or get outside help.
- Conduct a risk assessment for each application.
- Specify your target Recovery Time Objective and Recovery Point Objective.
- Design for failure starting with application architecture. This will help drive the infrastructure architecture.
- Implement HA best practices balancing cost, complexity and risk.
 - Automate infrastructure for consistency and reliability.
- Document operational processes and automations.
- Test the failover... then test it again.
- Release the Chaos Monkey.
General HA Best Practices

✓ Avoid single points of failure
✓ Always place (at least) one of each component (load balancers, app servers, databases) in at least two AZs
✓ Maintain sufficient capacity to absorb AZ / cloud failures
 ✓ Reserved Instances – guarantee capacity is available in a separate region/cloud
✓ Replicate data across AZs and backup or replicate across clouds/regions for failover
✓ Setup monitoring, alerts and operations to identify and automate problem resolution or failover process
✓ Design stateless applications for resilience to reboot / relaunch
Regions & Availability Zones

- Zones within a region share a LAN (high bandwidth, low latency, private IP access)
- Zones utilize separate power sources, are physically segregated
- Regions are “islands”, and share no resources

Real Cloud Experience. Shared.
Application Architecture Deployment Options

<table>
<thead>
<tr>
<th>Component</th>
<th>Options/Considerations</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNS</td>
<td>DNS APIs for dynamic configuration (DynDNS, Route 53, DNS Made Easy)</td>
</tr>
<tr>
<td>Load Balancing</td>
<td>HAProxy, Zeus, aiCache, ELB</td>
</tr>
<tr>
<td>Storage</td>
<td>Local storage, EBS, S3, CloudFiles, GlusterFS, etc.</td>
</tr>
<tr>
<td>Server Array</td>
<td>Scalable tiers; scale up and down conservatively</td>
</tr>
<tr>
<td>Database</td>
<td>MySQL, PostgreSQL, SQL Server, RDS, NoSQL</td>
</tr>
</tbody>
</table>
Multi-Cloud Cold / Warm / Hot DR Options

- No Downtime
 - > 5 Minutes: Cold DR (Most Common)
 - > 1 Hour: Warm DR (Recommended)
 - > Few Hours: Hot DR (Least Common)

- Multi-Cloud HA
 - (Live/Live Config)

Costs:
- Cold DR: $ (Most Common)
- Warm DR: $$ (Recommended)
- Hot DR: $$$ (Least Common)
- Multi-Cloud HA: $$$$$ (Live/Live Config)
Multi-Cloud Cold DR Example
Staged Server Configuration and generally no staged data

- Not recommended if rapid recovery is required
- Slow to replicate data to other cloud
- Slow to bring database to an operational state
Multi-Cloud Warm DR Example

Staged Server Configuration, pre-staged data and running Slave Database Server

• Generally recommended DR solution
• Minimal additional cost
• Allows fairly rapid recovery
Multi-Cloud Hot DR Example
Parallel Deployment with all servers running but all traffic going to primary

- Not recommended
- Very high additional cost
- Allows rapid recovery, but not significantly faster than “warm” configuration
Multi-Cloud Hot HA Example

Live/Live configuration. May use Geo-target IP services to direct traffic to regional load balancers.

- Possible, but not recommended (more to follow…)
- Maximum additional cost
- Provides high availability, but complex to implement and manage

Real Cloud Experience. Shared.
Multi-Cloud Hot HA Example

Multi-Cloud looks similar to Multi-AZ... but there are additional problems to solve as some resources are not shared across clouds.

You need DNS management or a global load balancer.

Security is an issue as security groups are Region-specific.

You need to copy or replicate data yourself as EBS snapshots are specific to the source AZ. Getting the data out requires a slave sync or taking LVM snapshots and transferring the data.

Images for cloud servers are specific to the cloud/region.

Consider distributed NoSQL databases with the same distribution considerations. Spread primary and replica nodes across multiple AZs. Place as many as you need for required resiliency.
So What’s Best?

• Design for failure
 • Assume everything will fail, and architect a solution capable of handling each and every failure condition

• No one size fits all solution
 • Every application has its own architecture
 • Not all infrastructure building blocks fit well with all applications
 • Tradeoffs between levels of resiliency and cost

• The options available in the cloud today are unprecedented
 • Capabilities for global redundancy
 • Time to access
 • Investment required

• Follow our High Availability Checklist (or create your own)
• Multi-AZ configurations with a solid DR plan are generally the most viable and cost-conscious solutions
Q & A
Mention this AWS Event and get:

- **Free** High Availability Assessment
- **Free** Design/Architecture Recommendations
- **Half Off** Onboarding Fee

Ready to get started?

Contact us at sales@rightscale.com or (866) 720-0208

Learn More –

RightScale Free Edition
RightScale.com/free

White Paper Library
Rightscale.com/whitepapers

Webinar Library
RightScale.com/webinars