In-medium quasiparticle distributions and QGP photons

Akihiko Monnai (RIKEN BNL)

Yukawa Institute Molecule-type workshop “Selected topics in the physics of the Quark Gluon Plasma and Ultrarelativistic Heavy Ion Collisions”
23rd September 2015, YITP, Kyoto University, Japan
In-medium quasiparticle distributions, chemical equilibration and medium refraction for QGP photons

Akihiko Monnai (RIKEN BNL)

Yukawa Institute Molecule-type workshop “Selected topics in the physics of the Quark Gluon Plasma and Ultrarelativistic Heavy Ion Collisions”

23rd September 2015, YITP, Kyoto University, Japan
Introduction

- Heavy-ion collisions: Hadronic point of view

Graphics by AM

- **Hadronic transport** (> 10 fm/c)
 - Freeze-out

- **Hydrodynamic stage** (~1-10 fm/c)
 - Equilibration

- **Glasma** (~0-1 fm/c)
 - Little bang

- **Color glass condensate** (< 0 fm/c)

- **Color opaque**

 Most information before freeze-out is lost in “thermal hadrons”
Introduction

- Heavy-ion collisions: **Photonic point of view**

Colliding nuclei

- **QGP fluid**
- **Hadronic fluid**
- **Glasma** (~0-1 fm/c)
- **Hydrodynamic stage** (~1-10 fm/c)
- **Freeze-out**
- **Equilibration**
- **Little bang**

Color opaque

Most information before freeze-out is lost in “thermal hadrons”

Electroweak transparent

Photons retain information during time-evolution
Introduction

- Heavy-ion collisions: **Photonic point of view**

Graphics by AM

- **Decay photons**
 - from hadronic decay

- **Thermal photons (hadronic)**
 - from black-body radiation

- **Thermal photons (QGP)**
 - from hard processes

- **Prompt photons**
 - from hard processes

- **Direct photons**

Color opaque
Most information before freeze-out is lost in “thermal hadrons”

Electroweak transparent
Photons retain information during time-evolution
Introduction

- Heavy-ion observable: p_T spectra
 - Direct photon p_T spectra
 - Thermal photon slope $T_{RHIC} = 221 \pm 38$ MeV
 - $T_{\text{init}} = 300$-600 MeV implied from theoretical estimation
 - Cf: Slope parameter for LHC is $T = 304 \pm 51$ MeV
 - Wilde et al., arXiv:1210.5958
 - Comparison with Lattice QCD
 - Crossover temperature: $T_c \sim 170$ MeV
 - Heavy-ion photons are an evidence for the realization of QGP

Adare et al., PRL104 132301

Borsanyi et al., JHEP 1011 077

Crossover temperature: $T_c \sim 170$ MeV

Heavy-ion photons are an evidence for the realization of QGP
Introduction

- Heavy-ion observable: elliptic flow
 - Direct photon v_2 is found to be large
 - Comparable to pion v_2
 (Hydro models imply smaller v_2)
 - No definite answer so far;
 recognized as “photon puzzle”

- Direct photon v_3 is indicated to be large
 - Similar to pion v_3
 - The enhancement is at least partially due to the properties of the medium itself
Photon puzzle

- Direct photons = \textit{prompt} photons + \textit{thermal} photons

\[E \frac{dN}{d^3p} = AB T_{AB} \times E \frac{d\sigma^{pp}}{d^3p} + \int E \frac{dR_{\text{thermal}}}{d^3p} (u^\mu, T) dx^4 + E \frac{dN_{\text{additional}}}{d^3p} \]

- Modifications in thermal photon emission?
 - Emission rate
 - Liu & Liu, PRC 89, 034906 (2014)
 - Monnai, PRC 90, 021901 (2014)
 - Hees, He & Rapp, NPA 933, 256 (2015)
 - Gale et al., PRL 114, 072301 (2015)
 - Monnai, 1504.00406
 - McLerran & Schenke, 1504.07223
 - Bulk evolution
 - Hees, Gale & Rapp, PRC 84, 054906 (2011)
 - Dion et al, PRC 84, 064901 (2011)
 - Linnyk et al., PRC 88, 034904 (2013)
 - Linnyk et al., PRC 89, 034908 (2014)
 - Heinz, Liu & Shen, 1403.8101
 - Shen et al, PRC 91, 024908 (2014)
 - Monnai, 1408.1410
 - McLerran & Schenke, NPA 933, 256 (2014)

- Modifications in prompt photon emission?

- Other sources of photons (e.g. glasma)?

- Other effects (e.g. magnetic field)?
 - Basar, Kharzeev & Skokov, PRL 109, 202303 (2012)
 - Bzdak & Skokov, PRL 110, 192301 (2013)
 - Basar, Kharzeev & Shuryak, PRC 90, 014905 (2014)

- Experimental data needs more statistics?

\textit{It could be a combination of those or something entirely different}
Photon ν_n puzzle

- In this talk we discuss
 - In-medium corrections on parton distributions

- Quark chemical equilibration

- Optical effects
Quark chemical equilibration

- Properties of bulk medium
 - Color glass condensate: Colliding two nuclei are saturated gluons
 - QGP/hadronic fluid: A plasma of equilibrated quarks and gluons

τ < 0 fm/c

τ ~ 1-10 fm/c

“Little bang”

Chemical equilibration does not necessarily coincide with thermalization (cf: AM and B. Müller, arXiv: 1403.7310)
Quark chemical equilibration

“Gluons do not shine”

Compton scattering

Pair annihilation

Flow anisotropy develops along with time evolution in hydrodynamics:

\[Du^x = \frac{1}{e + P} \nabla^x P \]

\[Du^y = \frac{1}{e + P} \nabla^y P \]

The contribution from later stage becomes large; photon \(v_2 \) can be enhanced
Quark chemical equilibration

- Hydrodynamic equations of motion

 - Energy-momentum conservation
 \[\partial_\mu T_{g}^{\mu \nu} + \partial_\mu T_{q}^{\mu \nu} = 0 \]

 - Rate equations
 \[\partial_\mu N_{q}^{\mu} = 2r_{b}n_{g} - 2r_{b} \frac{n_{g}^{eq}}{(n_{g}^{eq})^{2}} n_{q}^{2} \]
 \[\partial_\mu N_{g}^{\mu} = (r_{a} - r_{b})n_{g} - r_{a} \frac{1}{n_{g}^{eq}} n_{g}^{2} + r_{b} \frac{n_{g}^{eq}}{(n_{q}^{eq})^{2}} n_{q}^{2} \]
 \[+ r_{c}n_{q} - r_{c} \frac{1}{n_{g}^{eq}} n_{q} n_{g} \]

 \(r_{a}, r_{b}, r_{c} \) : reaction rates
 \(n_{q}^{(eq)}, n_{g}^{(eq)} \) : equilibrium densities

 Chemical relaxation time \(\tau_{\text{chem}} \sim 1/r_{b} \)

(a) gluon splitting
(b) quark pair production
(c) gluon emission from a quark
In-medium parton distributions

- “QGP is not an ideal gas”

Equation of state

Phase-space distribution

- Non-interacting gas: Bose-Einstein or Fermi-Dirac distributions

\[f_0 = \frac{1}{e^{\sqrt{p^2 + m^2}/T} + 1} \]

- Lattice QCD: SB limit is not reached

\[f_q \text{ and } f_g \text{ require in-medium corrections (≠ viscosity) and they affect QGP photon emission rate} \]

*Hadrons are not affected because hadron resonance gas works
In-medium parton distributions

- Quasi-particle distribution

\[f_{\text{eff}}^i = \frac{1}{\exp\left(\frac{\omega_i}{T}\right) \pm 1} \]

where \(\omega_i = \sqrt{p^2 + m_i^2} + W_{\text{eff}}^i \)

In-medium correction: \(W_{\text{eff}}^i(T) \)

- Thermodynamic relations

Thermodynamic consistency

\[\frac{\partial \Phi_i}{\partial T} \bigg|_{\mu=0} = - \int \frac{g_id^3p}{(2\pi)^3} \frac{\partial \omega_i}{\partial T} f_{\text{eff}}^i \]

E.g. Biro et al., Phys. Atom. Nucl. 66, 982

Thermodynamic relations

Partition function:

\[\ln Z_i = \pm V \int \frac{g_id^3p}{(2\pi)^3} \ln \left[1 \pm \exp\left(-\frac{\omega_i}{T} \right) \right] - \frac{V}{T} \Phi_i(T) \]

Energy density:

\[e = -\frac{1}{V} \sum_i \frac{\partial \ln Z_i}{\partial \beta} = \sum_i \int \frac{g_id^3p}{(2\pi)^3} \omega_i f_{\text{eff}}^i + \Phi \]

Pressure:

\[P = \frac{1}{V} \sum_i T \ln Z_i = \frac{1}{3} \sum_i \int \frac{g_id^3p}{(2\pi)^3} p \frac{\partial \omega_i}{\partial p} f_{\text{eff}}^i - \Phi \]
In-medium parton distributions

- Quasi-particle distribution

Effective interaction $W_{\text{eff}}^{i}(T)$ and background field contribution $\Phi_{i}(T)$ are determined by lattice QCD EoS

Note: quasi-particle picture is better than ideal gas but may not be best

- We have n_{eq}^{g} and n_{eq}^{q} for the rate equations
- Photon emission from hot regions are suppressed; additional enhancement of v_{2}
Input for the model

- **Thermal photon emission rate**

 \[
 E \frac{dR^\gamma}{d^3p} = \frac{1}{2} \left(1 - \tanh \frac{T - T_c}{\Delta T} \right) E \frac{dR^\gamma_{\text{hadron}}}{d^3p} + \frac{1}{2} \left(1 + \tanh \frac{T - T_c}{\Delta T} \right) E \frac{dR^\gamma_{\text{QGP}}}{d^3p}
 \]

 where \(T_c = 0.17 \text{ GeV} \) and \(\Delta T = 0.017 \text{ GeV} \) with \(f_i = (n_i/n_i^{\text{eq}}) f_i^{\text{eff}} \)

 [Strickland, PLB 331, 245]

 [Turbide, Rapp and Gale, PRC 69, 014903]

- **Hydrodynamic parameters (Initial conditions + fluid properties)**

 - Gluon energy distribution: MC Glauber (200 GeV Au-Au at \(b = 6 \text{ fm} \))
 - Quark energy distribution: 0 GeV/fm\(^3\)
 - Initial time: 0.4 fm/c
 - Equation of state: Lattice QCD
 - Chemical reaction rates: \(r_i = c_i T \) where \(c_i \) ranges are \(0.2 \leq c_b \leq 2 \) (\(\tau_b \sim 0.5-5 \text{ fm/c} \)) and \(0 \leq c_{a,c} \leq 3 \) (\(\tau_{a,c} \sim 0.3-\infty \text{ fm/c} \))
Thermal photon v_2

- With effective distribution

In-medium corrections to parton distribution functions additionally enhance thermal photon v_2

Note: Prompt photons are not included – they will reduce v_2
Thermal photon ν_2

- With effective distribution and chemical equilibration

Late quark chemical equilibration ($\tau_{\text{chem}} \sim 1/c_b T$) leads to visible enhancement of thermal photon ν_2

$\tau_{\text{chem}} \sim 2\ \text{fm}/c$ is motivated in an early equilibration model

(AM and B. Müller, arXiv: 1403.7310) \iff \quad c_b = 0.5 \text{ for } T \sim 0.2\ \text{GeV}
Thermal photon ρ_T spectra

- With chemical equilibration

\[\rho_T\text{ spectrum is }\textbf{reduced} \text{ by both late quark chemical equilibration and in-medium corrections}\]

More sophisticated photon emission rate and dynamical EoS are required

(Cf. Gelis et al., JPG 30, S1031)
Discussion

- Types of equilibration in heavy-ion collisions

Conventional hydro: $\tau_{th} = \tau_{iso} = \tau_{ch}$

Chemically non-equilibrated hydro: $\tau_{th} = \tau_{iso} < \tau_{ch}$

Anisotropic hydro: $\tau_{th} = \tau_{ch} < \tau_{iso}$

Next step:

Cf: Rapidity correlation by AM and B. Schenke, 1509.04103
Summary

- Direct photons are essential in understanding the QGP

 - Flow harmonics are large: “Photon puzzle”
 - Thermal photon anisotropy is enhanced by late quark chemical equilibration
 - Early equilibration from CGC to QGP may be a key

- In-medium corrections to phase-space distributions can also enhance ν_2
 - Emission rates are consistent with lattice QCD equation of state

- Photon spectra is reduced by those mechanisms and prompt photons will reduce ν_2 enhancement

- We need additional mechanisms - photon emission in later stages? Or introduction of prompt photon ν_2?
QGP optics

- A lens and prism
 - Transparent media can be refractive
 - Geometrical anisotropy ($\varepsilon_2, \varepsilon_3 \ldots$) is mapped onto photon flow harmonics ($v_2, v_3 \ldots$)

- I investigate optical aspects of the QGP
 - Note: no refraction still gives us experimental insight on the QGP

- Fermat’s principle

\[
\frac{d^2 x}{d\tau} = \frac{1}{2} \frac{dn^2}{dx}, \quad \frac{d^2 y}{d\tau} = \frac{1}{2} \frac{dn^2}{dy}
\]

- The path of a ray is determined by the gradient in refractive index n
QGP optics

- A model for the refractive index
 - Hard thermal loop estimations imply

\[n^2(T, \omega) = 1 - \frac{\omega_p^2(T)}{\omega^2} \]

Parameterized as
\[\omega_p^2(T) = \alpha^2 T^2 \]

Doppler effects (due to flow)
\[\omega = \frac{\omega_0}{\gamma(1 + \beta \cos \Delta \phi)} \]

This is a model – one may find, e.g., a pseudo critical behavior

- Speed of light in the plasma
 - Phase velocity:
 \[v_{ph} = \frac{1}{n} > 1 \]

Refraction in the medium
 - Causality is not violated

Group velocity:
\[v_g = \frac{\partial \omega}{\partial k} = \sqrt{1 - \frac{\omega_p^2}{\omega^2}} < 1 \]

JETP 55, 199 (1982)

PRD 84, 125027 (2011); PRD 88, 045014 (2013)
QGP optics

- A model for the refractive index
 - Naïve rough estimation in high T limit
 \[\omega_p^2 \sim m_D^2 \sim e^2 T^2 \]
 where m_D is Debye mass and $e^2 = 4\pi\alpha_{EM}$
 - $a^2 \sim 10^{-1}$ when $\omega_p^2(T) = a^2 T^2$

Note: Pseudo-critical physics is missing – the range $0 < a^2 < 2$ will be explored to have an experimental insight.
Numerical analyses

- Prompt photon elliptic flow (= 0 if no refraction)

(I) Positive prompt photon v_2 is generated for non-absorptive region

Not large enough to explain the large direct photon v_2
- Thermal photons are necessary
- Pseudo-critical behavior of refractive index?

(II) Negative prompt photon v_2 in ultra-low momentum region

Absorptive region with $n^2 < 0$ forms a “dark core”

(III) Positive prompt photon v_2 near $p_T = 0$

Semi-opaque medium: easier to come out of minor axis
Numerical analyses

- Prompt photon transparency

\[T = \left(\frac{dN_{\text{medium}}^\gamma}{2\pi p_T dp_T dy} \right) \bigg/ \left(\frac{dN_{\text{vacuum}}^\gamma}{2\pi p_T dp_T dy} \right) \]

The transparency decreases below \(\omega_p \) due to imaginary refractive index

Experimental data seem to show no sudden reduction above 0.5 GeV

- \(a < 1-2 \) is preferred; constraint on QGP plasma frequency
Summary again

- Optical effects in the QGP medium
 - Positive flow harmonics is generated
 - p_T spectrum at mid-high p_T is not modified
 - It is quantitatively small (as expected); refractive index near T_c?
 - Refractive v_n can be sensitive to QGP plasma frequency
 - Ultra-low p_T photon measurements may give constraint on it
and outlook

- Some theory-experiment prospects
 - Higher harmonics v_4 and v_5 of direct photons
 - Photons from small systems (d-Au, He3-Au etc.)
 - Will they be similar to hadronic v_n? Is there a thermal medium?
 - Photons from systems at lower energies
 - Are they from the same origin? Will there be squeeze-out for photons?
The end

Thank you!