Viscous Hydrodynamics

Akihiko Monnai
Department of Physics, The University of Tokyo
Collaborator: Tetsufumi Hirano

Heavy Ion Meeting 2010-12
December 10th 2010, Yonsei University, Korea
Outline

1. Introduction
 Relativistic hydrodynamics and heavy ion collisions

2. Relativistic Dissipative Hydrodynamics
 Extended Israel-Stewart theory from law of increasing entropy

3. Results and Discussion
 Constitutive equations in multi-component/conserved current systems

4. Summary
 Summary and Outlook
Introduction

- Quark-gluon plasma (QGP) at relativistic heavy ion collisions

RHIC experiments (2000-)

![Image of RHIC experiments]

- $\sqrt{s_{NN}} = 200$ (GeV)

- Discovery of QGP as nearly perfect fluid
- Thermodynamics is at work in QGP at RHIC energies
- Non-equilibrium effects need investigation for quantitative understandings
Introduction

- Hydrodynamic modeling of RHIC

- Intermediate stage (~1-10 fm) is described by hydrodynamics
- Results are dependent on the inputs:
 - Equation of state, Transport coefficients
 - Initial conditions
 - Hydrodynamic equations
 - Output

Hadronic cascade picture
- Hydro to particles
- Initial condition
- CGC/glasma picture?
Introduction

- Properties of QCD fluid

 Equation of state: relation among thermodynamic variables sensitive to degrees of freedom in the system

 Transport coefficients: responses to thermodynamic forces sensitive to interaction in the system

Naïve interpretation of dissipative processes

- Shear viscosity = response to deformation
- Bulk viscosity = response to expansion
- Energy dissipation = response to thermal gradient
- Charge dissipation = response to chemical gradients
Introduction

- Elliptic flow coefficients from RHIC data

Hirano et al. (‘09)

Viscosity

Initial cond.

Eq. of state

theoretical prediction ~ experimental data

Ideal hydro works well

Ideal hydro

Glauber

1st order
Elliptic flow coefficients from RHIC data

Hirano et al. ('09)

Viscosity
Initial cond.
Eq. of state

Ideal hydro
Glauber
Lattice-based

theoretical prediction > experimental data

Ideal hydro shows slight overshooting
Elliptic flow coefficients from RHIC data

Viscosity

Initial cond.

Eq. of state

Viscosity in QGP phase plays important role in reducing v_2
Introduction

- **Why viscous hydrodynamic models?**

<table>
<thead>
<tr>
<th>RHIC experiments (2000-)</th>
<th>(\sqrt{s_{NN}} = 200 \text{(GeV)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Success of ideal hydro</td>
<td>(\Rightarrow) Necessity of viscous hydro</td>
</tr>
<tr>
<td>for improved inputs to the hydrodynamic models</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LHC experiments (2010-)</th>
<th>(\sqrt{s_{NN}} = 2.76, 5.5 \text{(TeV)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asymptotic freedom in QCD</td>
<td>(\Rightarrow) Viscous hydro?</td>
</tr>
<tr>
<td>QGP might become less-strongly coupled</td>
<td></td>
</tr>
</tbody>
</table>

- **CERN Press release, November 26, 2010:**
 “… confirms that the much hotter plasma produced at the LHC behaves as a very low viscosity liquid”

Viscous hydro is likely to work also at the LHC energies.
Introduction

- Viscous hydrodynamics needs improvement

1. **Form** of dissipative hydro equations
 - Fixing the equations is essential in fine-tuning viscosity from experimental data

2. Treatment of **conserved currents**
 - Low-energy ion collisions are planned at FAIR (GSI) & NICA (JINR)
 - Only 1 conserved current can be treated

3. Treatment of **multi-component systems**

 # of conserved currents ≠ # of particle species

 - baryon number, strangeness, etc.
 - pion, proton, quarks, gluons, etc.

 ➡️ We need to construct a firm framework of viscous hydro
Introduction

- Categorization of relativistic hydrodynamic formalisms

<table>
<thead>
<tr>
<th>Types of interactions</th>
<th>Number of components</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single component with binary collisions</td>
<td></td>
</tr>
<tr>
<td>Israel & Stewart ('79), etc...</td>
<td>Multi-components with binary collisions</td>
</tr>
<tr>
<td>Prakash et al. ('91)</td>
<td></td>
</tr>
<tr>
<td>Single component with inelastic scatterings</td>
<td></td>
</tr>
<tr>
<td>(-)</td>
<td>Multi-components with inelastic scatterings</td>
</tr>
<tr>
<td>Monnai & Hirano ('10)</td>
<td></td>
</tr>
</tbody>
</table>

Required for QGP/hadron gas at heavy ion collisions

In this work we formulate relativistic dissipative hydro for multi-component + multi-conserved current systems
Overview

- Formulation of relativistic dissipative hydrodynamics

\[\partial_\mu T^{\mu \nu} = 0 \]
\[\partial_\mu N^J_\nu = 0 \]
\[\partial_\mu s^\mu \geq 0 \]

\[\partial_\alpha I^{\mu \nu \alpha} = Y^{\mu \nu} , \quad \partial_\alpha I^{\mu \alpha}_J = Y^{\mu}_J \]

\[\delta f^i = - f^i_0 (1 \pm f^i_0) \left(p_i^\mu \sum J q^J_i \epsilon^J_\mu + p_i^\mu p_i^\nu \epsilon_{\mu \nu} \right) \]

EoM for dissipative currents

Onsager reciprocal relations satisfied
Thermodynamic Quantities

Tensor decompositions by flow u^μ

\[T^{\mu\nu} = (e_0 + \delta e)u^\mu u^\nu - (P_0 + \Pi)\Delta^{\mu\nu} + 2W^{(\mu}u^{\nu)} + \pi^{\mu\nu} \]

\[N^\mu_J = (n_J0 + \delta n_J)u^\mu + V^\mu_J \]

where $\Delta^{\mu\nu} = g^{\mu\nu} - u^\mu u^\nu$ is the projection operator

2+N equilibrium quantities

- Energy density: e_0
- Hydrostatic pressure: P_0
- J-th charge density: n_J0

10+4N dissipative currents

- Energy density deviation: δe
- Bulk pressure: Π
- Energy current: W^{μ}
- Shear stress tensor: $\pi^{\mu\nu}$
- J-th charge density dev.: δn_J
- J-th charge current: V^μ_J

*Stability conditions $\delta e = \delta n_J = 0$ should be considered afterward

Next slide: Thermodynamic Stability
Thermodynamic Stability

- Maximum entropy state condition

\[s^\mu u_\mu = s_0 + \sum_i \int \frac{g_i d^3 p}{(2\pi)^3 E_i} p_i^\mu u_\mu y_0^i \delta f^i - \frac{1}{2} \sum_i \int \frac{g_i d^3 p}{(2\pi)^3 E_i} p_i^\mu u_\mu \frac{\delta f^i}{f_0^i (1 \pm f_0^i)} + \mathcal{O}(\delta f^3) \]

\[= 0 \leq 0 \]

- Stability condition (1st order)

\[\sum_i \int \frac{g_i d^3 p}{(2\pi)^3 E_i} p_i^\mu u_\mu y_0^i \delta f^i = \frac{1}{T} u_\mu \delta T^{\mu \nu} u_\nu - \sum_J \frac{\mu_J}{T} u_\mu \delta N_J^\mu = 0 \]

\[\Rightarrow \delta e = \delta n_J = 0 \]

- Stability condition (2nd order) \(\Rightarrow \) automatically satisfied in kinetic theory

*Stability conditions are NOT the same as the law of increasing entropy
Relativistic Hydrodynamics

- **Ideal** hydrodynamics

 \[e_0, P_0, n, j, u^\mu \begin{array}{c} \leftrightarrow \end{array} \partial_\mu T^{\mu\nu} = 0, \partial_\mu N^\mu_j = 0, P_0 = P_0(e_0, \{n, j\})\]

- **Dissipative** hydrodynamics ("perturbation" from equilibrium)

 \[\Pi, \delta e, W^\mu, \pi^{\mu\nu}, \delta n, j, V^\mu_j \begin{array}{c} \leftrightarrow \end{array} \partial_\alpha I^{\mu\nu\alpha} = Y^{\mu\nu}, \partial_\alpha I^{\mu\alpha}_j = Y^\mu_j\]

 Defined in relativistic kinetic theory as

 \[
 \partial_\alpha I^{\mu\nu\alpha} = \sum_i \int \frac{q_i g^3}{(2\pi)^3 E_i} p_i^\mu p_i^\nu p_i^\alpha \partial_\alpha f^i = Y^{\mu\nu}
 \]

 \[
 \partial_\alpha I^{\mu\alpha}_j = \sum_i \int \frac{q_j g^3}{(2\pi)^3 E_i} p_i^\mu p_i^\alpha \partial_\alpha f^i = Y^\mu_j
 \]

 Estimated from the law of increasing entropy \(\partial_\mu S^\mu \geq 0\)

 New equations in our work
Moment Equations

- Introduce distortion of distribution

\[
\delta f^i = -f^i_0(1 \pm f^i_0)(p_i^\mu \sum_J q_i^J \varepsilon_{\mu}^J + p_i^\mu p_i^\nu \varepsilon_{\mu\nu})
\]

*Grad’s moment method extended to multi-conserved current systems

- 10+4N unknowns \(\varepsilon_{\mu\nu}^i, \varepsilon_{\nu}^J \) are determined in self-consistency conditions

\[
\delta T_{\mu\nu} = \sum_i \int \frac{g_i d^3p}{(2\pi)^3 E_i} p_i^\mu p_i^\nu \delta f^i \\
\delta N_{\mu}^J = \sum_i \int \frac{q_i^J g_i d^3p}{(2\pi)^3 E_i} p_i^\mu \delta f^i
\]

- The entropy production is expressed in terms of \(Y_{\mu\nu} \) and \(Y_J^\mu \)

\[
\partial_\mu s^\mu = \sum_i \int \frac{g_i d^3p}{(2\pi)^3 E_i} y_i p_i^\mu \partial_\mu f^i = \sum_J \varepsilon_{\nu}^J Y_{\nu}^J + \varepsilon_{\nu\rho} Y_{\nu\rho} \geq 0
\]
Constitutive Equations

- **Bulk Pressure**

\[
\Pi = -\zeta \nabla \mu u^\mu - \zeta \Pi \delta e \frac{1}{T} + \sum_j \zeta \Pi \delta n_j \frac{D \mu_j}{T} \\
- \tau \Pi D \Pi + \sum_J \chi^{aJ} \Pi D \frac{\mu_J}{T} + \chi^b \Pi \Pi D \frac{1}{T} + \chi^c \Pi \nabla \mu u^\mu \\
+ \sum_J \chi^{aJ} W^\mu D \frac{\mu_J}{T} + \chi^b W^\mu \nabla \frac{1}{T} + \chi^c W^\mu D u^\mu + \chi^d W^\mu W^\mu \\
+ \sum_{J,K} \chi^{aJ} V^J \nabla \frac{\mu_K}{T} + \sum_J \chi^b V^J \nabla \frac{1}{T} + \sum_J \chi^c V^J D u^\mu + \sum_J \chi^d V^J \nabla \mu V^J \\
+ \chi^\Pi \Pi \nabla \langle \mu, u^\nu \rangle
\]

- **Cross terms** appear (reciprocal relations)
- **2\text{nd order terms}** in full form (multi-conserved currents)
- **Relaxation term** appears (causality is preserved)
Constitutive Equations

- **Energy current**

\[
W^\mu = -\kappa_W \left(\frac{1}{T} D u^\mu + \nabla^\mu \frac{1}{T} \right) + \sum_j \kappa_W V_j \nabla^\mu \frac{\mu_j}{T}
\]

- **response to temperature gradient**

\[
- \tau_W \Delta^{\mu\nu} D W_{\nu} + \sum_j \chi_W^{a,j} W^\mu D \frac{\mu_j}{T} + \chi_W W^\mu D \frac{1}{T}
\]

- **cross terms (linear)**

\[
+ \chi_W^c W^\mu \nabla_\nu u^\nu + \chi_W^d W^\nu \nabla_\nu u^\mu + \chi_W^e W^\nu \nabla^\mu u_\nu
\]

- **relaxation term**

\[
- \sum_j \tau_W V_j \Delta^{\mu\nu} D V^j_{\nu} + \sum_{j,K} \chi_W^{a,k} V^\mu D \frac{\mu_k}{T} + \sum_j \chi_W^{b,j} V^\mu D \frac{1}{T}
\]

- **2nd order corrections**

\[
+ \sum_j \chi_W^c V^\mu_j \nabla^\nu u_\nu + \sum_j \chi_W^d V^\nu_j \nabla^\mu u^\mu + \sum_j \chi_W^e V^\nu_j \nabla^\mu u_\nu
\]

\[
+ \sum_j \chi_W^{a,j} \pi^{\mu\nu} \nabla_\nu \frac{\mu_j}{T} + \chi_W^{b,j} \pi^{\mu\nu} \nabla_\nu \frac{1}{T} + \chi_W^{c,j} \pi^{\mu\nu} u_\nu + \chi_W^{d,j} \Delta^{\mu\nu} \nabla^\rho \pi_{\nu\rho}
\]

\[
+ \sum_j \chi_W^{a,j} \Pi^{\mu\nu} \nabla_\nu \frac{\mu_j}{T} + \chi_W^{b,j} \Pi^{\mu\nu} \nabla_\nu \frac{1}{T} + \chi_W^{c,j} \Pi^{\mu\nu} D u^\mu + \chi_W^{d,j} \nabla^\mu \Pi
\]
Constitutive Equations

- Charge currents

\[V_J^\mu = \sum_K \kappa_{VJ} V_K \frac{\mu K}{T} - \kappa_{VJ} W \left(\frac{1}{T} Du^\mu + \nabla^\mu \frac{1}{T} \right) \]

\[+ \sum_K \chi_{VJ} V_K \Delta^\mu \nabla u^\nu \]

\[= \sum_K \chi_{VJ} V_K \nabla u^\nu \]

\[+ \sum_K \chi_{VJ} V_K \nabla u^\mu \]

\[+ \sum_K \chi_{VJ} V_K \nabla u^\nu \]

\[- \tau_{VJ} W \Delta^\mu \nabla u^\nu \]

\[+ \sum_K \chi_{VJ} W \nabla^\mu \nabla u^\nu \]

\[+ \sum_K \chi_{VJ} W \nabla^\mu \nabla u^\nu \]

\[+ \sum_K \chi_{VJ} W \nabla^\mu \nabla u^\nu \]

\[+ \sum_K \chi_{VJ} \pi^\mu \nabla^\nu \frac{\mu K}{T} + \sum_K \chi_{VJ} \pi^\mu \nabla^\nu \frac{1}{T} \]

\[+ \sum_K \chi_{VJ} \pi \nabla^\mu \frac{1}{T} \]
Constitutive Equations

- **Shear stress tensor**

\[
\pi^{\mu\nu} = 2\eta \nabla^{\langle \mu} u^{\nu \rangle}
\]

Relaxation term

\[
\tau \pi D\pi^{\langle \mu\nu \rangle} + \sum_J \chi_{\pi\pi}^{aJ} \pi^{\mu\nu} D^{\mu\nu} + \chi_{\pi\pi}^{b} \pi^{\mu\nu} D^{\mu\nu} 1 \frac{1}{T} + \chi_{\pi\pi}^{c} \pi^{\mu\nu} \nabla u^\rho + \chi_{\pi\pi}^{d} \pi^{\rho\mu} \nabla \rho^{\nu}
\]

\[
+ \sum_J \chi_{\pi\pi}^{aJ} W^{\langle \mu\nu \rangle} \frac{\mu J}{T} + \chi_{\pi\pi}^{b} W^{\langle \mu\nu \rangle} \frac{1}{T} + \chi_{\pi\pi}^{c} W^{\langle \mu D u^\nu \rangle} + \chi_{\pi\pi}^{d} W^{\langle \mu W^\nu \rangle}
\]

\[
+ \sum_{J,K} \chi_{\pi\pi}^{aJ} V_J^{\langle \mu\nu \rangle} \frac{\mu K}{T} + \sum_J \chi_{\pi\pi}^{b} V_J^{\langle \mu\nu \rangle} \frac{1}{T} + \sum_J \chi_{\pi\pi}^{c} V_J^{\langle \mu D u^\nu \rangle} + \sum_J \chi_{\pi\pi}^{d} V_J^{\langle \mu V_J^\nu \rangle}
\]

\[
+ \chi_{\pi\pi} V^{\langle \mu u^\nu \rangle}
\]

- **Discussion - Relaxation term**

- Linear response ⟷ Acausal and unstable in relativistic systems
- Relaxation effect to limit the propagation faster than the light speed

Hiscock & Lindblom (’85)
Discussion - Cross terms

- Coupling of thermodynamic forces in the dissipative currents

\[
W^{\mu} = -\kappa W W \left(\nabla^{\mu} \frac{1}{T} + \frac{1}{T} D u^{\mu} \right) + \sum_{J} \kappa_{WJ} \nabla^{\mu} \frac{\mu_{J}}{T} \\
V_{J}^{\mu} = -\kappa_{VJ} W \left(\nabla^{\mu} \frac{1}{T} + \frac{1}{T} D u^{\mu} \right) + \sum_{K} \kappa_{VJ} V_{K} \nabla^{\mu} \frac{\mu_{K}}{T}
\]

- Onsager reciprocal relations \((\kappa_{WJ} = \kappa_{VJ})\) is satisfied

Cf: “Cooling” process for cooking tasty *oden* (Japanese soup)

Chemical diffusion via thermal gradient \(\Rightarrow\) Soret effect

It should play an important role in our “quark soup”
Discussion – 2\(^{nd}\) order terms

- Comparison with AdS/CFT+phenomenological approach

\[\pi^{\mu\nu} = 2\eta \nabla \langle \mu u^\nu \rangle - \tau_\pi D\pi^{\mu\nu} - \frac{d}{d-1} \tau_\pi \pi^{\mu\nu} \nabla_\rho u^\rho \]

\[+ \frac{\lambda_1}{\eta^2} \pi^{\rho\langle \mu \pi^{\nu} \rangle} - \frac{\lambda_2}{\eta} \pi^{\rho\langle \mu \omega^{\nu} \rangle} + \lambda_3 \omega^{\rho\langle \mu \omega^{\nu} \rangle} \]

-\textit{Our approach goes beyond the limit of conformal theory}

-\textit{Vorticity-vorticity terms do not appear in kinetic theory}

- Comparison with Renormalization group approach

\[\pi^{\mu\nu} = 2\eta \nabla \langle \mu u^\nu \rangle - \tau_\pi D\pi^{\mu\nu} \]

\[+ \tau_\pi \left[- \frac{1}{2} \frac{T\eta}{\tau_\pi} \partial_\rho \left(\frac{\tau_\pi u^\rho}{T\eta} \right) + \frac{1}{2} \left(- \frac{D\mu}{T} + T\delta_\pi^{(0)} D \frac{1}{T} + \frac{7}{3} \delta_\pi^{(1)} \nabla_\rho u^\rho \right) \right] \pi^{\mu\nu} \]

\[+ \tau_\pi \delta_\pi^{(1)} 4\pi^{\rho\langle \mu \sigma^{\nu} \rangle} + l_\pi V \left[- \nabla \langle \mu \frac{1}{T} + T \delta_\pi V \left(\nabla \langle \mu \frac{1}{T} + \frac{1}{T} D u^{\langle \mu} \right) \right] V^{\nu} \]

\[- l_\pi V \nabla \langle \mu V^{\nu} \rangle + l_\Pi \nabla \langle \mu u^{\nu} \rangle \Pi \]

-\textit{Consistent, as vorticity terms are added in their recent revision}

-\textit{Frame-dependent equations}
Discussion – 2nd order terms

- Comparison with Grad’s 14-moment approach

\[
\pi^{\mu\nu} = 2\eta \nabla \langle \mu u^\nu \rangle - \tau_\pi D_\pi \langle \mu \nu \rangle \\
- 2\eta \delta_{2} \pi^{\mu\nu} \nabla \lambda u^\lambda - 2\tau_\pi \pi_\lambda \langle \mu \sigma^\nu \rangle^\lambda + 2\tau_\pi \pi_\lambda \langle \mu \omega^\nu \rangle^\lambda \\
- 2\lambda_{\pi q} q \langle \mu \nabla^\nu \rangle \frac{\mu}{T} + 2\tau_\pi q \langle \mu D u^\nu \rangle + 2l_{\pi q} \partial \langle \mu q^\nu \rangle \\
+ 2\lambda_{\pi \Pi \Pi} \Pi \nabla \langle \mu u^\nu \rangle
\]

- The form of their equations are consistent with that of ours
- Multiple conserved currents are not supported in 14-moment method

Consistencies suggest we have successfully extended 2nd order theory to multi-component + conserved current systems
Summary and Outlook

- We formulated generalized 2nd order dissipative hydro from the entropy production w/o violating causality

 1. **Multi-component systems with multiple conserved currents**

 Inelastic scattering (e.g. pair creation/annihilation) included

 2. **1st order cross terms are present**

 Onsager reciprocal relations are satisfied

 3. **Frame independent**

 Independent equations for energy and charge currents

- Future prospects include applications to...

 - Numerical estimation of viscous hydrodynamic models for relativistic heavy ion collisions

 - Cosmological fluid, and more

AM & T. Hirano, in preparation
The End

Thank you for listening!