Thermal photons from chemically non-equilibrated QCD medium

Akihiko Monnai
RIKEN BNL Research Center
Nishina Center for Accelerator-Based Science, RIKEN

Strong and Electroweak Matter 2014
17th July 2014, EPFL, Lausanne, Switzerland
Introduction

- **Quark-gluon plasma (QGP):** many-body system of deconfined quarks and gluons

The QGP created in high-energy heavy ion collisions is quantified as a **relativistic fluid** with extremely small viscosity:

- Au-Au, Au-Cu (200 GeV) and U-U (193 GeV) at RHIC
- Pb-Pb (2.76 TeV) at LHC

It is a QCD phenomenon; what can an **electromagnetic probe** tell us?

Graphics by AM
Introduction

- Observables of the hot QCD matter

Electromagnetic probes:
- Jet quenching, heavy quarks:
- Hydrodynamic medium:

EM transparency
- color opaqueness
- strong coupling
Introduction

- Observables of the hot QCD matter

Electromagnetic probes:
- Jet quenching, heavy quarks:
 - Hydrodynamic medium:

EM transparency
- color opaqueness
- strong coupling
Introduction

- Photon emission in heavy ion collisions (low p_T)

The hot medium is opaque in terms of QCD; transparent in terms of electromagnetism

Hadrons: Most of information before freeze-out is lost (*thermal* hadrons)
Photons: Retain information during the medium time evolution
Introduction

- Photon emission in heavy ion collisions (low p_T)

The hot medium is opaque in terms of QCD; transparent in terms of electromagnetism

Hadrons: Most of information before freeze-out is lost (*thermal* hadrons)

Photons: Retain information during the medium time evolution
Introduction

- Photon emission in heavy ion collisions (low p_T)

The hot medium is opaque in terms of QCD; transparent in terms of electromagnetism

Hadrons: Most of information before freeze-out is lost (thermal hadrons)
Photons: Retain information during the medium time evolution
Introduction

Photon emission in heavy ion collisions (low p_T)

- Decay photons
 - from hadronic decay
- Thermal photons (hadronic)
 - from black-body radiation
- Thermal photons (QGP)
 - from hard processes

The hot medium is opaque in terms of QCD; transparent in terms of electromagnetism

Hadrons: Most of information before freeze-out is lost (*thermal* hadrons)

Photons: Retain information during the medium time evolution
Introduction

- Photon emission in heavy ion collisions (low p_T)

Decay photons
- from hadronic decay

Thermal photons (hadronic)
- from black-body radiation

Prompt photons
- from hard processes

The hot medium is opaque in terms of QCD; transparent in terms of electromagnetism

Hadrons: Most of information before freeze-out is lost (thermal hadrons)
Photons: Retain information during the medium time evolution
Introduction

- **Elliptic flow v_2**

 ### Azimuthal momentum anisotropy

 $$v_2(p_T, y) = \frac{\int_0^{2\pi} d\phi_p \cos(2\phi_p - \Psi_2) \frac{dN}{dp_T}}{\int_0^{2\pi} d\phi_p \frac{dN}{dp_T}}$$

 Large v_2 imply strong-medium interaction because spatial anisotropy has to be converted

 - **Hadronic v_2 is well quantified by nearly ideal hydrodynamic models; strongly-coupled QGP**

 - **Photons are weakly-coupled and do not intrinsically have v_2**

 - **Direct photon v_2 can be finite because of the contribution from thermal photons which are emitted from an anisotropic medium**
Motivation

- Experiments have posed “photon v_2 puzzle”
 - Direct photon v_2 is large; no definite answer so far
 - Hydrodynamic models predict small flow harmonics because of the contribution from earlier stages with little elliptic flow
 - Viscosity? Magnetic field? Pre-equilibrium flow?
 - Direct photon v_3 is also LARGE

No centrality dependence

The enhancement is at least partially due to the properties of the hot medium itself

Talk by S. Mizuno (PHENIX) at QM14
Properties of bulk medium

- **Time-evolution: quark-hadron view**
 - \(\tau > 10 \text{ fm/c:} \) Hadronic gas
 - \(\tau \sim 1-10 \text{ fm/c:} \) QGP/hadronic fluid
 - \(\tau \sim 0-1 \text{ fm/c:} \) Glasma
 - \(\tau < 0 \text{ fm/c:} \) Color glass condensate

- **Color glass condensate (CGC):** Colliding nuclei are saturated gluons
- **QGP/hadronic fluid:** Equilibrated quark-gluon plasma

Chemical equilibration does not necessary coincides with thermalization (cf: AM and B. Müller, arXiv: 1403.7310)
Approach of this work

- Fewer number of quarks at the onset of QGP fluid

Equilibrated QGP (small v_2)

- Quark-gluon plasma
- Quark-gluon plasma
- Quark-gluon plasma

Flow anisotropy develops (medium v_2)
Approach of this work

- Fewer number of quarks at the onset of QGP fluid

Equilibrated QGP (small v_2)

- Quark-gluon plasma
- Quark-gluon plasma
- Quark-gluon plasma

We consider: Non-equilibrated QGP

- Quark-GLUON plasma
- quark-gluon plasma
- Quark-gluon plasma
Approach of this work

- **Fewer number of quarks** at the onset of QGP fluid

Equilibrated QGP (small v_2)

- Quark-gluon plasma

We consider: Non-equilibrated QGP

- quark-GLUON plasma
- quark-gluon plasma

Flow anisotropy develops (medium v_2)

Contribution of later stage becomes large as thermal photons are emitted in the presence of quarks; photon v_2 can be enhanced
Approach of this work

- **Fewer number of quarks** at the onset of QGP fluid

Equilibrated QGP (small v_2)

- Quark-gluon plasma
- Quark-gluon plasma
- Quark-gluon plasma

We consider: Non-equilibrated QGP

- quark-GLUON plasma
- quark-gluon plasma
- Quark-gluon plasma

Flow anisotropy develops (medium v_2)

Contribution of later stage becomes large as thermal photons are emitted in the presence of quarks; **photon v_2 can be enhanced**
Approach of this work

- Fewer number of quarks at the onset of QGP fluid

Equilibrated QGP (small v_2)

- Quark-gluon plasma

We consider: Non-equilibrated QGP

- Quark-gluon plasma
- quark-GLUON plasma
- quark-gluon plasma

Contribution of later stage becomes large as thermal photons are emitted in the presence of quarks; photon v_2 can be enhanced
The model

(2+1)-dimensional ideal hydrodynamic model + rate equations

The energy-momentum conservation

$$\partial_{\mu} T^\mu_{\nu} + \partial_\nu T^\mu_{\nu} = 0$$

Quark and gluon number changing processes

$$\partial_{\mu} N^\mu_{q} = 2r_{b} n_{g} - 2r_{b} \frac{n_{eq}^{g}}{(n_{eq}^{q})^{2}} n_{q}^{2}$$

$$\partial_{\mu} N^\mu_{g} = (r_{a} - r_{b})n_{g} - r_{a} \frac{1}{n_{eq}^{q}} n_{q}^{2} + r_{b} \frac{n_{eq}^{g}}{(n_{eq}^{q})^{2}} n_{q}^{2}$$

$$+ r_{c} n_{q} - r_{c} \frac{1}{n_{eq}^{q}} n_{q} n_{g}$$

r_{a}, r_{b}, r_{c}: reaction rates

$n_{q}^{(eq)}, n_{g}^{(eq)}$: parton densities (in equilibrium)

Late quark chemical equilibration implies $r_{b} < r_{a}, r_{c}$

as the chemical equilibration times are $\tau_{i} \sim 1/r_{i}$
Input for numerical analyses

- **Hydrodynamic parameters (Initial conditions + fluid properties)**
 - Gluon energy distribution: Kolb, Sollfrank and Heinz, PRC 62, 054909 (2000)
 - Quark energy distribution: 0 GeV/fm3
 - Initial time: 0.4 fm/c
 - Equation of state: Hadron resonance gas ($m < 2$ GeV) + Parton gas
 - Chemical reaction rates: $r_i = c_i T$ where c_i ranges are
 \[0.2 \leq c_b \leq 2 \ (\tau_b \sim 0.5 - 5 \ fm/c) \] and
 \[0 \leq c_{a,c} \leq 3 \ (\tau_{a,c} \sim 0.3 - \infty \ fm/c) \]

- **Photon emission rate**

\[
E \frac{dR^\gamma}{d^3p} = \frac{1}{2} \left(1 - \tanh \frac{T - T_c}{\Delta T} \right) E \frac{dR_{\text{hadron}}^\gamma}{d^3p} + \frac{1}{2} \left(1 + \tanh \frac{T - T_c}{\Delta T} \right) E \frac{dR_{\text{QGP}}^\gamma}{d^3p}
\]

where $T_c = 0.17$ GeV and $\Delta T = 0.017$ GeV

- Turbide, Rapp and Gale, PRC 69, 014903
- Traxler and Thoma, PRC 53, 1348
Results

- Elliptic flow of thermal photons – c_b dependence

Late quark chemical equilibration ($\tau_{\text{chem}} \sim 1/c_b T$) leads to enhancement of thermal photon v_2

$\tau_{\text{chem}} \sim 2 \text{ fm}/c$ is motivated in an early equilibration model (AM and B. Müller, arXiv: 1403.7310) \iff $c_b = 0.5$ for $T \sim 0.2 \text{ GeV}$
Results

- Elliptic flow of thermal photons – $c_{a,c}$ dependence

Thermal photon v_2 is moderately enhanced for faster gluon-involved equilibration processes

because quark production in early stages is suppressed due to quicker dampening of gluon overpopulation due to recombination
Summary and outlook

- Thermal photon v_2 from chemically non-equilibrated QGP is investigated
 - Late quark production leads to visible enhancement of v_2, contributing positively to resolution of “photon v_2 problem”
 - Evolution of bulk medium from CGC to QGP is a key
 - Late gluon equilibration slightly reduces v_2
 - Net yield of thermal photons is reduced

- Future prospects include:
 - Introduction of dynamical equation of state, more realistic initial conditions, shear and bulk viscosities
 - Estimation of the contribution from prompt photons
 - Other effects of chemical non-equilibrium, e.g., heavy quarks
Thermal + prompt photon v_n?

- **Optical effects in QGP medium**

 ▶ Transparent medium can have finite refractive index

 $$n^2(T, \omega) \sim 1 - \frac{\omega_p(T)^2}{\omega^2}$$

 The hot medium works as a 4D lens, bending the rays

 ➡ Geometrical anisotropy is directly mapped onto momentum distribution for both prompt and thermal photons

 ➡ How would this affect the direct photon elliptic and triangular flow?

 Possible additional phenomenology

 - EM opacity in QGP below $\omega < \omega_p$?
 (Experimental data indicate $\omega_p < 0.5$ GeV)

 - Color dispersion may be observed
Fin

- Merci de votre attention!
- Website: http://tkynt2.phys.s.u-tokyo.ac.jp/~monnai/