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1 Introduction
Modern-day clinical data analysis problems are typically characterized by heterogeneous data hav-
ing multiple representations or views. Consider a problem from cognitive neuroscience [16], where
data collected from a set of individuals may include their ordinal-valued responses on multiple
questionnaires, their real-valued measurements from fMRI or EEG, and one or more sets of their
pairwise similarities (e.g., computed using SNP measurements or other sources). Each represen-
tation is essentially a “view” of the data and the goal here is to integrate these diverse views to
uncover the latent traits (factors) of these individuals, or learn a classifier for predicting certain psy-
chopathological conditions in these individuals, or predict the missing data in one or more views
(e.g., predicting missing fMRI data, leveraging information from the other views).

In this paper, we present framework to integrate such heterogeneous data (real-,binary-,ordinal-
valued feature matrices and/or similarity matrices), with potentially missing data in each data source,
and learn latent factors describing each individual. In addition, the proposed framework is also able
to identify global as well as view-specific latent factors, and the correlations among the data sources.
Our framework also admits a seamless adaptation for classification, e.g., when the eventual goal is to
predict certain psychopathological conditions for the individuals under a clinical study, based on the
data from all the views. Our framework also consists of an efficient, variational inference algorithm
which, in addition to being scalable for large data sets, is appealing in its own right by providing a
principled way to learn the cutpoints for data in the ordinal-valued views, which can be useful for
the general problem of modeling ordinal-valued data (e.g., questionnaire responses).

2 A Generative Framework for Heterogeneous Multiview Data
We now describe our basic framework for Multiview Learning with Features and Similarities (ab-
breviated henceforth as MLFS), for modeling heterogeneous multiview data. We assume the data
consist of N objects (e.g., individuals in a clinical study) having a total of M feature-based and/or
similarity-based views. Of the M = M1 +M2 +M3 views, the first M1 are assumed to be ordi-
nal feature matrices X(1), . . . ,X(M1) (binary feature matrix is a special case), the next M2 views
are assumed to be real-valued feature matrices X(M1+1), . . . ,X(M1+M2), and the remaining M3

views are assumed to be real-valued similarity matrices X(M1+M2+1), . . . ,X(M1+M2+M3). One
or more of these matrices may have missing data (randomly missing entries or randomly miss-
ing entire rows and/or columns). For a feature-based view, X(m) denotes a feature matrix of size
N ×Dm; for a similarity-based view,X(m) denotes a similarity matrix of size N ×N . We assume
the data X(m) in each feature/similarity-based view are generated from a latent real-valued matrix
U (m) = [U

(m)
1 ; . . . ;U

(m)
N ] ∈ RN×Km , where U (m)

i , i = 1, . . . , N are assumed to be row vectors.

Feature-based Views: The N × Dm feature matrix X(m) for view m is generated, via a link-
function fm, from a real-valued matrix U (m) of the same size (thus Km = Dm). Therefore,
X

(m)
id = fm(U

(m)
id ) where i indexes the i-th object and d indexes the d-th feature. For real-valued

data, the link-function is identity, so X(m)
id = U

(m)
id . For ordinal data in view m having Lm levels

(1, · · · , Lm), X(m)
id = l if gml−1 < U

(m)
id < gml , with cutpoints −G = gm0 < gm1 < gm2 < . . . <

gmLm−1 < gmLm
= +G. Because the cutpoints contain information indicating relative frequencies of

ordinal outcomes in each view, we will learn them as part of our variational inference procedure.
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Similarity-based Views: The N × N similarity matrix X(m) of view m is generated as X(m)
ij ∼

Nor(U (m)
i U

(m)
j

>
, τ−1m ) where X(m)

ij denotes the pairwise similarity between objects i and j in

view m. In this work, we consider symmetric similarity matrices and thus only modelX(m)
ij , i < j,

but the model can be naturally extended to asymmetric cases. In this case, U (m) ∈ RN×Km is akin
to a low-rank approximation of the similarity matrixX(m) (Km < N ).

Although the view-specific latent matrices {U (m)}Mm=1 have different meanings (and play different
roles) in feature-based and similarity-based views, in both cases there exists a mapping from U (m)

to the observed data X(m). We wish to extract and summarize the information from all these view-
specific latent matrices {U (m)}Mm=1 to obtain a global latent representation of the data, and use it
for tasks such as classification or clustering. To do so, we assume the view-specific latent matrices
{U (m)}Mm=1 as being generated from a shared real-valued latent factor matrix V = [V1; . . . ;VN ] of
size N ×R (where R denotes the number of latent factors) with view-specific sparse factor loading
matricesW = {W (m)}Mm=1: U (m)

i ∼ Nor(ViW (m), γ−1m I), whereW (m) ∈ RR×Km .

Since different views may capture different aspects, we impose a structured-sparsity prior in the
factor loading matrices W = {W (m)}Mm=1 of all the views, such that some of the rows in these
matrices share the same support for non-zero entries whereas some rows are non-zero only for a
subset of these matrices. Figure 1 summarizes our basic framework.

Figure 1: Left: plate notation showing the data in M views. The data matrix X(m) could either be a feature
matrix or a similarity matrix (with the link from U (m) to X(m) appropriately defined). Right: for M = 3
views, a structured-sparsity based decomposition of the view-specific latent matrices to learn shared and view-
specific latent factors. First two factors are present in all the views (nonzero first two rows in each W (m))
while others are present only in some views. The matrix V is the global latent representation of the data.

We assume each row of V ∈ RN×R drawn as Vi ∼ Nor(0, I). We use group-wise automatic
relevance determination [19] as the sparsity inducing prior on {W (m)}Mm=1, which also helps in
inferringR by shrinking the unnecessary rows inW to close to zero. Each row ofW (m) is assumed
to be drawn as W (m)

r ∼ Nor(0, α−1mrI), r = 1, . . . , R, where αmr ∼ Gam(aα, bα) and choosing
aα, bα → 0, we have Jeffreys prior p(αmr) ∝ 1/αmr, favoring strong sparsity. We can identify the
factor activeness in each view from the precision hyperparameter αmr: small αmr (large variance)
indicates activeness of factor r in view m. Let B be a (M × R)-binary matrix indicating the
active view vs factor associations, then Bmr = 1 if α−1mr > ε, for some small ε (e.g., 0.01). The
correlation between viewsm andm′ can also be computed as (W̃ (m))>W̃ (m′)/(S(m)S(m′)) where

W̃
(m)
r =

∑Km

j=1(W
(m)
rj )2, r = 1, . . . , R and S(m) =

√
(W̃ (m))>W̃ (m′).

Identifiability via Rotation: Factor analysis models are known to have identifiability issues due
to the fact that VW (m) = V QQ−1W (m), for arbitrary rotation Q [19]. We explicitly optimize
w.r.t. Q to maintain identifiability in the model, and achieve faster convergence during inference.
Adaptation for Multiview Classification: In multiview classification, the training data consist of
N objects, each having M feature and/or similarity based views. As earlier, we assume that the data
are given as a collection of (potentially incomplete) feature and/or similarity matrices {X(m)}Mm=1.
Each object also has a label yi ∈ {1, . . . , C}, i = 1, . . . , N , and the goal is to learn a classifier that
predicts the labels for test objects where each test object has representation in M views (or a subset
of the views). The classification adaptation of MLFS is based on a multinomial probit model [4]
on the global latent factors V = [V1; . . . ;VN ] where Vi ∈ R1×R, which can be summarized as:
yi = argmaxc{zic}, where c = 1, . . . , C; zic ∼ Nor(Viβc, 1); βc ∼ Nor(0, ρ−1I), where
βc ∈ RR×1. Under this adaptation, we learn both V and βc jointly, instead of in two separate steps.
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3 Related Work
Most existing methods for learning from multiview data, such as [19, 20, 11] (with [20] especially
focused on analyzing heterogeneous clininal data) usually either require all the views to be of the
same type (e.g., all views are feature-based or all views are similarity-based), or are designed to
solve specific problems on multiview data (e.g., classification or clustering or matrix completion).
The idea of learning shared and view-specific latent factors for multiview data has been used in
some other previous works [8, 19]. These methods however do not generalize to other feature types
(e.g., ordinal/binary) or similarity matrices, and to classification/clustering problems. Another recent
method [9], based on the idea of collective matrix factorization [17], jointly performs factorization
of multiple matrices with each denoting a similarity matrix defined over two (from a collection of
several) sets of objects (both sets can be the same). However, due to its specific construction, this
method can only model a single similarity matrix over the objects of a given set (unlike our method
which allows modeling multiple similarity matrices over the same set of objects), does not explicitly
model ordinal data, does not generalize to classification/clustering, and uses a considerably different
inference procedure (batch MAP estimation) than our proposed framework.

4 Experiments
We apply our proposed framework on analyzing a heterogeneous multiview data set collected from
637 college students. The data consist of 23 ordinal-valued response matrices from self-report ques-
tionnaires, concerning various behavioral/psychological aspects; one real-valued feature matrix from
fMRI data having four features: threat-related (left/right) amygdala reactivity and reward-related
(left/right) ventral striatum (VS) reactivity [14]; and four similarity matrices, obtained from SNP
measurements of three biological systems (norepinephrine (NE), dopamine (DA) and serotonin (5-
HT)) [7, 13], and a personality ratings dataset provided by informants (e.g., parents, sibling or
friends) [18]. For the SNP data (A,C,G,T nucleotides), the similarity matrices are based on the
genome-wide average proportion of alleles shared identical-by-state (IBS) [12]. For the informant
reports (on 94 questions), the similarities are based on computing the averaged informants’ ratings
for each student and then using a similarity measure proposed in [3]. There are also binary labels as-
sociated with diagnosis of psychopathological disorders. We focus on two broadband behavioral dis-
orders: Internalizing (anxious and depression symptoms) and Externalizing (aggressive, delinquent
and hyperactive symptoms as well as substance use disorders) [10]. We apply our MLFS frame-
work on this data to: (i) interpret common/view-specific latent factors as well as view-correlations,
(ii) do multiview classification to predict psychopathological conditions, (iii) predict missing data
(e.g., question answers and fMRI response) leveraging information from multiple views. We per-
form analysis considering Km = 20 (for similarity-based views), R = 30 latent factors, and prior
hyperparameters aα = bα = 0.01.
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Figure 2: Left: Active views for each factor. Row labels indicate the type of view: ordinal (O), real (R) and similarity (S); column indexes
factors (Number of active views in parenthesis). Middle: Inferred view-correlation matrix. Right: Type of questions associated with each one
of the 7 factors for the NEO questionnaire (first row in the left panel), based on the factor loading matrix of NEO.

Common/view-specific factors and view-correlations: For our first task, we are interested in un-
derstanding the data by (i) identifying latent personality traits (factors) present in the students, and
(ii) inferring the view-correlations. Our model can help distinguish between common and view-
specific factors by looking at the view-factor association matrixB (Section 2). Figure 2 (left panel)
shows the inferred view-factor associations for this data. We only show 17 factors which have at
least one active view. Note that the first one represents the common factor (present in all the views),
whereas the last 4 factors have only one active view (structured noise). Figure 2 (middle panel)
shows the view-correlation matrix inferred fromW (m), computed as described in Section 2. As the
figure shows, our model (seemingly) correctly discovers views that have high pairwise correlations,
such as questionnaires on drug-use, self-report delinquency and alcohol-use. Further insights can
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Table 1: AUC scores on the prediction of internalizing and externalizing disorders.
MLFS (all) MLFS (ordinal) MLFS (real+sim.) MLFS (concat.) BEMKL[5]

Intern. 0.754 ± 0.032 0.720 ± 0.026 0.546 ± 0.031 0.713 ± 0.027 0.686 ± 0.037
Extern. 0.862 ± 0.019 0.770 ± 0.027 0.606 ± 0.024 0.747 ± 0.034 0.855 ± 0.015

be obtained by interpreting the factor loadingsW (m) (for which the rows correspond to factors and
columns to questions). The NEO questionnaire (240 questions) is of particular interest in psychol-
ogy to measure the five broad domains of personality (openness, conscientiousness, extraversion,
agreeableness, and neuroticism). Figure 2 (right panel) shows, for the 7 factors active in NEO, the
percentage of questions associated with every domain of personality. It is insightful to observe that
the first factor includes, in an equitable manner, questions related with the five domains, whereas for
the other factors, questions related with one or two domains of the personality are dominant.

Predicting psychopathological disorders: Our next task involves predicting each of the two types
of psychopathological disorders (Internalizing and Externalizing; each is a binary classification
task). To do so, we first split the data at random into training (50%) and testing (50%) sets. The
training set is used to fit MLFS in four different settings: (1) MLFS with all the views, (2) MLFS
with ordinal views (questionnaires), (3) MLFS with real and similarity based views (fMRI, SNP and
informants), (4) MLFS concatenating the ordinal views into a single matrix. We consider Bayesian
Efficient Multiple Kernel Learning (BEMKL) [5] as a baseline for this experiment. For this baseline,
we transformed the ordinal and real-valued feature based views to kernel matrices. Each experiment
repeated 10 times with different splits of training and test data. Since the labels are highly imbal-
anced (very few 1s), to assess the prediction performance, we compute the average of the area under
ROC curve (AUC). Table 1 shows the mean AUC, bold numbers indicate the best performance. The
MLFS model, which considers all the heterogeneous views, yields the overall best performance.
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Figure 3: Predicting ordinal re-
sponses and fMRI

Predicting ordinal responses and fMRI: We first consider the
task of ordinal matrix completion (questionnaires). We hide
(20%, 30%, . . . , 90%) data in each ordinal view and predict the miss-
ing data using the following methods: (1) MLFS with all the views, (2)
MLFS with only ordinal views, concatenated as a single matrix, and (3)
sparse factor probit model (SFPM) proposed in [6]. Figure 3 (top) shows
the average mean absolute error (MAE) over 10 runs. The smallest MAE
achieved by MLFS with all views demonstrates the benefit of integrating
information from both the features and similarity based views with the
group sparse factor loading matrices. Our next experiment is on predict-
ing fMRI responses leveraging other views. For this task, we hide fMRI
data from 30% of the subjects. For this group, we only assume access to
the ordinal- and similarity-based views. We compare with two baselines:
(1) a linear regression model (LRM) where the covariates are the ordi-
nal responses and the similarity-based views (decomposed using SVD);
(2) a sparse factor regression model (SFRM) [2] with same covariates as
before. Figure 3 (bottom) shows the mean square error (MSE) averaged
over 10 runs. Here again, MLFS outperforms the other baselines, showing the benefits of a princi-
pled generative model for the data. The Supplementary Material contains additional comparisons,
including a plot for predicted vs. ground-truth of missing fMRI responses.

5 Conclusion
We presented a probabilistic, Bayesian framework for learning from heterogeneous multiview data
consisting of diverse feature-based (ordinal, binary, real) and/or similarity-based views, with each
view potentially having a significant amount of missing data. In addition to uncovering the hidden
factors in multiview data, our framework allows natural adaptations for solving problems such as
multiview matrix completion and multiview classification. We applied our framework for analyzing
a real-world multiview clinical data, integrating the diverse data sources, uncovering latent traits of
individuals, learning a classifier for psychopathological conditions, and predicting missing data for
views where data acquisition may be expensive (e.g., fMRI) leveraging data from views that are
inexpensive to acquire (e.g., questionnaire responses). The framework can also be easily extended
for multiview clustering by replacing the multinomial probit classification model by a Gaussian
mixture model over the latent factors. Finally, in the proposed framework, it is also possible to
employ nonparametric Bayesian priors [15, 1] to infer the number of latent factors from data.
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[11] A. Kumar, P. Rai, and H. Daumé III. Co-regularized Multi-view Spectral Clustering. In NIPS, 2011.

[12] D. J. Lawson and D. Falush. Population identification using genetic data. Annu. Rev. Genomics Hum.
Genet., 13:337–361, 2012.

[13] Y. Nikolova, R. Ferrell, S. Manuck, and A. Hariri. Multilocus genetic profile for dopamine signaling
predicts ventral striatum reactivity. Neuropsychopharmacology, 36:1940–1947, 2011.

[14] Y. Nikolova and A. R. Hariri. Neural responses to threat and reward interact to predict stress-related
problem drinking: A novel protective role of the amygdala. Biology of Mood & Anxiety Disorders, 2,
2012.

[15] P. Rai and H. Daume. The infinite hierarchical factor regression model. In NIPS, 2008.

[16] E. Salazar, R. Bogdan, A. Gorka, A. Hariri, and L. Carin. Exploring the Mind: Integrating Questionnaires
and fMRI. In ICML, 2013.

[17] A. P. Singh and G. J. Gordon. Relational learning via collective matrix factorization. In KDD, 2008.

[18] S. Vazire. Informant reports: A cheap, fast, and easy method for personality assessment. Journal of
Research in Personality, 40(5):472 – 481, 2006.

[19] S. Virtanen, A. Klami, S. A. Khan, and S. Kaski. Bayesian Group Factor Analysis. In AISTATS, 2012.

[20] S. Zhe, Z. Xu, Y. Qi, and P. Yu. Joint Association Discovery and Diagnosis of Alzheimer’s Disease
by Supervised Heterogeneous Multiview Learning. In Pacific Symposium on Biocomputing, volume 19,
2014.

5


	Introduction
	A Generative Framework for Heterogeneous Multiview Data
	Related Work
	Experiments
	Conclusion

