QCD critical point and thermal photons

Akihiko Monnai (IPhT, CNRS/CEA)
In collaboration with: Y. Yin (BNL) and S. Mukherjee (BNL)

Strong and Electroweak Matter 2016
13th July 2016, University of Stavanger, Norway
Introduction

- Beam energy scans: **exploration of QCD phase diagram**

 - RHIC (BNL)
 Phase II (2017-20?): 3.0 GeV?

 - FAIR (GSI), NICA (JINR), SPS (CERN), J-PARC etc.
 + LHC (CERN): 5.5 TeV

We use fluid dynamics to:

- Look for signals of a **QCD critical point**
- Determine the QGP properties at finite T, μ_B
- Understand the origin of “fluidity”
Introduction

- Observable: Elliptic flow (v_2)

$$\frac{dN}{d\phi} = \frac{N}{2\pi} \left[1 + 2v_1 \cos(\phi - \Psi_1) + 2v_2 \cos(2\phi - 2\Psi_2) + 2v_3 \cos(3\phi - 3\Psi_3) + \ldots \right]$$

Hadron v_2 is found to be large

- It follows fluid dynamic description
- An “evidence” for strongly-coupled QGP early equilibration of bulk medium ($\tau < 1$ fm/c)?
Overview of a collision

- Hadronic point of view

Hadronic transport (> 10 fm/c)
- Freeze-out

Fluid dynamic stage (~1-10 fm/c)
- Equilibration

Glasma (~0-1 fm/c)
- Little bang

Color glass condensate (< 0 fm/c)

- Color opaque
 Most information before freeze-out is lost

Colliding nuclei

Graphics by AM
Overview of a collision

- Photonic point of view

- Hadronic transport (> 10 fm/c)
 - Freeze-out

- Fluid dynamic stage (~1-10 fm/c)
 - Equilibration

- Glasma (~0-1 fm/c)
 - Little bang

- Color glass condensate (< 0 fm/c)

- Color opaque
 - Most information before freeze-out is lost

- Electroweak transparent
 - Photons retain information during time-evolution
Observables

- Photonic point of view

- Decay photons
 - from hadronic decay

- Thermal photons (hadronic)
 - from black-body radiation

- Thermal photons (QGP)
 - from hard processes

- Prompt photons
 - from hard processes

- Direct photons

- Color opaque
 Most information before freeze-out is lost

- Electroweak transparent
 Photons retain information during time-evolution

Graphics by AM

Colliding nuclei
Observable?

- QCD critical point (QCP) vs. Thermal freeze-out

PART 1

- QCD medium is thermalized; colored objects (hadrons) are scattered

Signals can be washed away unless
1. QCP is near enough to freeze-out
2. Its effect on evolution is large enough

PART 2

- Thermal photons penetrate through the medium

Can the QCP signals be clear?
Hydrodynamic model for BES

A path we have been through

- Integrated v_2 becomes small at lower E
- "HYDRO limits" estimated with:
 - Analytical Glauber model
 - EoS with 1st order PT
 - Ideal hydro
 - Kolb et al., PRC62, 054909 (2000)
- Once thought hydro is only for AA at top energies (which may still be true)

Applicability tests

- Differential v_2 stays large
- We should see if the state-of-art hydrodynamic interpretations work
Equations to solve

- Relativistic formalism

 Energy-momentum conservation \(\partial_\mu T^{\mu \nu} = 0 \)

 Baryon conservation \(\partial_\mu N_B^{\mu} = 0 \)

 Equation of state \(P = P(e, n_B) \)

 Shear viscosity \(\pi^{\mu \nu} = 2\eta \nabla^{\langle \mu} u^{\nu \rangle} - \tau_\pi D\pi^{\langle \mu \nu \rangle} + ... \)

 Bulk viscosity \(\Pi = -\zeta \nabla_\mu u^\mu - \tau_\Pi D\Pi + ... \)

 Baryon diffusion \(V_B^\mu = \kappa_{VB} \nabla^\mu \frac{u_B}{T} - \tau_{VB} \Delta^{\mu \nu} D V_\nu + ... \)

- Ideal hydrodynamics

- Dissipative hydrodynamics

 response to deformation
 response to expansion
 response to chemical gradients
Near the QCD critical point

- Bulk viscosity becomes dominant
 - Shear viscosity: \(\eta = \xi^{(4-d)/19} \)
 - Bulk viscosity: \(\zeta = \xi^3 \)
 - Baryon diffusion: \(D_B = \xi^{-1} \)
- Relaxation time

\[
\tau_\Pi = \tau_{\Pi,0} \left(\frac{\xi_{\text{eq}}}{\xi_0} \right)^3 \quad \text{as causality suggests}
\]

\[
\lim_{k \to \infty} \frac{d\omega}{dk} = \sqrt{c_s^2 + \frac{\zeta}{\tau_\Pi (\epsilon + P)}} < 1
\]

- 2nd order theory can applicable because \(\Pi \) is “frozen” for large \(\tau_\Pi \)
- We use \(\zeta_0 = 2 \left(\frac{1}{3} - c_s^2 \right) \frac{e + P}{4\pi T} \), \(\tau_{\Pi,0} = C_\Pi \frac{18 - (9 \ln 3 - \sqrt{3}\pi)}{24\pi T} \) based on AdS/CFT

AM, Y. Yin and S. Mukherjee, arXiv:1606.00771

We consider bulk viscosity

\[
\zeta = \zeta_0 \left(\frac{\xi_{\text{eq}}}{\xi_0} \right)^3
\]

but 1st order theory is unstable
Initial conditions

- Longitudinal distribution

 ▶ Color glass models extrapolated to lower energies for the shapes of energy and net baryon distribution

Energy density peaks at $\eta=0$, while net baryon density at finite η

▷ Chemical potential is larger at forward rapidity η

* $\eta_s = \frac{1}{2} \ln \frac{t + z}{t - z}$ is the “angle” of hyperbolic coordinate

H. J. Drescher and Y. Nara, PRC 75, 034905; 76, 041903
Y. Mehtar-Tani and G. Wolschin, PRL 102, 182301; PRC 80, 054905
Equation of state

- Hadron resonance gas + lattice QCD

Lattice QCD has a sign problem at finite density

- Taylor expansion up to the 4th order is used for QGP phase

$$\frac{P}{T^4} = \frac{P_0}{T^4} + \frac{1}{2} \chi_B^{(2)} \left(\frac{\mu_B}{T} \right)^2 + \frac{1}{4!} \chi_B^{(4)} \left(\frac{\mu_B}{T} \right)^4 + \mathcal{O} \left(\frac{\mu_B}{T} \right)^6$$

$$\frac{P}{T^4} = \frac{1}{2} \left[1 - \tanh \frac{T - T_c(\mu_B)}{\Delta T_c} \right] \frac{P_{\text{HRS}}(T)}{T^4} + \frac{1}{2} \left[1 + \tanh \frac{T - T_c(\mu_B)}{\Delta T_c} \right] \frac{P_{\text{lat}}(T_s)}{T_s^4}$$

where

- $T_c = 0.166 - c(0.139\mu_B^2 + 0.053\mu_B^4)$
- $T_s = T + d[T_c(0) - T_c(\mu_B)]$

Currently no QCP because its effect on the EoS is limited
Trajectories on μ_B-T plane

- 1+1 dimensional hydrodynamic demonstration

Diagram:

- Critical point is placed by hand at $(\mu_B, T) = (0.22 \text{ GeV}, 0.16 \text{ GeV})$ by mapping the critical region of Ising model onto the μ_B-T plane.

- If the QCP exists, the trajectory is pushed away from it on the lower μ_B side because of **bulk viscous entropy production**.
Rapidity distributions

- 1+1 dimensional hydrodynamic demonstration

- Charged particle and net baryon distributions are deformed if the critical point is contacted

- dN_{ch}/dy deformation is caused by entropy production and enhanced flow convection due to the reduction in effective pressure P - \Pi

- dN_{B}/dy deformation is by convection only

AM, Y. Yin and S. Mukherjee, arXiv:1606.00771
Comments on applicability

- Is the model valid near QCP?
 - Viscous correction should satisfy
 \[
 \frac{|\Pi|}{c + P} < 1
 \]
 - When \(|\Pi| \sim P \),
 \[
 \frac{|\Pi|}{c + P} \sim \frac{1}{1 + c_s^{-2}}
 \]

But the sound velocity is \(c_s^2 \sim 0.1 \) near the QCP

- Cavitation could be an issue; bulk viscous relaxation time from AdS/CFT approach (\(C_\Pi = 1 \)) seems to avoid the issue.
Thermal photons

- Does emission rate contain a signal of QCP?

Few studies on the emission rate at finite density in the vicinity

Linear sigma model suggests no dramatic enhancement at QCP

Bulk viscosity can change the emission rate via the distortion of the phase-space distribution

$$E \frac{dR_i}{d^3 p} = \int \frac{d^3 p_1}{2E_1(2\pi)^3} \frac{d^3 p_2}{2E_2(2\pi)^3} \frac{d^3 p_3}{2E_3(2\pi)^3} (2\pi)^4 \delta(p_1^\mu + p_2^\mu - p_3^\mu - p^\mu) |M_i|^2 f_1(E_1) f_2(E_2) [1 \pm f_3(E_3)]$$
Bulk viscous corrections

How to determine δf_{bulk}

1. Expand the exponent y^i in $f^i = \frac{1}{\exp(y^i) + 1}$ around equilibrium in terms of Π

 The tensor structure allowed in Israel-Stewart theory is

 $$\delta y^i = [b_i D_{\Pi} u_{\mu} p^\mu_i + B_{\Pi} g_{\mu\nu} p^\mu_i p^\nu_i + (\tilde{B}_{\Pi} - B_{\Pi}) p^\mu_i p^\nu_i] \Pi$$

2. Have it satisfy the self-consistency conditions

 $$\delta T^{\mu\nu} = \sum_i \int \frac{g_i d^3 p}{(2\pi)^3 E_i} p_i^{\mu} p_i^{\nu} \delta f^i \quad \delta N^\mu_J = \sum_i \int \frac{q_i^J g_i d^3 p}{(2\pi)^3 E_i} p_i^{\mu} \delta f^i$$

We have the coefficients

$$D_{\Pi} = 3(J_{40} J_{31}^B - J_{41} J_{30}^B) J_3^{-1} \quad J_3 = 5 J_{42} J_{30}^B J_{30}^B + 3 J_{31}^B J_{40} J_{31}^B + 3 J_{41} J_{41} J_{20}^{BB}$$

$$B_{\Pi} = (J_{30}^B J_{30}^B - J_{40} J_{20}^{BB}) J_3^{-1} \quad - 3 J_{31}^B J_{41} J_{30}^B - 3 J_{41} J_{30}^B J_{31}^B - 5 J_{42} J_{40} J_{20}^{BB}$$

$$\tilde{B}_{\Pi} = 3 (J_{41} J_{20}^{BB} - J_{30}^B J_{31}^B) J_3^{-1} \quad J_{mn} : \text{momentum integrals of } f_0^i$$
Critical enhancement

- (2+1)-D hydrodynamic tests with

\[E \frac{dR}{d^3p} = \left[1 + 0.1(\xi/\xi_0)^3 \right] \times E \frac{dR}{d^3p} \]

- The magnitude and sign of correction is sensitive to the shape and location of the critical region

- Early emission leads to small momentum anisotropy \(v_2 \)

- Work in progress – stay tuned
Summary and outlook

- QCD critical point is a hot topic in heavy-ion collisions
 - Bulk viscosity can become dominant near QCP
 - Medium evolution itself can be affected if the system came across QCP
 - Trajectories and rapidity distributions are warped by entropy production and enhanced convection
 - Thermal photons can be a good signal of QCP
 - Bulk viscous enhancement is a key
- Full estimation of off-equilibrium and finite-density photon emission rate is important (work in progress)
- Estimations for BNL-RHIC, CERN-SPS, FAIR, NICA are necessary
The end

Thank you!
Takk for at dere hørte på